/*************************************************************************/ /* rigid_body_bullet.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rigid_body_bullet.h" #include "btRayShape.h" #include "bullet_physics_server.h" #include "bullet_types_converter.h" #include "bullet_utilities.h" #include "godot_motion_state.h" #include "joint_bullet.h" #include #include #include #include #include /** @author AndreaCatania */ BulletPhysicsDirectBodyState *BulletPhysicsDirectBodyState::singleton = NULL; Vector3 BulletPhysicsDirectBodyState::get_total_gravity() const { Vector3 gVec; B_TO_G(body->btBody->getGravity(), gVec); return gVec; } float BulletPhysicsDirectBodyState::get_total_angular_damp() const { return body->btBody->getAngularDamping(); } float BulletPhysicsDirectBodyState::get_total_linear_damp() const { return body->btBody->getLinearDamping(); } Vector3 BulletPhysicsDirectBodyState::get_center_of_mass() const { Vector3 gVec; B_TO_G(body->btBody->getCenterOfMassPosition(), gVec); return gVec; } Basis BulletPhysicsDirectBodyState::get_principal_inertia_axes() const { return Basis(); } float BulletPhysicsDirectBodyState::get_inverse_mass() const { return body->btBody->getInvMass(); } Vector3 BulletPhysicsDirectBodyState::get_inverse_inertia() const { Vector3 gVec; B_TO_G(body->btBody->getInvInertiaDiagLocal(), gVec); return gVec; } Basis BulletPhysicsDirectBodyState::get_inverse_inertia_tensor() const { Basis gInertia; B_TO_G(body->btBody->getInvInertiaTensorWorld(), gInertia); return gInertia; } void BulletPhysicsDirectBodyState::set_linear_velocity(const Vector3 &p_velocity) { body->set_linear_velocity(p_velocity); } Vector3 BulletPhysicsDirectBodyState::get_linear_velocity() const { return body->get_linear_velocity(); } void BulletPhysicsDirectBodyState::set_angular_velocity(const Vector3 &p_velocity) { body->set_angular_velocity(p_velocity); } Vector3 BulletPhysicsDirectBodyState::get_angular_velocity() const { return body->get_angular_velocity(); } void BulletPhysicsDirectBodyState::set_transform(const Transform &p_transform) { body->set_transform(p_transform); } Transform BulletPhysicsDirectBodyState::get_transform() const { return body->get_transform(); } void BulletPhysicsDirectBodyState::add_central_force(const Vector3 &p_force) { body->apply_central_force(p_force); } void BulletPhysicsDirectBodyState::add_force(const Vector3 &p_force, const Vector3 &p_pos) { body->apply_force(p_force, p_pos); } void BulletPhysicsDirectBodyState::add_torque(const Vector3 &p_torque) { body->apply_torque(p_torque); } void BulletPhysicsDirectBodyState::apply_central_impulse(const Vector3 &p_j) { body->apply_central_impulse(p_j); } void BulletPhysicsDirectBodyState::apply_impulse(const Vector3 &p_pos, const Vector3 &p_j) { body->apply_impulse(p_pos, p_j); } void BulletPhysicsDirectBodyState::apply_torque_impulse(const Vector3 &p_j) { body->apply_torque_impulse(p_j); } void BulletPhysicsDirectBodyState::set_sleep_state(bool p_enable) { body->set_activation_state(p_enable); } bool BulletPhysicsDirectBodyState::is_sleeping() const { return !body->is_active(); } int BulletPhysicsDirectBodyState::get_contact_count() const { return body->collisionsCount; } Vector3 BulletPhysicsDirectBodyState::get_contact_local_position(int p_contact_idx) const { return body->collisions[p_contact_idx].hitLocalLocation; } Vector3 BulletPhysicsDirectBodyState::get_contact_local_normal(int p_contact_idx) const { return body->collisions[p_contact_idx].hitNormal; } float BulletPhysicsDirectBodyState::get_contact_impulse(int p_contact_idx) const { return body->collisions[p_contact_idx].appliedImpulse; } int BulletPhysicsDirectBodyState::get_contact_local_shape(int p_contact_idx) const { return body->collisions[p_contact_idx].local_shape; } RID BulletPhysicsDirectBodyState::get_contact_collider(int p_contact_idx) const { return body->collisions[p_contact_idx].otherObject->get_self(); } Vector3 BulletPhysicsDirectBodyState::get_contact_collider_position(int p_contact_idx) const { return body->collisions[p_contact_idx].hitWorldLocation; } ObjectID BulletPhysicsDirectBodyState::get_contact_collider_id(int p_contact_idx) const { return body->collisions[p_contact_idx].otherObject->get_instance_id(); } int BulletPhysicsDirectBodyState::get_contact_collider_shape(int p_contact_idx) const { return body->collisions[p_contact_idx].other_object_shape; } Vector3 BulletPhysicsDirectBodyState::get_contact_collider_velocity_at_position(int p_contact_idx) const { RigidBodyBullet::CollisionData &colDat = body->collisions.write[p_contact_idx]; btVector3 hitLocation; G_TO_B(colDat.hitLocalLocation, hitLocation); Vector3 velocityAtPoint; B_TO_G(colDat.otherObject->get_bt_rigid_body()->getVelocityInLocalPoint(hitLocation), velocityAtPoint); return velocityAtPoint; } PhysicsDirectSpaceState *BulletPhysicsDirectBodyState::get_space_state() { return body->get_space()->get_direct_state(); } RigidBodyBullet::KinematicUtilities::KinematicUtilities(RigidBodyBullet *p_owner) : owner(p_owner), safe_margin(0.001) { } RigidBodyBullet::KinematicUtilities::~KinematicUtilities() { just_delete_shapes(shapes.size()); // don't need to resize } void RigidBodyBullet::KinematicUtilities::setSafeMargin(btScalar p_margin) { safe_margin = p_margin; copyAllOwnerShapes(); } void RigidBodyBullet::KinematicUtilities::copyAllOwnerShapes() { const Vector &shapes_wrappers(owner->get_shapes_wrappers()); const int shapes_count = shapes_wrappers.size(); just_delete_shapes(shapes_count); const CollisionObjectBullet::ShapeWrapper *shape_wrapper; btVector3 owner_scale(owner->get_bt_body_scale()); for (int i = shapes_count - 1; 0 <= i; --i) { shape_wrapper = &shapes_wrappers[i]; if (!shape_wrapper->active) { continue; } shapes.write[i].transform = shape_wrapper->transform; shapes.write[i].transform.getOrigin() *= owner_scale; switch (shape_wrapper->shape->get_type()) { case PhysicsServer::SHAPE_SPHERE: case PhysicsServer::SHAPE_BOX: case PhysicsServer::SHAPE_CAPSULE: case PhysicsServer::SHAPE_CYLINDER: case PhysicsServer::SHAPE_CONVEX_POLYGON: case PhysicsServer::SHAPE_RAY: { shapes.write[i].shape = static_cast(shape_wrapper->shape->create_bt_shape(owner_scale * shape_wrapper->scale, safe_margin)); } break; default: WARN_PRINT("This shape is not supported to be kinematic!"); shapes.write[i].shape = NULL; } } } void RigidBodyBullet::KinematicUtilities::just_delete_shapes(int new_size) { for (int i = shapes.size() - 1; 0 <= i; --i) { if (shapes[i].shape) { bulletdelete(shapes.write[i].shape); } } shapes.resize(new_size); } RigidBodyBullet::RigidBodyBullet() : RigidCollisionObjectBullet(CollisionObjectBullet::TYPE_RIGID_BODY), kinematic_utilities(NULL), locked_axis(0), mass(1), gravity_scale(1), linearDamp(0), angularDamp(0), can_sleep(true), omit_forces_integration(false), can_integrate_forces(false), maxCollisionsDetection(0), collisionsCount(0), prev_collision_count(0), maxAreasWhereIam(10), areaWhereIamCount(0), countGravityPointSpaces(0), isScratchedSpaceOverrideModificator(false), previousActiveState(true), force_integration_callback(NULL) { godotMotionState = bulletnew(GodotMotionState(this)); // Initial properties const btVector3 localInertia(0, 0, 0); btRigidBody::btRigidBodyConstructionInfo cInfo(mass, godotMotionState, NULL, localInertia); btBody = bulletnew(btRigidBody(cInfo)); reload_shapes(); setupBulletCollisionObject(btBody); set_mode(PhysicsServer::BODY_MODE_RIGID); reload_axis_lock(); areasWhereIam.resize(maxAreasWhereIam); for (int i = areasWhereIam.size() - 1; 0 <= i; --i) { areasWhereIam.write[i] = NULL; } btBody->setSleepingThresholds(0.2, 0.2); prev_collision_traces = &collision_traces_1; curr_collision_traces = &collision_traces_2; } RigidBodyBullet::~RigidBodyBullet() { bulletdelete(godotMotionState); if (force_integration_callback) memdelete(force_integration_callback); destroy_kinematic_utilities(); } void RigidBodyBullet::init_kinematic_utilities() { kinematic_utilities = memnew(KinematicUtilities(this)); } void RigidBodyBullet::destroy_kinematic_utilities() { if (kinematic_utilities) { memdelete(kinematic_utilities); kinematic_utilities = NULL; } } void RigidBodyBullet::main_shape_changed() { CRASH_COND(!get_main_shape()) btBody->setCollisionShape(get_main_shape()); set_continuous_collision_detection(is_continuous_collision_detection_enabled()); // Reset } void RigidBodyBullet::reload_body() { if (space) { space->remove_rigid_body(this); if (get_main_shape()) space->add_rigid_body(this); } } void RigidBodyBullet::set_space(SpaceBullet *p_space) { // Clear the old space if there is one if (space) { can_integrate_forces = false; // Remove all eventual constraints assert_no_constraints(); // Remove this object form the physics world space->remove_rigid_body(this); } space = p_space; if (space) { space->add_rigid_body(this); } } void RigidBodyBullet::dispatch_callbacks() { /// The check isFirstTransformChanged is necessary in order to call integrated forces only when the first transform is sent if ((btBody->isKinematicObject() || btBody->isActive() || previousActiveState != btBody->isActive()) && force_integration_callback && can_integrate_forces) { if (omit_forces_integration) btBody->clearForces(); BulletPhysicsDirectBodyState *bodyDirect = BulletPhysicsDirectBodyState::get_singleton(this); Variant variantBodyDirect = bodyDirect; Object *obj = ObjectDB::get_instance(force_integration_callback->id); if (!obj) { // Remove integration callback set_force_integration_callback(0, StringName()); } else { const Variant *vp[2] = { &variantBodyDirect, &force_integration_callback->udata }; Variant::CallError responseCallError; int argc = (force_integration_callback->udata.get_type() == Variant::NIL) ? 1 : 2; obj->call(force_integration_callback->method, vp, argc, responseCallError); } } if (isScratchedSpaceOverrideModificator || 0 < countGravityPointSpaces) { isScratchedSpaceOverrideModificator = false; reload_space_override_modificator(); } /// Lock axis btBody->setLinearVelocity(btBody->getLinearVelocity() * btBody->getLinearFactor()); btBody->setAngularVelocity(btBody->getAngularVelocity() * btBody->getAngularFactor()); previousActiveState = btBody->isActive(); } void RigidBodyBullet::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) { if (force_integration_callback) { memdelete(force_integration_callback); force_integration_callback = NULL; } if (p_id != 0) { force_integration_callback = memnew(ForceIntegrationCallback); force_integration_callback->id = p_id; force_integration_callback->method = p_method; force_integration_callback->udata = p_udata; } } void RigidBodyBullet::scratch_space_override_modificator() { isScratchedSpaceOverrideModificator = true; } void RigidBodyBullet::on_collision_filters_change() { if (space) { space->reload_collision_filters(this); } } void RigidBodyBullet::on_collision_checker_start() { prev_collision_count = collisionsCount; collisionsCount = 0; // Swap array Vector *s = prev_collision_traces; prev_collision_traces = curr_collision_traces; curr_collision_traces = s; } void RigidBodyBullet::on_collision_checker_end() { // Always true if active and not a static or kinematic body isTransformChanged = btBody->isActive() && !btBody->isStaticOrKinematicObject(); } bool RigidBodyBullet::add_collision_object(RigidBodyBullet *p_otherObject, const Vector3 &p_hitWorldLocation, const Vector3 &p_hitLocalLocation, const Vector3 &p_hitNormal, const float &p_appliedImpulse, int p_other_shape_index, int p_local_shape_index) { if (collisionsCount >= maxCollisionsDetection) { return false; } CollisionData &cd = collisions.write[collisionsCount]; cd.hitLocalLocation = p_hitLocalLocation; cd.otherObject = p_otherObject; cd.hitWorldLocation = p_hitWorldLocation; cd.hitNormal = p_hitNormal; cd.appliedImpulse = p_appliedImpulse; cd.other_object_shape = p_other_shape_index; cd.local_shape = p_local_shape_index; curr_collision_traces->write[collisionsCount] = p_otherObject; ++collisionsCount; return true; } bool RigidBodyBullet::was_colliding(RigidBodyBullet *p_other_object) { for (int i = prev_collision_count - 1; 0 <= i; --i) { if ((*prev_collision_traces)[i] == p_other_object) return true; } return false; } void RigidBodyBullet::assert_no_constraints() { if (btBody->getNumConstraintRefs()) { WARN_PRINT("A body with a joints is destroyed. Please check the implementation in order to destroy the joint before the body."); } /*for(int i = btBody->getNumConstraintRefs()-1; 0<=i; --i){ btTypedConstraint* btConst = btBody->getConstraintRef(i); JointBullet* joint = static_cast( btConst->getUserConstraintPtr() ); space->removeConstraint(joint); }*/ } void RigidBodyBullet::set_activation_state(bool p_active) { if (p_active) { btBody->setActivationState(ACTIVE_TAG); } else { btBody->setActivationState(WANTS_DEACTIVATION); } } bool RigidBodyBullet::is_active() const { return btBody->isActive(); } void RigidBodyBullet::set_omit_forces_integration(bool p_omit) { omit_forces_integration = p_omit; } void RigidBodyBullet::set_param(PhysicsServer::BodyParameter p_param, real_t p_value) { switch (p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: btBody->setRestitution(p_value); break; case PhysicsServer::BODY_PARAM_FRICTION: btBody->setFriction(p_value); break; case PhysicsServer::BODY_PARAM_MASS: { ERR_FAIL_COND(p_value < 0); mass = p_value; _internal_set_mass(p_value); break; } case PhysicsServer::BODY_PARAM_LINEAR_DAMP: linearDamp = p_value; btBody->setDamping(linearDamp, angularDamp); break; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: angularDamp = p_value; btBody->setDamping(linearDamp, angularDamp); break; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: gravity_scale = p_value; /// The Bullet gravity will be is set by reload_space_override_modificator scratch_space_override_modificator(); break; default: WARN_PRINTS("Parameter " + itos(p_param) + " not supported by bullet. Value: " + itos(p_value)); } } real_t RigidBodyBullet::get_param(PhysicsServer::BodyParameter p_param) const { switch (p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: return btBody->getRestitution(); case PhysicsServer::BODY_PARAM_FRICTION: return btBody->getFriction(); case PhysicsServer::BODY_PARAM_MASS: { const btScalar invMass = btBody->getInvMass(); return 0 == invMass ? 0 : 1 / invMass; } case PhysicsServer::BODY_PARAM_LINEAR_DAMP: return linearDamp; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: return angularDamp; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: return gravity_scale; default: WARN_PRINTS("Parameter " + itos(p_param) + " not supported by bullet"); return 0; } } void RigidBodyBullet::set_mode(PhysicsServer::BodyMode p_mode) { // This is necessary to block force_integration untile next move can_integrate_forces = false; destroy_kinematic_utilities(); // The mode change is relevant to its mass switch (p_mode) { case PhysicsServer::BODY_MODE_KINEMATIC: mode = PhysicsServer::BODY_MODE_KINEMATIC; reload_axis_lock(); _internal_set_mass(0); init_kinematic_utilities(); break; case PhysicsServer::BODY_MODE_STATIC: mode = PhysicsServer::BODY_MODE_STATIC; reload_axis_lock(); _internal_set_mass(0); break; case PhysicsServer::BODY_MODE_RIGID: mode = PhysicsServer::BODY_MODE_RIGID; reload_axis_lock(); _internal_set_mass(0 == mass ? 1 : mass); scratch_space_override_modificator(); break; case PhysicsServer::BODY_MODE_CHARACTER: mode = PhysicsServer::BODY_MODE_CHARACTER; reload_axis_lock(); _internal_set_mass(0 == mass ? 1 : mass); scratch_space_override_modificator(); break; } btBody->setAngularVelocity(btVector3(0, 0, 0)); btBody->setLinearVelocity(btVector3(0, 0, 0)); } PhysicsServer::BodyMode RigidBodyBullet::get_mode() const { return mode; } void RigidBodyBullet::set_state(PhysicsServer::BodyState p_state, const Variant &p_variant) { switch (p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: set_transform(p_variant); break; case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: set_linear_velocity(p_variant); break; case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: set_angular_velocity(p_variant); break; case PhysicsServer::BODY_STATE_SLEEPING: set_activation_state(!bool(p_variant)); break; case PhysicsServer::BODY_STATE_CAN_SLEEP: can_sleep = bool(p_variant); if (!can_sleep) { // Can't sleep btBody->forceActivationState(DISABLE_DEACTIVATION); } break; } } Variant RigidBodyBullet::get_state(PhysicsServer::BodyState p_state) const { switch (p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: return get_transform(); case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: return get_linear_velocity(); case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: return get_angular_velocity(); case PhysicsServer::BODY_STATE_SLEEPING: return !is_active(); case PhysicsServer::BODY_STATE_CAN_SLEEP: return can_sleep; default: WARN_PRINTS("This state " + itos(p_state) + " is not supported by Bullet"); return Variant(); } } void RigidBodyBullet::apply_central_impulse(const Vector3 &p_impulse) { btVector3 btImpu; G_TO_B(p_impulse, btImpu); if (Vector3() != p_impulse) btBody->activate(); btBody->applyCentralImpulse(btImpu); } void RigidBodyBullet::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) { btVector3 btImpu; btVector3 btPos; G_TO_B(p_impulse, btImpu); G_TO_B(p_pos, btPos); if (Vector3() != p_impulse) btBody->activate(); btBody->applyImpulse(btImpu, btPos); } void RigidBodyBullet::apply_torque_impulse(const Vector3 &p_impulse) { btVector3 btImp; G_TO_B(p_impulse, btImp); if (Vector3() != p_impulse) btBody->activate(); btBody->applyTorqueImpulse(btImp); } void RigidBodyBullet::apply_force(const Vector3 &p_force, const Vector3 &p_pos) { btVector3 btForce; btVector3 btPos; G_TO_B(p_force, btForce); G_TO_B(p_pos, btPos); if (Vector3() != p_force) btBody->activate(); btBody->applyForce(btForce, btPos); } void RigidBodyBullet::apply_central_force(const Vector3 &p_force) { btVector3 btForce; G_TO_B(p_force, btForce); if (Vector3() != p_force) btBody->activate(); btBody->applyCentralForce(btForce); } void RigidBodyBullet::apply_torque(const Vector3 &p_torque) { btVector3 btTorq; G_TO_B(p_torque, btTorq); if (Vector3() != p_torque) btBody->activate(); btBody->applyTorque(btTorq); } void RigidBodyBullet::set_applied_force(const Vector3 &p_force) { btVector3 btVec = btBody->getTotalTorque(); if (Vector3() != p_force) btBody->activate(); btBody->clearForces(); btBody->applyTorque(btVec); G_TO_B(p_force, btVec); btBody->applyCentralForce(btVec); } Vector3 RigidBodyBullet::get_applied_force() const { Vector3 gTotForc; B_TO_G(btBody->getTotalForce(), gTotForc); return gTotForc; } void RigidBodyBullet::set_applied_torque(const Vector3 &p_torque) { btVector3 btVec = btBody->getTotalForce(); if (Vector3() != p_torque) btBody->activate(); btBody->clearForces(); btBody->applyCentralForce(btVec); G_TO_B(p_torque, btVec); btBody->applyTorque(btVec); } Vector3 RigidBodyBullet::get_applied_torque() const { Vector3 gTotTorq; B_TO_G(btBody->getTotalTorque(), gTotTorq); return gTotTorq; } void RigidBodyBullet::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock) { if (lock) { locked_axis |= p_axis; } else { locked_axis &= ~p_axis; } reload_axis_lock(); } bool RigidBodyBullet::is_axis_locked(PhysicsServer::BodyAxis p_axis) const { return locked_axis & p_axis; } void RigidBodyBullet::reload_axis_lock() { btBody->setLinearFactor(btVector3(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_X), !is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Y), !is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Z))); if (PhysicsServer::BODY_MODE_CHARACTER == mode) { /// When character angular is always locked btBody->setAngularFactor(btVector3(0., 0., 0.)); } else { btBody->setAngularFactor(btVector3(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_X), !is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Y), !is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Z))); } } void RigidBodyBullet::set_continuous_collision_detection(bool p_enable) { if (p_enable) { // This threshold enable CCD if the object moves more than // 1 meter in one simulation frame btBody->setCcdMotionThreshold(0.1); /// Calculate using the rule writte below the CCD swept sphere radius /// CCD works on an embedded sphere of radius, make sure this radius /// is embedded inside the convex objects, preferably smaller: /// for an object of dimensions 1 meter, try 0.2 btScalar radius; if (btBody->getCollisionShape()) { btVector3 center; btBody->getCollisionShape()->getBoundingSphere(center, radius); } else { radius = 0; } btBody->setCcdSweptSphereRadius(radius * 0.2); } else { btBody->setCcdMotionThreshold(0.); btBody->setCcdSweptSphereRadius(0.); } } bool RigidBodyBullet::is_continuous_collision_detection_enabled() const { return 0. < btBody->getCcdMotionThreshold(); } void RigidBodyBullet::set_linear_velocity(const Vector3 &p_velocity) { btVector3 btVec; G_TO_B(p_velocity, btVec); if (Vector3() != p_velocity) btBody->activate(); btBody->setLinearVelocity(btVec); } Vector3 RigidBodyBullet::get_linear_velocity() const { Vector3 gVec; B_TO_G(btBody->getLinearVelocity(), gVec); return gVec; } void RigidBodyBullet::set_angular_velocity(const Vector3 &p_velocity) { btVector3 btVec; G_TO_B(p_velocity, btVec); if (Vector3() != p_velocity) btBody->activate(); btBody->setAngularVelocity(btVec); } Vector3 RigidBodyBullet::get_angular_velocity() const { Vector3 gVec; B_TO_G(btBody->getAngularVelocity(), gVec); return gVec; } void RigidBodyBullet::set_transform__bullet(const btTransform &p_global_transform) { if (mode == PhysicsServer::BODY_MODE_KINEMATIC) { if (space) btBody->setLinearVelocity((p_global_transform.getOrigin() - btBody->getWorldTransform().getOrigin()) / space->get_delta_time()); // The kinematic use MotionState class godotMotionState->moveBody(p_global_transform); } CollisionObjectBullet::set_transform__bullet(p_global_transform); } const btTransform &RigidBodyBullet::get_transform__bullet() const { if (is_static()) { return RigidCollisionObjectBullet::get_transform__bullet(); } else { return godotMotionState->getCurrentWorldTransform(); } } void RigidBodyBullet::reload_shapes() { RigidCollisionObjectBullet::reload_shapes(); const btScalar invMass = btBody->getInvMass(); const btScalar mass = invMass == 0 ? 0 : 1 / invMass; if (mainShape) { // inertia initialised zero here because some of bullet's collision // shapes incorrectly do not set the vector in calculateLocalIntertia. // Arbitrary zero is preferable to undefined behaviour. btVector3 inertia(0, 0, 0); mainShape->calculateLocalInertia(mass, inertia); btBody->setMassProps(mass, inertia); } btBody->updateInertiaTensor(); reload_kinematic_shapes(); reload_body(); } void RigidBodyBullet::on_enter_area(AreaBullet *p_area) { /// Add this area to the array in an ordered way ++areaWhereIamCount; if (areaWhereIamCount >= maxAreasWhereIam) { --areaWhereIamCount; return; } for (int i = 0; i < areaWhereIamCount; ++i) { if (NULL == areasWhereIam[i]) { // This area has the highest priority areasWhereIam.write[i] = p_area; break; } else { if (areasWhereIam[i]->get_spOv_priority() > p_area->get_spOv_priority()) { // The position was found, just shift all elements for (int j = i; j < areaWhereIamCount; ++j) { areasWhereIam.write[j + 1] = areasWhereIam[j]; } areasWhereIam.write[i] = p_area; break; } } } if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) { scratch_space_override_modificator(); } if (p_area->is_spOv_gravityPoint()) { ++countGravityPointSpaces; assert(0 < countGravityPointSpaces); } } void RigidBodyBullet::on_exit_area(AreaBullet *p_area) { RigidCollisionObjectBullet::on_exit_area(p_area); /// Remove this area and keep the order /// N.B. Since I don't want resize the array I can't use the "erase" function bool wasTheAreaFound = false; for (int i = 0; i < areaWhereIamCount; ++i) { if (p_area == areasWhereIam[i]) { // The area was found, just shift down all elements for (int j = i; j < areaWhereIamCount; ++j) { areasWhereIam.write[j] = areasWhereIam[j + 1]; } wasTheAreaFound = true; break; } } if (wasTheAreaFound) { if (p_area->is_spOv_gravityPoint()) { --countGravityPointSpaces; assert(0 <= countGravityPointSpaces); } --areaWhereIamCount; areasWhereIam.write[areaWhereIamCount] = NULL; // Even if this is not required, I clear the last element to be safe if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) { scratch_space_override_modificator(); } } } void RigidBodyBullet::reload_space_override_modificator() { // Make sure that kinematic bodies have their total gravity calculated if (!is_active() && PhysicsServer::BODY_MODE_KINEMATIC != mode) return; Vector3 newGravity(space->get_gravity_direction() * space->get_gravity_magnitude()); real_t newLinearDamp(linearDamp); real_t newAngularDamp(angularDamp); AreaBullet *currentArea; // Variable used to calculate new gravity for gravity point areas, it is pointed by currentGravity pointer Vector3 support_gravity(0, 0, 0); int countCombined(0); for (int i = areaWhereIamCount - 1; 0 <= i; --i) { currentArea = areasWhereIam[i]; if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED == currentArea->get_spOv_mode()) { continue; } /// Here is calculated the gravity if (currentArea->is_spOv_gravityPoint()) { /// It calculates the direction of new gravity support_gravity = currentArea->get_transform().xform(currentArea->get_spOv_gravityVec()) - get_transform().get_origin(); real_t distanceMag = support_gravity.length(); // Normalized in this way to avoid the double call of function "length()" if (distanceMag == 0) { support_gravity.x = 0; support_gravity.y = 0; support_gravity.z = 0; } else { support_gravity.x /= distanceMag; support_gravity.y /= distanceMag; support_gravity.z /= distanceMag; } /// Here is calculated the final gravity if (currentArea->get_spOv_gravityPointDistanceScale() > 0) { // Scaled gravity by distance support_gravity *= currentArea->get_spOv_gravityMag() / Math::pow(distanceMag * currentArea->get_spOv_gravityPointDistanceScale() + 1, 2); } else { // Unscaled gravity support_gravity *= currentArea->get_spOv_gravityMag(); } } else { support_gravity = currentArea->get_spOv_gravityVec() * currentArea->get_spOv_gravityMag(); } switch (currentArea->get_spOv_mode()) { case PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED: /// This area does not affect gravity/damp. These are generally areas /// that exist only to detect collisions, and objects entering or exiting them. break; case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE: /// This area adds its gravity/damp values to whatever has been /// calculated so far. This way, many overlapping areas can combine /// their physics to make interesting newGravity += support_gravity; newLinearDamp += currentArea->get_spOv_linearDamp(); newAngularDamp += currentArea->get_spOv_angularDamp(); ++countCombined; break; case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: /// This area adds its gravity/damp values to whatever has been calculated /// so far. Then stops taking into account the rest of the areas, even the /// default one. newGravity += support_gravity; newLinearDamp += currentArea->get_spOv_linearDamp(); newAngularDamp += currentArea->get_spOv_angularDamp(); ++countCombined; goto endAreasCycle; case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE: /// This area replaces any gravity/damp, even the default one, and /// stops taking into account the rest of the areas. newGravity = support_gravity; newLinearDamp = currentArea->get_spOv_linearDamp(); newAngularDamp = currentArea->get_spOv_angularDamp(); countCombined = 1; goto endAreasCycle; case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: /// This area replaces any gravity/damp calculated so far, but keeps /// calculating the rest of the areas, down to the default one. newGravity = support_gravity; newLinearDamp = currentArea->get_spOv_linearDamp(); newAngularDamp = currentArea->get_spOv_angularDamp(); countCombined = 1; break; } } endAreasCycle: if (1 < countCombined) { newGravity /= countCombined; newLinearDamp /= countCombined; newAngularDamp /= countCombined; } btVector3 newBtGravity; G_TO_B(newGravity * gravity_scale, newBtGravity); btBody->setGravity(newBtGravity); btBody->setDamping(newLinearDamp, newAngularDamp); } void RigidBodyBullet::reload_kinematic_shapes() { if (!kinematic_utilities) { return; } kinematic_utilities->copyAllOwnerShapes(); } void RigidBodyBullet::notify_transform_changed() { RigidCollisionObjectBullet::notify_transform_changed(); can_integrate_forces = true; } void RigidBodyBullet::_internal_set_mass(real_t p_mass) { btVector3 localInertia(0, 0, 0); int clearedCurrentFlags = btBody->getCollisionFlags(); clearedCurrentFlags &= ~(btCollisionObject::CF_KINEMATIC_OBJECT | btCollisionObject::CF_STATIC_OBJECT | btCollisionObject::CF_CHARACTER_OBJECT); // Rigidbody is dynamic if and only if mass is non Zero, otherwise static const bool isDynamic = p_mass != 0.f; if (isDynamic) { if (PhysicsServer::BODY_MODE_RIGID != mode && PhysicsServer::BODY_MODE_CHARACTER != mode) return; m_isStatic = false; if (mainShape) mainShape->calculateLocalInertia(p_mass, localInertia); if (PhysicsServer::BODY_MODE_RIGID == mode) { btBody->setCollisionFlags(clearedCurrentFlags); // Just set the flags without Kin and Static } else { btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_CHARACTER_OBJECT); } if (can_sleep) { btBody->forceActivationState(ACTIVE_TAG); // ACTIVE_TAG 1 } else { btBody->forceActivationState(DISABLE_DEACTIVATION); // DISABLE_DEACTIVATION 4 } } else { if (PhysicsServer::BODY_MODE_STATIC != mode && PhysicsServer::BODY_MODE_KINEMATIC != mode) return; m_isStatic = true; if (PhysicsServer::BODY_MODE_STATIC == mode) { btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_STATIC_OBJECT); } else { btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_KINEMATIC_OBJECT); set_transform__bullet(btBody->getWorldTransform()); // Set current Transform using kinematic method } btBody->forceActivationState(DISABLE_SIMULATION); // DISABLE_SIMULATION 5 } btBody->setMassProps(p_mass, localInertia); btBody->updateInertiaTensor(); reload_body(); }