/*************************************************************************/ /* editor_scene_importer_assimp.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "editor_scene_importer_assimp.h" #include "core/io/image_loader.h" #include "editor/import/resource_importer_scene.h" #include "import_utils.h" #include "scene/3d/camera.h" #include "scene/3d/light.h" #include "scene/3d/mesh_instance.h" #include "scene/main/node.h" #include "scene/resources/material.h" #include "scene/resources/surface_tool.h" #include #include #include #include #include #include // move into assimp aiBone *get_bone_by_name(const aiScene *scene, aiString bone_name) { for (unsigned int mesh_id = 0; mesh_id < scene->mNumMeshes; ++mesh_id) { aiMesh *mesh = scene->mMeshes[mesh_id]; // iterate over all the bones on the mesh for this node only! for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) { aiBone *bone = mesh->mBones[boneIndex]; if (bone->mName == bone_name) { printf("matched bone by name: %s\n", bone->mName.C_Str()); return bone; } } } return NULL; } void EditorSceneImporterAssimp::get_extensions(List *r_extensions) const { const String import_setting_string = "filesystem/import/open_asset_import/"; Map import_format; { Vector exts; exts.push_back("fbx"); ImportFormat import = { exts, true }; import_format.insert("fbx", import); } for (Map::Element *E = import_format.front(); E; E = E->next()) { _register_project_setting_import(E->key(), import_setting_string, E->get().extensions, r_extensions, E->get().is_default); } } void EditorSceneImporterAssimp::_register_project_setting_import(const String generic, const String import_setting_string, const Vector &exts, List *r_extensions, const bool p_enabled) const { const String use_generic = "use_" + generic; _GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true); if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) { for (int32_t i = 0; i < exts.size(); i++) { r_extensions->push_back(exts[i]); } } } uint32_t EditorSceneImporterAssimp::get_import_flags() const { return IMPORT_SCENE; } void EditorSceneImporterAssimp::_bind_methods() { } Node *EditorSceneImporterAssimp::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List *r_missing_deps, Error *r_err) { Assimp::Importer importer; std::wstring w_path = ProjectSettings::get_singleton()->globalize_path(p_path).c_str(); std::string s_path(w_path.begin(), w_path.end()); importer.SetPropertyBool(AI_CONFIG_PP_FD_REMOVE, true); // Cannot remove pivot points because the static mesh will be in the wrong place importer.SetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, false); int32_t max_bone_weights = 4; //if (p_flags & IMPORT_ANIMATION_EIGHT_WEIGHTS) { // const int eight_bones = 8; // importer.SetPropertyBool(AI_CONFIG_PP_LBW_MAX_WEIGHTS, eight_bones); // max_bone_weights = eight_bones; //} importer.SetPropertyInteger(AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT); //importer.SetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD, 1.0f); int32_t post_process_Steps = aiProcess_CalcTangentSpace | aiProcess_GlobalScale | // imports models and listens to their file scale for CM to M conversions //aiProcess_FlipUVs | aiProcess_FlipWindingOrder | // very important for culling so that it is done in the correct order. //aiProcess_DropNormals | //aiProcess_GenSmoothNormals | //aiProcess_JoinIdenticalVertices | aiProcess_ImproveCacheLocality | //aiProcess_RemoveRedundantMaterials | // Causes a crash //aiProcess_SplitLargeMeshes | aiProcess_Triangulate | aiProcess_GenUVCoords | //aiProcess_FindDegenerates | //aiProcess_SortByPType | // aiProcess_FindInvalidData | aiProcess_TransformUVCoords | aiProcess_FindInstances | //aiProcess_FixInfacingNormals | //aiProcess_ValidateDataStructure | aiProcess_OptimizeMeshes | aiProcess_PopulateArmatureData | //aiProcess_OptimizeGraph | //aiProcess_Debone | // aiProcess_EmbedTextures | //aiProcess_SplitByBoneCount | 0; aiScene *scene = (aiScene *)importer.ReadFile(s_path.c_str(), post_process_Steps); ERR_FAIL_COND_V_MSG(scene == NULL, NULL, String("Open Asset Import failed to open: ") + String(importer.GetErrorString())); return _generate_scene(p_path, scene, p_flags, p_bake_fps, max_bone_weights); } template struct EditorSceneImporterAssetImportInterpolate { T lerp(const T &a, const T &b, float c) const { return a + (b - a) * c; } T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { float t2 = t * t; float t3 = t2 * t; return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } T bezier(T start, T control_1, T control_2, T end, float t) { /* Formula from Wikipedia article on Bezier curves. */ real_t omt = (1.0 - t); real_t omt2 = omt * omt; real_t omt3 = omt2 * omt; real_t t2 = t * t; real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } }; //thank you for existing, partial specialization template <> struct EditorSceneImporterAssetImportInterpolate { Quat lerp(const Quat &a, const Quat &b, float c) const { ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized."); ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized."); return a.slerp(b, c).normalized(); } Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) { ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized."); ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized."); return p1.slerp(p2, c).normalized(); } Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) { ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized."); return start.slerp(end, t).normalized(); } }; template T EditorSceneImporterAssimp::_interpolate_track(const Vector &p_times, const Vector &p_values, float p_time, AssetImportAnimation::Interpolation p_interp) { //could use binary search, worth it? int idx = -1; for (int i = 0; i < p_times.size(); i++) { if (p_times[i] > p_time) break; idx++; } EditorSceneImporterAssetImportInterpolate interp; switch (p_interp) { case AssetImportAnimation::INTERP_LINEAR: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.lerp(p_values[idx], p_values[idx + 1], c); } break; case AssetImportAnimation::INTERP_STEP: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } return p_values[idx]; } break; case AssetImportAnimation::INTERP_CATMULLROMSPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[1 + p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); } break; case AssetImportAnimation::INTERP_CUBIC_SPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[(p_times.size() - 1) * 3 + 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); T from = p_values[idx * 3 + 1]; T c1 = from + p_values[idx * 3 + 2]; T to = p_values[idx * 3 + 4]; T c2 = to + p_values[idx * 3 + 3]; return interp.bezier(from, c1, c2, to, c); } break; } ERR_FAIL_V(p_values[0]); } aiBone *EditorSceneImporterAssimp::get_bone_from_stack(ImportState &state, aiString name) { List::Element *iter; aiBone *bone = NULL; for (iter = state.bone_stack.front(); iter; iter = iter->next()) { bone = (aiBone *)iter->get(); if (bone && bone->mName == name) { state.bone_stack.erase(bone); return bone; } } return NULL; } Spatial * EditorSceneImporterAssimp::_generate_scene(const String &p_path, aiScene *scene, const uint32_t p_flags, int p_bake_fps, const int32_t p_max_bone_weights) { ERR_FAIL_COND_V(scene == NULL, NULL); ImportState state; state.path = p_path; state.assimp_scene = scene; state.max_bone_weights = p_max_bone_weights; state.animation_player = NULL; // populate light map for (unsigned int l = 0; l < scene->mNumLights; l++) { aiLight *ai_light = scene->mLights[l]; ERR_CONTINUE(ai_light == NULL); state.light_cache[AssimpUtils::get_assimp_string(ai_light->mName)] = l; } // fill camera cache for (unsigned int c = 0; c < scene->mNumCameras; c++) { aiCamera *ai_camera = scene->mCameras[c]; ERR_CONTINUE(ai_camera == NULL); state.camera_cache[AssimpUtils::get_assimp_string(ai_camera->mName)] = c; } if (scene->mRootNode) { state.nodes.push_back(scene->mRootNode); // make flat node tree - in order to make processing deterministic for (unsigned int i = 0; i < scene->mRootNode->mNumChildren; i++) { _generate_node(state, scene->mRootNode->mChildren[i]); } RegenerateBoneStack(state); Node *last_valid_parent = NULL; List::Element *iter; for (iter = state.nodes.front(); iter; iter = iter->next()) { const aiNode *element_assimp_node = iter->get(); const aiNode *parent_assimp_node = element_assimp_node->mParent; String node_name = AssimpUtils::get_assimp_string(element_assimp_node->mName); //print_verbose("node: " + node_name); Spatial *spatial = NULL; Transform transform = AssimpUtils::assimp_matrix_transform(element_assimp_node->mTransformation); // retrieve this node bone aiBone *bone = get_bone_from_stack(state, element_assimp_node->mName); if (state.light_cache.has(node_name)) { spatial = create_light(state, node_name, transform); } else if (state.camera_cache.has(node_name)) { spatial = create_camera(state, node_name, transform); } else if (state.armature_nodes.find(element_assimp_node)) { // create skeleton print_verbose("Making skeleton: " + node_name); Skeleton *skeleton = memnew(Skeleton); spatial = skeleton; if (!state.armature_skeletons.has(element_assimp_node)) { state.armature_skeletons.insert(element_assimp_node, skeleton); } } else if (bone != NULL) { continue; } else { spatial = memnew(Spatial); } ERR_CONTINUE_MSG(spatial == NULL, "FBX Import - are we out of ram?"); // we on purpose set the transform and name after creating the node. spatial->set_name(node_name); spatial->set_global_transform(transform); // first element is root if (iter == state.nodes.front()) { state.root = spatial; } // flat node map parent lookup tool state.flat_node_map.insert(element_assimp_node, spatial); Map::Element *parent_lookup = state.flat_node_map.find(parent_assimp_node); // note: this always fails on the root node :) keep that in mind this is by design if (parent_lookup) { Spatial *parent_node = parent_lookup->value(); ERR_FAIL_COND_V_MSG(parent_node == NULL, state.root, "Parent node invalid even though lookup successful, out of ram?"); if (spatial != state.root) { parent_node->add_child(spatial); spatial->set_owner(state.root); } else { // required - think about it root never has a parent yet is valid, anything else without a parent is not valid. } } else if (spatial != state.root) { // if the ainode is not in the tree // parent it to the last good parent found if (last_valid_parent) { last_valid_parent->add_child(spatial); spatial->set_owner(state.root); } else { // this is a serious error? memdelete(spatial); } } // update last valid parent last_valid_parent = spatial; } print_verbose("node counts: " + itos(state.nodes.size())); // make clean bone stack RegenerateBoneStack(state); print_verbose("generating godot bone data"); print_verbose("Godot bone stack count: " + itos(state.bone_stack.size())); // This is a list of bones, duplicates are from other meshes and must be dealt with properly for (List::Element *element = state.bone_stack.front(); element; element = element->next()) { aiBone *bone = element->get(); ERR_CONTINUE_MSG(!bone, "invalid bone read from assimp?"); // Utilities for armature lookup - for now only FBX makes these aiNode *armature_for_bone = bone->mArmature; // Utilities for bone node lookup - for now only FBX makes these aiNode *bone_node = bone->mNode; aiNode *parent_node = bone_node->mParent; String bone_name = AssimpUtils::get_anim_string_from_assimp(bone->mName); ERR_CONTINUE_MSG(armature_for_bone == NULL, "Armature for bone invalid: " + bone_name); Skeleton *skeleton = state.armature_skeletons[armature_for_bone]; state.skeleton_bone_map[bone] = skeleton; if (bone_name.empty()) { bone_name = "untitled_bone_name"; WARN_PRINT("Untitled bone name detected... report with file please"); } // todo: this is where skin support goes if (skeleton && skeleton->find_bone(bone_name) == -1) { print_verbose("[Godot Glue] Imported bone" + bone_name); int boneIdx = skeleton->get_bone_count(); Transform pform = AssimpUtils::assimp_matrix_transform(bone->mNode->mTransformation); skeleton->add_bone(bone_name); skeleton->set_bone_rest(boneIdx, pform); skeleton->set_bone_pose(boneIdx, pform); if (parent_node != NULL) { int parent_bone_id = skeleton->find_bone(AssimpUtils::get_anim_string_from_assimp(parent_node->mName)); int current_bone_id = boneIdx; skeleton->set_bone_parent(current_bone_id, parent_bone_id); } } } print_verbose("generating mesh phase from skeletal mesh"); List cleanup_template_nodes; for (Map::Element *key_value_pair = state.flat_node_map.front(); key_value_pair; key_value_pair = key_value_pair->next()) { const aiNode *assimp_node = key_value_pair->key(); Spatial *mesh_template = key_value_pair->value(); ERR_CONTINUE(assimp_node == NULL); ERR_CONTINUE(mesh_template == NULL); Node *parent_node = mesh_template->get_parent(); if (mesh_template == state.root) { continue; } if (parent_node == NULL) { print_error("Found invalid parent node!"); continue; // root node } String node_name = AssimpUtils::get_assimp_string(assimp_node->mName); Transform node_transform = AssimpUtils::assimp_matrix_transform(assimp_node->mTransformation); if (assimp_node->mNumMeshes > 0) { MeshInstance *mesh = create_mesh(state, assimp_node, node_name, parent_node, node_transform); if (mesh) { parent_node->remove_child(mesh_template); // re-parent children List children; // re-parent all children to new node // note: since get_child_count will change during execution we must build a list first to be safe. for (int childId = 0; childId < mesh_template->get_child_count(); childId++) { // get child Node *child = mesh_template->get_child(childId); children.push_back(child); } for (List::Element *element = children.front(); element; element = element->next()) { // reparent the children to the real mesh node. mesh_template->remove_child(element->get()); mesh->add_child(element->get()); element->get()->set_owner(state.root); } // update mesh in list so that each mesh node is available // this makes the template unavailable which is the desired behaviour state.flat_node_map[assimp_node] = mesh; cleanup_template_nodes.push_back(mesh_template); // clean up this list we don't need it children.clear(); } } } for (List::Element *element = cleanup_template_nodes.front(); element; element = element->next()) { if (element->get()) { memdelete(element->get()); } } } if (p_flags & IMPORT_ANIMATION && scene->mNumAnimations) { state.animation_player = memnew(AnimationPlayer); state.root->add_child(state.animation_player); state.animation_player->set_owner(state.root); for (uint32_t i = 0; i < scene->mNumAnimations; i++) { _import_animation(state, i, p_bake_fps); } } // // Cleanup operations // state.mesh_cache.clear(); state.material_cache.clear(); state.light_cache.clear(); state.camera_cache.clear(); state.assimp_node_map.clear(); state.path_to_image_cache.clear(); state.nodes.clear(); state.flat_node_map.clear(); state.armature_skeletons.clear(); state.bone_stack.clear(); return state.root; } void EditorSceneImporterAssimp::_insert_animation_track(ImportState &scene, const aiAnimation *assimp_anim, int track_id, int anim_fps, Ref animation, float ticks_per_second, Skeleton *skeleton, const NodePath &node_path, const String &node_name, aiBone *track_bone) { const aiNodeAnim *assimp_track = assimp_anim->mChannels[track_id]; //make transform track int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_TRANSFORM); animation->track_set_path(track_idx, node_path); //first determine animation length float increment = 1.0 / float(anim_fps); float time = 0.0; bool last = false; Vector pos_values; Vector pos_times; Vector scale_values; Vector scale_times; Vector rot_values; Vector rot_times; for (size_t p = 0; p < assimp_track->mNumPositionKeys; p++) { aiVector3D pos = assimp_track->mPositionKeys[p].mValue; pos_values.push_back(Vector3(pos.x, pos.y, pos.z)); pos_times.push_back(assimp_track->mPositionKeys[p].mTime / ticks_per_second); } for (size_t r = 0; r < assimp_track->mNumRotationKeys; r++) { aiQuaternion quat = assimp_track->mRotationKeys[r].mValue; rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized()); rot_times.push_back(assimp_track->mRotationKeys[r].mTime / ticks_per_second); } for (size_t sc = 0; sc < assimp_track->mNumScalingKeys; sc++) { aiVector3D scale = assimp_track->mScalingKeys[sc].mValue; scale_values.push_back(Vector3(scale.x, scale.y, scale.z)); scale_times.push_back(assimp_track->mScalingKeys[sc].mTime / ticks_per_second); } while (true) { Vector3 pos; Quat rot; Vector3 scale(1, 1, 1); if (pos_values.size()) { pos = _interpolate_track(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR); } if (rot_values.size()) { rot = _interpolate_track(rot_times, rot_values, time, AssetImportAnimation::INTERP_LINEAR) .normalized(); } if (scale_values.size()) { scale = _interpolate_track(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR); } if (skeleton) { int skeleton_bone = skeleton->find_bone(node_name); if (skeleton_bone >= 0 && track_bone) { Transform xform; xform.basis.set_quat_scale(rot, scale); xform.origin = pos; xform = skeleton->get_bone_pose(skeleton_bone).inverse() * xform; rot = xform.basis.get_rotation_quat(); rot.normalize(); scale = xform.basis.get_scale(); pos = xform.origin; } else { ERR_FAIL_MSG("Skeleton bone lookup failed for skeleton: " + skeleton->get_name()); } } animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR); animation->transform_track_insert_key(track_idx, time, pos, rot, scale); if (last) { //done this way so a key is always inserted past the end (for proper interpolation) break; } time += increment; if (time >= animation->get_length()) { last = true; } } } // I really do not like this but need to figure out a better way of removing it later. Node *EditorSceneImporterAssimp::get_node_by_name(ImportState &state, String name) { for (Map::Element *key_value_pair = state.flat_node_map.front(); key_value_pair; key_value_pair = key_value_pair->next()) { const aiNode *assimp_node = key_value_pair->key(); Spatial *node = key_value_pair->value(); String node_name = AssimpUtils::get_assimp_string(assimp_node->mName); if (name == node_name && node) { return node; } } return NULL; } /* Bone stack is a fifo handler for multiple armatures since armatures aren't a thing in assimp (yet) */ void EditorSceneImporterAssimp::RegenerateBoneStack(ImportState &state) { state.bone_stack.clear(); // build bone stack list for (unsigned int mesh_id = 0; mesh_id < state.assimp_scene->mNumMeshes; ++mesh_id) { aiMesh *mesh = state.assimp_scene->mMeshes[mesh_id]; // iterate over all the bones on the mesh for this node only! for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) { aiBone *bone = mesh->mBones[boneIndex]; // doubtful this is required right now but best to check if (!state.bone_stack.find(bone)) { //print_verbose("[assimp] bone stack added: " + String(bone->mName.C_Str()) ); state.bone_stack.push_back(bone); } } } } /* Bone stack is a fifo handler for multiple armatures since armatures aren't a thing in assimp (yet) */ void EditorSceneImporterAssimp::RegenerateBoneStack(ImportState &state, aiMesh *mesh) { state.bone_stack.clear(); // iterate over all the bones on the mesh for this node only! for (unsigned int boneIndex = 0; boneIndex < mesh->mNumBones; boneIndex++) { aiBone *bone = mesh->mBones[boneIndex]; if (state.bone_stack.find(bone) == NULL) { state.bone_stack.push_back(bone); } } } // animation tracks are per bone void EditorSceneImporterAssimp::_import_animation(ImportState &state, int p_animation_index, int p_bake_fps) { ERR_FAIL_INDEX(p_animation_index, (int)state.assimp_scene->mNumAnimations); const aiAnimation *anim = state.assimp_scene->mAnimations[p_animation_index]; String name = AssimpUtils::get_anim_string_from_assimp(anim->mName); if (name == String()) { name = "Animation " + itos(p_animation_index + 1); } print_verbose("import animation: " + name); float ticks_per_second = anim->mTicksPerSecond; if (state.assimp_scene->mMetaData != NULL && Math::is_equal_approx(ticks_per_second, 0.0f)) { int32_t time_mode = 0; state.assimp_scene->mMetaData->Get("TimeMode", time_mode); ticks_per_second = AssimpUtils::get_fbx_fps(time_mode, state.assimp_scene); } //? //if ((p_path.get_file().get_extension().to_lower() == "glb" || p_path.get_file().get_extension().to_lower() == "gltf") && Math::is_equal_approx(ticks_per_second, 0.0f)) { // ticks_per_second = 1000.0f; //} if (Math::is_equal_approx(ticks_per_second, 0.0f)) { ticks_per_second = 25.0f; } Ref animation; animation.instance(); animation->set_name(name); animation->set_length(anim->mDuration / ticks_per_second); if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) { animation->set_loop(true); } // generate bone stack for animation import RegenerateBoneStack(state); //regular tracks for (size_t i = 0; i < anim->mNumChannels; i++) { const aiNodeAnim *track = anim->mChannels[i]; String node_name = AssimpUtils::get_assimp_string(track->mNodeName); print_verbose("track name import: " + node_name); if (track->mNumRotationKeys == 0 && track->mNumPositionKeys == 0 && track->mNumScalingKeys == 0) { continue; //do not bother } Skeleton *skeleton = NULL; NodePath node_path; aiBone *bone = NULL; // Import skeleton bone animation for this track // Any bone will do, no point in processing more than just what is in the skeleton { bone = get_bone_from_stack(state, track->mNodeName); if (bone) { // get skeleton by bone skeleton = state.armature_skeletons[bone->mArmature]; if (skeleton) { String path = state.root->get_path_to(skeleton); path += ":" + node_name; node_path = path; if (node_path != NodePath()) { _insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton, node_path, node_name, bone); } else { print_error("Failed to find valid node path for animation"); } } } } // not a bone // note this is flaky it uses node names which is unreliable Node *allocated_node = get_node_by_name(state, node_name); // todo: implement skeleton grabbing for node based animations too :) // check if node exists, if it does then also apply animation track for node and bones above are all handled. // this is now inclusive animation handling so that // we import all the data and do not miss anything. if (allocated_node) { node_path = state.root->get_path_to(allocated_node); if (node_path != NodePath()) { _insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton, node_path, node_name, nullptr); } } } //blend shape tracks for (size_t i = 0; i < anim->mNumMorphMeshChannels; i++) { const aiMeshMorphAnim *anim_mesh = anim->mMorphMeshChannels[i]; const String prop_name = AssimpUtils::get_assimp_string(anim_mesh->mName); const String mesh_name = prop_name.split("*")[0]; ERR_CONTINUE(prop_name.split("*").size() != 2); Node *item = get_node_by_name(state, mesh_name); ERR_CONTINUE_MSG(!item, "failed to look up node by name"); const MeshInstance *mesh_instance = Object::cast_to(item); ERR_CONTINUE(mesh_instance == NULL); String base_path = state.root->get_path_to(mesh_instance); Ref mesh = mesh_instance->get_mesh(); ERR_CONTINUE(mesh.is_null()); //add the tracks for this mesh int base_track = animation->get_track_count(); for (int j = 0; j < mesh->get_blend_shape_count(); j++) { animation->add_track(Animation::TYPE_VALUE); animation->track_set_path(base_track + j, base_path + ":blend_shapes/" + mesh->get_blend_shape_name(j)); } for (size_t k = 0; k < anim_mesh->mNumKeys; k++) { for (size_t j = 0; j < anim_mesh->mKeys[k].mNumValuesAndWeights; j++) { float t = anim_mesh->mKeys[k].mTime / ticks_per_second; float w = anim_mesh->mKeys[k].mWeights[j]; animation->track_insert_key(base_track + j, t, w); } } } if (animation->get_track_count()) { state.animation_player->add_animation(name, animation); } } // // Mesh Generation from indices ? why do we need so much mesh code // [debt needs looked into] Ref EditorSceneImporterAssimp::_generate_mesh_from_surface_indices(ImportState &state, const Vector &p_surface_indices, const aiNode *assimp_node, Ref &skin, Skeleton *&skeleton_assigned) { Ref mesh; mesh.instance(); bool has_uvs = false; Map morph_mesh_string_lookup; for (int i = 0; i < p_surface_indices.size(); i++) { const unsigned int mesh_idx = p_surface_indices[0]; const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx]; for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) { String ai_anim_mesh_name = AssimpUtils::get_assimp_string(ai_mesh->mAnimMeshes[j]->mName); if (!morph_mesh_string_lookup.has(ai_anim_mesh_name)) { morph_mesh_string_lookup.insert(ai_anim_mesh_name, j); mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); if (ai_anim_mesh_name.empty()) { ai_anim_mesh_name = String("morph_") + itos(j); } mesh->add_blend_shape(ai_anim_mesh_name); } } } // // Process Vertex Weights // for (int i = 0; i < p_surface_indices.size(); i++) { const unsigned int mesh_idx = p_surface_indices[i]; const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx]; Map > vertex_weights; if (ai_mesh->mNumBones > 0) { for (size_t b = 0; b < ai_mesh->mNumBones; b++) { aiBone *bone = ai_mesh->mBones[b]; if (!skeleton_assigned) { print_verbose("Assigned mesh skeleton during mesh creation"); skeleton_assigned = state.skeleton_bone_map[bone]; if (!skin.is_valid()) { print_verbose("Configured new skin"); skin.instance(); } else { print_verbose("Reusing existing skin!"); } } // skeleton_assigned = String bone_name = AssimpUtils::get_assimp_string(bone->mName); int bone_index = skeleton_assigned->find_bone(bone_name); ERR_CONTINUE(bone_index == -1); for (size_t w = 0; w < bone->mNumWeights; w++) { aiVertexWeight ai_weights = bone->mWeights[w]; BoneInfo bi; uint32_t vertex_index = ai_weights.mVertexId; bi.bone = bone_index; bi.weight = ai_weights.mWeight; if (!vertex_weights.has(vertex_index)) { vertex_weights[vertex_index] = Vector(); } vertex_weights[vertex_index].push_back(bi); } } } // // Create mesh from data from assimp // Ref st; st.instance(); st->begin(Mesh::PRIMITIVE_TRIANGLES); for (size_t j = 0; j < ai_mesh->mNumVertices; j++) { // Get the texture coordinates if they exist if (ai_mesh->HasTextureCoords(0)) { has_uvs = true; st->add_uv(Vector2(ai_mesh->mTextureCoords[0][j].x, 1.0f - ai_mesh->mTextureCoords[0][j].y)); } if (ai_mesh->HasTextureCoords(1)) { has_uvs = true; st->add_uv2(Vector2(ai_mesh->mTextureCoords[1][j].x, 1.0f - ai_mesh->mTextureCoords[1][j].y)); } // Assign vertex colors if (ai_mesh->HasVertexColors(0)) { Color color = Color(ai_mesh->mColors[0]->r, ai_mesh->mColors[0]->g, ai_mesh->mColors[0]->b, ai_mesh->mColors[0]->a); st->add_color(color); } // Work out normal calculations? - this needs work it doesn't work properly on huestos if (ai_mesh->mNormals != NULL) { const aiVector3D normals = ai_mesh->mNormals[j]; const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z); st->add_normal(godot_normal); if (ai_mesh->HasTangentsAndBitangents()) { const aiVector3D tangents = ai_mesh->mTangents[j]; const Vector3 godot_tangent = Vector3(tangents.x, tangents.y, tangents.z); const aiVector3D bitangent = ai_mesh->mBitangents[j]; const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z); float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f; st->add_tangent(Plane(tangents.x, tangents.y, tangents.z, d)); } } // We have vertex weights right? if (vertex_weights.has(j)) { Vector bone_info = vertex_weights[j]; Vector bones; bones.resize(bone_info.size()); Vector weights; weights.resize(bone_info.size()); // todo? do we really need to loop over all bones? - assimp may have helper to find all influences on this vertex. for (int k = 0; k < bone_info.size(); k++) { bones.write[k] = bone_info[k].bone; weights.write[k] = bone_info[k].weight; } st->add_bones(bones); st->add_weights(weights); } // Assign vertex const aiVector3D pos = ai_mesh->mVertices[j]; // note we must include node offset transform as this is relative to world space not local space. Vector3 godot_pos = Vector3(pos.x, pos.y, pos.z); st->add_vertex(godot_pos); } // fire replacement for face handling for (size_t j = 0; j < ai_mesh->mNumFaces; j++) { const aiFace face = ai_mesh->mFaces[j]; for (unsigned int k = 0; k < face.mNumIndices; k++) { st->add_index(face.mIndices[k]); } } if (ai_mesh->HasTangentsAndBitangents() == false && has_uvs) { st->generate_tangents(); } aiMaterial *ai_material = state.assimp_scene->mMaterials[ai_mesh->mMaterialIndex]; Ref mat; mat.instance(); int32_t mat_two_sided = 0; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_TWOSIDED, mat_two_sided)) { if (mat_two_sided > 0) { mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); } else { mat->set_cull_mode(StandardMaterial3D::CULL_BACK); } } aiString mat_name; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_NAME, mat_name)) { mat->set_name(AssimpUtils::get_assimp_string(mat_name)); } // Culling handling for meshes // cull all back faces mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // Now process materials aiTextureType base_color = aiTextureType_BASE_COLOR; { String filename, path; AssimpImageData image_data; if (AssimpUtils::GetAssimpTexture(state, ai_material, base_color, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); // anything transparent must be culled if (image_data.raw_image->detect_alpha() != Image::ALPHA_NONE) { mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode } mat->set_texture(StandardMaterial3D::TEXTURE_ALBEDO, image_data.texture); } } aiTextureType tex_diffuse = aiTextureType_DIFFUSE; { String filename, path; AssimpImageData image_data; if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_diffuse, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); // anything transparent must be culled if (image_data.raw_image->detect_alpha() != Image::ALPHA_NONE) { mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode } mat->set_texture(StandardMaterial3D::TEXTURE_ALBEDO, image_data.texture); } aiColor4D clr_diffuse; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_COLOR_DIFFUSE, clr_diffuse)) { if (Math::is_equal_approx(clr_diffuse.a, 1.0f) == false) { mat->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); mat->set_cull_mode(StandardMaterial3D::CULL_DISABLED); // since you can see both sides in transparent mode } mat->set_albedo(Color(clr_diffuse.r, clr_diffuse.g, clr_diffuse.b, clr_diffuse.a)); } } aiTextureType tex_normal = aiTextureType_NORMALS; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_normal, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture); } else { aiString texture_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_NORMAL_TEXTURE, AI_PROPERTIES, texture_path)) { if (AssimpUtils::CreateAssimpTexture(state, texture_path, filename, path, image_data)) { mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture); } } } } aiTextureType tex_normal_camera = aiTextureType_NORMAL_CAMERA; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_normal_camera, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture); } } aiTextureType tex_emission_color = aiTextureType_EMISSION_COLOR; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_emission_color, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_feature(StandardMaterial3D::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(StandardMaterial3D::TEXTURE_NORMAL, image_data.texture); } } aiTextureType tex_metalness = aiTextureType_METALNESS; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_metalness, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_texture(StandardMaterial3D::TEXTURE_METALLIC, image_data.texture); } } aiTextureType tex_roughness = aiTextureType_DIFFUSE_ROUGHNESS; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_roughness, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_texture(StandardMaterial3D::TEXTURE_ROUGHNESS, image_data.texture); } } aiTextureType tex_emissive = aiTextureType_EMISSIVE; { String filename = ""; String path = ""; Ref texture; AssimpImageData image_data; if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_emissive, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_feature(StandardMaterial3D::FEATURE_EMISSION, true); mat->set_texture(StandardMaterial3D::TEXTURE_EMISSION, image_data.texture); } else { // Process emission textures aiString texture_emissive_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_EMISSION_TEXTURE, AI_PROPERTIES, texture_emissive_path)) { if (AssimpUtils::CreateAssimpTexture(state, texture_emissive_path, filename, path, image_data)) { mat->set_feature(StandardMaterial3D::FEATURE_EMISSION, true); mat->set_texture(StandardMaterial3D::TEXTURE_EMISSION, image_data.texture); } } else { float pbr_emission = 0.0f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_EMISSIVE_FACTOR, AI_NULL, pbr_emission)) { mat->set_emission(Color(pbr_emission, pbr_emission, pbr_emission, 1.0f)); } } } } aiTextureType tex_specular = aiTextureType_SPECULAR; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_specular, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_texture(StandardMaterial3D::TEXTURE_METALLIC, image_data.texture); } } aiTextureType tex_ao_map = aiTextureType_AMBIENT_OCCLUSION; { String filename, path; Ref texture; AssimpImageData image_data; // Process texture normal map if (AssimpUtils::GetAssimpTexture(state, ai_material, tex_ao_map, filename, path, image_data)) { AssimpUtils::set_texture_mapping_mode(image_data.map_mode, image_data.texture); mat->set_feature(StandardMaterial3D::FEATURE_AMBIENT_OCCLUSION, true); mat->set_texture(StandardMaterial3D::TEXTURE_AMBIENT_OCCLUSION, image_data.texture); } } Array array_mesh = st->commit_to_arrays(); Array morphs; morphs.resize(ai_mesh->mNumAnimMeshes); Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) { String ai_anim_mesh_name = AssimpUtils::get_assimp_string(ai_mesh->mAnimMeshes[j]->mName); if (ai_anim_mesh_name.empty()) { ai_anim_mesh_name = String("morph_") + itos(j); } Array array_copy; array_copy.resize(VisualServer::ARRAY_MAX); for (int l = 0; l < VisualServer::ARRAY_MAX; l++) { array_copy[l] = array_mesh[l].duplicate(true); } const size_t num_vertices = ai_mesh->mAnimMeshes[j]->mNumVertices; array_copy[Mesh::ARRAY_INDEX] = Variant(); if (ai_mesh->mAnimMeshes[j]->HasPositions()) { PoolVector3Array vertices; vertices.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiVector3D ai_pos = ai_mesh->mAnimMeshes[j]->mVertices[l]; Vector3 position = Vector3(ai_pos.x, ai_pos.y, ai_pos.z); vertices.write()[l] = position; } PoolVector3Array new_vertices = array_copy[VisualServer::ARRAY_VERTEX].duplicate(true); ERR_CONTINUE(vertices.size() != new_vertices.size()); for (int32_t l = 0; l < new_vertices.size(); l++) { PoolVector3Array::Write w = new_vertices.write(); w[l] = vertices[l]; } array_copy[VisualServer::ARRAY_VERTEX] = new_vertices; } int32_t color_set = 0; if (ai_mesh->mAnimMeshes[j]->HasVertexColors(color_set)) { PoolColorArray colors; colors.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiColor4D ai_color = ai_mesh->mAnimMeshes[j]->mColors[color_set][l]; Color color = Color(ai_color.r, ai_color.g, ai_color.b, ai_color.a); colors.write()[l] = color; } PoolColorArray new_colors = array_copy[VisualServer::ARRAY_COLOR].duplicate(true); ERR_CONTINUE(colors.size() != new_colors.size()); for (int32_t l = 0; l < colors.size(); l++) { PoolColorArray::Write w = new_colors.write(); w[l] = colors[l]; } array_copy[VisualServer::ARRAY_COLOR] = new_colors; } if (ai_mesh->mAnimMeshes[j]->HasNormals()) { PoolVector3Array normals; normals.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiVector3D ai_normal = ai_mesh->mAnimMeshes[j]->mNormals[l]; Vector3 normal = Vector3(ai_normal.x, ai_normal.y, ai_normal.z); normals.write()[l] = normal; } PoolVector3Array new_normals = array_copy[VisualServer::ARRAY_NORMAL].duplicate(true); ERR_CONTINUE(normals.size() != new_normals.size()); for (int l = 0; l < normals.size(); l++) { PoolVector3Array::Write w = new_normals.write(); w[l] = normals[l]; } array_copy[VisualServer::ARRAY_NORMAL] = new_normals; } if (ai_mesh->mAnimMeshes[j]->HasTangentsAndBitangents()) { PoolColorArray tangents; tangents.resize(num_vertices); PoolColorArray::Write w = tangents.write(); for (size_t l = 0; l < num_vertices; l++) { AssimpUtils::calc_tangent_from_mesh(ai_mesh, j, l, l, w); } PoolRealArray new_tangents = array_copy[VisualServer::ARRAY_TANGENT].duplicate(true); ERR_CONTINUE(new_tangents.size() != tangents.size() * 4); for (int32_t l = 0; l < tangents.size(); l++) { new_tangents.write()[l + 0] = tangents[l].r; new_tangents.write()[l + 1] = tangents[l].g; new_tangents.write()[l + 2] = tangents[l].b; new_tangents.write()[l + 3] = tangents[l].a; } array_copy[VisualServer::ARRAY_TANGENT] = new_tangents; } morphs[j] = array_copy; } mesh->add_surface_from_arrays(primitive, array_mesh, morphs); mesh->surface_set_material(i, mat); mesh->surface_set_name(i, AssimpUtils::get_assimp_string(ai_mesh->mName)); } return mesh; } /** * Create a new mesh for the node supplied */ MeshInstance * EditorSceneImporterAssimp::create_mesh(ImportState &state, const aiNode *assimp_node, const String &node_name, Node *active_node, Transform node_transform) { /* MESH NODE */ Ref mesh; Ref skin; // see if we have mesh cache for this. Vector surface_indices; RegenerateBoneStack(state); // Configure indices for (uint32_t i = 0; i < assimp_node->mNumMeshes; i++) { int mesh_index = assimp_node->mMeshes[i]; // create list of mesh indexes surface_indices.push_back(mesh_index); } //surface_indices.sort(); String mesh_key; for (int i = 0; i < surface_indices.size(); i++) { if (i > 0) { mesh_key += ":"; } mesh_key += itos(surface_indices[i]); } Skeleton *skeleton = NULL; aiNode *armature = NULL; if (!state.mesh_cache.has(mesh_key)) { mesh = _generate_mesh_from_surface_indices(state, surface_indices, assimp_node, skin, skeleton); state.mesh_cache[mesh_key] = mesh; } MeshInstance *mesh_node = memnew(MeshInstance); mesh = state.mesh_cache[mesh_key]; mesh_node->set_mesh(mesh); // if we have a valid skeleton set it up if (skin.is_valid()) { for (uint32_t i = 0; i < assimp_node->mNumMeshes; i++) { unsigned int mesh_index = assimp_node->mMeshes[i]; const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_index]; // please remember bone id relative to the skin is NOT the mesh relative index. // it is the index relative to the skeleton that is why // we have state.bone_id_map, it allows for duplicate bone id's too :) // hope this makes sense int bind_count = 0; for (unsigned int boneId = 0; boneId < ai_mesh->mNumBones; ++boneId) { aiBone *iterBone = ai_mesh->mBones[boneId]; // used to reparent mesh to the correct armature later on if assigned. if (!armature) { print_verbose("Configured mesh armature, will reparent later to armature"); armature = iterBone->mArmature; } if (skeleton) { int id = skeleton->find_bone(AssimpUtils::get_assimp_string(iterBone->mName)); if (id != -1) { print_verbose("Set bind bone: mesh: " + itos(mesh_index) + " bone index: " + itos(id)); Transform t = AssimpUtils::assimp_matrix_transform(iterBone->mOffsetMatrix); skin->add_bind(bind_count, t); skin->set_bind_bone(bind_count, id); bind_count++; } } } } print_verbose("Finished configuring bind pose for skin mesh"); } // this code parents all meshes with bones to the armature they are for // GLTF2 specification relies on this and we are enforcing it for FBX. if (armature && state.flat_node_map[armature]) { Node *armature_parent = state.flat_node_map[armature]; print_verbose("Parented mesh " + node_name + " to armature " + armature_parent->get_name()); // static mesh handling armature_parent->add_child(mesh_node); // transform must be identity mesh_node->set_global_transform(Transform()); mesh_node->set_name(node_name); mesh_node->set_owner(state.root); } else { // static mesh handling active_node->add_child(mesh_node); mesh_node->set_global_transform(node_transform); mesh_node->set_name(node_name); mesh_node->set_owner(state.root); } if (skeleton) { print_verbose("Attempted to set skeleton path!"); mesh_node->set_skeleton_path(mesh_node->get_path_to(skeleton)); mesh_node->set_skin(skin); } return mesh_node; } /** * Create a light for the scene * Automatically caches lights for lookup later */ Spatial *EditorSceneImporterAssimp::create_light( ImportState &state, const String &node_name, Transform &look_at_transform) { Light *light = NULL; aiLight *assimp_light = state.assimp_scene->mLights[state.light_cache[node_name]]; ERR_FAIL_COND_V(!assimp_light, NULL); if (assimp_light->mType == aiLightSource_DIRECTIONAL) { light = memnew(DirectionalLight); } else if (assimp_light->mType == aiLightSource_POINT) { light = memnew(OmniLight); } else if (assimp_light->mType == aiLightSource_SPOT) { light = memnew(SpotLight); } ERR_FAIL_COND_V(light == NULL, NULL); if (assimp_light->mType != aiLightSource_POINT) { Vector3 pos = Vector3( assimp_light->mPosition.x, assimp_light->mPosition.y, assimp_light->mPosition.z); Vector3 look_at = Vector3( assimp_light->mDirection.y, assimp_light->mDirection.x, assimp_light->mDirection.z) .normalized(); Vector3 up = Vector3( assimp_light->mUp.x, assimp_light->mUp.y, assimp_light->mUp.z); look_at_transform.set_look_at(pos, look_at, up); } // properties for light variables should be put here. // not really hugely important yet but we will need them in the future light->set_color( Color(assimp_light->mColorDiffuse.r, assimp_light->mColorDiffuse.g, assimp_light->mColorDiffuse.b)); return light; } /** * Create camera for the scene */ Spatial *EditorSceneImporterAssimp::create_camera( ImportState &state, const String &node_name, Transform &look_at_transform) { aiCamera *camera = state.assimp_scene->mCameras[state.camera_cache[node_name]]; ERR_FAIL_COND_V(!camera, NULL); Camera *camera_node = memnew(Camera); ERR_FAIL_COND_V(!camera_node, NULL); float near = camera->mClipPlaneNear; if (Math::is_equal_approx(near, 0.0f)) { near = 0.1f; } camera_node->set_perspective(Math::rad2deg(camera->mHorizontalFOV) * 2.0f, near, camera->mClipPlaneFar); Vector3 pos = Vector3(camera->mPosition.x, camera->mPosition.y, camera->mPosition.z); Vector3 look_at = Vector3(camera->mLookAt.y, camera->mLookAt.x, camera->mLookAt.z).normalized(); Vector3 up = Vector3(camera->mUp.x, camera->mUp.y, camera->mUp.z); look_at_transform.set_look_at(pos + look_at_transform.origin, look_at, up); return camera_node; } /** * Generate node * Recursive call to iterate over all nodes */ void EditorSceneImporterAssimp::_generate_node( ImportState &state, const aiNode *assimp_node) { ERR_FAIL_COND(assimp_node == NULL); state.nodes.push_back(assimp_node); String parent_name = AssimpUtils::get_assimp_string(assimp_node->mParent->mName); // please note // duplicate bone names exist // this is why we only check if the bone exists // so everything else is useless but the name // please do not copy any other values from get_bone_by_name. aiBone *parent_bone = get_bone_by_name(state.assimp_scene, assimp_node->mParent->mName); aiBone *current_bone = get_bone_by_name(state.assimp_scene, assimp_node->mName); // is this an armature // parent null // and this is the first bone :) if (parent_bone == NULL && current_bone) { state.armature_nodes.push_back(assimp_node->mParent); print_verbose("found valid armature: " + parent_name); } for (size_t i = 0; i < assimp_node->mNumChildren; i++) { _generate_node(state, assimp_node->mChildren[i]); } }