/*************************************************************************/ /* editor_scene_importer_assimp.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "assimp/DefaultLogger.hpp" #include "assimp/Importer.hpp" #include "assimp/LogStream.hpp" #include "assimp/Logger.hpp" #include "assimp/SceneCombiner.h" #include "assimp/cexport.h" #include "assimp/cimport.h" #include "assimp/matrix4x4.h" #include "assimp/pbrmaterial.h" #include "assimp/postprocess.h" #include "assimp/scene.h" #include "core/bind/core_bind.h" #include "core/io/image_loader.h" #include "editor/editor_file_system.h" #include "editor/import/resource_importer_scene.h" #include "editor_scene_importer_assimp.h" #include "editor_settings.h" #include "scene/3d/camera.h" #include "scene/3d/light.h" #include "scene/3d/mesh_instance.h" #include "scene/animation/animation_player.h" #include "scene/main/node.h" #include "scene/resources/material.h" #include "scene/resources/surface_tool.h" #include "zutil.h" #include void EditorSceneImporterAssimp::get_extensions(List *r_extensions) const { const String import_setting_string = "filesystem/import/open_asset_import/"; Map import_format; { Vector exts; exts.push_back("fbx"); ImportFormat import = { exts, true }; import_format.insert("fbx", import); } { Vector exts; exts.push_back("pmx"); ImportFormat import = { exts, true }; import_format.insert("mmd", import); } for (Map::Element *E = import_format.front(); E; E = E->next()) { _register_project_setting_import(E->key(), import_setting_string, E->get().extensions, r_extensions, E->get().is_default); } } void EditorSceneImporterAssimp::_register_project_setting_import(const String generic, const String import_setting_string, const Vector &exts, List *r_extensions, const bool p_enabled) const { const String use_generic = "use_" + generic; _GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true); if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) { for (int32_t i = 0; i < exts.size(); i++) { r_extensions->push_back(exts[i]); } } } uint32_t EditorSceneImporterAssimp::get_import_flags() const { return IMPORT_SCENE; } AssimpStream::AssimpStream() { // empty } AssimpStream::~AssimpStream() { // empty } void AssimpStream::write(const char *message) { print_verbose(String("Open Asset Import: ") + String(message).strip_edges()); } void EditorSceneImporterAssimp::_bind_methods() { } Node *EditorSceneImporterAssimp::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List *r_missing_deps, Error *r_err) { Assimp::Importer importer; std::wstring w_path = ProjectSettings::get_singleton()->globalize_path(p_path).c_str(); std::string s_path(w_path.begin(), w_path.end()); importer.SetPropertyBool(AI_CONFIG_PP_FD_REMOVE, true); // Cannot remove pivot points because the static mesh will be in the wrong place importer.SetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, false); int32_t max_bone_weights = 4; //if (p_flags & IMPORT_ANIMATION_EIGHT_WEIGHTS) { // const int eight_bones = 8; // importer.SetPropertyBool(AI_CONFIG_PP_LBW_MAX_WEIGHTS, eight_bones); // max_bone_weights = eight_bones; //} importer.SetPropertyInteger(AI_CONFIG_PP_SBP_REMOVE, aiPrimitiveType_LINE | aiPrimitiveType_POINT); //importer.SetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD, 1.0f); int32_t post_process_Steps = aiProcess_CalcTangentSpace | //aiProcess_FlipUVs | //aiProcess_FlipWindingOrder | aiProcess_DropNormals | aiProcess_GenSmoothNormals | aiProcess_JoinIdenticalVertices | aiProcess_ImproveCacheLocality | aiProcess_LimitBoneWeights | //aiProcess_RemoveRedundantMaterials | // Causes a crash aiProcess_SplitLargeMeshes | aiProcess_Triangulate | aiProcess_GenUVCoords | //aiProcess_FindDegenerates | aiProcess_SortByPType | aiProcess_FindInvalidData | aiProcess_TransformUVCoords | aiProcess_FindInstances | //aiProcess_FixInfacingNormals | //aiProcess_ValidateDataStructure | aiProcess_OptimizeMeshes | //aiProcess_OptimizeGraph | //aiProcess_Debone | aiProcess_EmbedTextures | aiProcess_SplitByBoneCount | 0; const aiScene *scene = importer.ReadFile(s_path.c_str(), post_process_Steps); ERR_EXPLAIN(String("Open Asset Import failed to open: ") + String(importer.GetErrorString())); ERR_FAIL_COND_V(scene == NULL, NULL); return _generate_scene(p_path, scene, p_flags, p_bake_fps, max_bone_weights); } template struct EditorSceneImporterAssetImportInterpolate { T lerp(const T &a, const T &b, float c) const { return a + (b - a) * c; } T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { float t2 = t * t; float t3 = t2 * t; return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } T bezier(T start, T control_1, T control_2, T end, float t) { /* Formula from Wikipedia article on Bezier curves. */ real_t omt = (1.0 - t); real_t omt2 = omt * omt; real_t omt3 = omt2 * omt; real_t t2 = t * t; real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } }; //thank you for existing, partial specialization template <> struct EditorSceneImporterAssetImportInterpolate { Quat lerp(const Quat &a, const Quat &b, float c) const { ERR_FAIL_COND_V(!a.is_normalized(), Quat()); ERR_FAIL_COND_V(!b.is_normalized(), Quat()); return a.slerp(b, c).normalized(); } Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) { ERR_FAIL_COND_V(!p1.is_normalized(), Quat()); ERR_FAIL_COND_V(!p2.is_normalized(), Quat()); return p1.slerp(p2, c).normalized(); } Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) { ERR_FAIL_COND_V(!start.is_normalized(), Quat()); ERR_FAIL_COND_V(!end.is_normalized(), Quat()); return start.slerp(end, t).normalized(); } }; template T EditorSceneImporterAssimp::_interpolate_track(const Vector &p_times, const Vector &p_values, float p_time, AssetImportAnimation::Interpolation p_interp) { //could use binary search, worth it? int idx = -1; for (int i = 0; i < p_times.size(); i++) { if (p_times[i] > p_time) break; idx++; } EditorSceneImporterAssetImportInterpolate interp; switch (p_interp) { case AssetImportAnimation::INTERP_LINEAR: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.lerp(p_values[idx], p_values[idx + 1], c); } break; case AssetImportAnimation::INTERP_STEP: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } return p_values[idx]; } break; case AssetImportAnimation::INTERP_CATMULLROMSPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[1 + p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); } break; case AssetImportAnimation::INTERP_CUBIC_SPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[(p_times.size() - 1) * 3 + 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); T from = p_values[idx * 3 + 1]; T c1 = from + p_values[idx * 3 + 2]; T to = p_values[idx * 3 + 4]; T c2 = to + p_values[idx * 3 + 3]; return interp.bezier(from, c1, c2, to, c); } break; } ERR_FAIL_V(p_values[0]); } void EditorSceneImporterAssimp::_generate_bone_groups(ImportState &state, const aiNode *p_assimp_node, Map &ownership, Map &bind_xforms) { Transform mesh_offset = _get_global_assimp_node_transform(p_assimp_node); //mesh_offset.basis = Basis(); for (uint32_t i = 0; i < p_assimp_node->mNumMeshes; i++) { const aiMesh *mesh = state.assimp_scene->mMeshes[i]; int owned_by = -1; for (uint32_t j = 0; j < mesh->mNumBones; j++) { const aiBone *bone = mesh->mBones[j]; String name = _assimp_get_string(bone->mName); if (ownership.has(name)) { owned_by = ownership[name]; break; } } if (owned_by == -1) { //no owned, create new unique id owned_by = 1; for (Map::Element *E = ownership.front(); E; E = E->next()) { owned_by = MAX(E->get() + 1, owned_by); } } for (uint32_t j = 0; j < mesh->mNumBones; j++) { const aiBone *bone = mesh->mBones[j]; String name = _assimp_get_string(bone->mName); ownership[name] = owned_by; //store the actuall full path for the bone transform //when skeleton finds it's place in the tree, it will be restored bind_xforms[name] = mesh_offset * _assimp_matrix_transform(bone->mOffsetMatrix); } } for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) { _generate_bone_groups(state, p_assimp_node->mChildren[i], ownership, bind_xforms); } } void EditorSceneImporterAssimp::_fill_node_relationships(ImportState &state, const aiNode *p_assimp_node, Map &ownership, Map &skeleton_map, int p_skeleton_id, Skeleton *p_skeleton, const String &p_parent_name, int &holecount, const Vector &p_holes, const Map &bind_xforms) { String name = _assimp_get_string(p_assimp_node->mName); if (name == String()) { name = "AuxiliaryBone" + itos(holecount++); } Transform pose = _assimp_matrix_transform(p_assimp_node->mTransformation); if (!ownership.has(name)) { //not a bone, it's a hole Vector holes = p_holes; SkeletonHole hole; //add a new one hole.name = name; hole.pose = pose; hole.node = p_assimp_node; hole.parent = p_parent_name; holes.push_back(hole); for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) { _fill_node_relationships(state, p_assimp_node->mChildren[i], ownership, skeleton_map, p_skeleton_id, p_skeleton, name, holecount, holes, bind_xforms); } return; } else if (ownership[name] != p_skeleton_id) { //oh, it's from another skeleton? fine.. reparent all bones to this skeleton. int prev_owner = ownership[name]; ERR_EXPLAIN("A previous skeleton exists for bone '" + name + "', this type of skeleton layout is unsupported."); ERR_FAIL_COND(skeleton_map.has(prev_owner)); for (Map::Element *E = ownership.front(); E; E = E->next()) { if (E->get() == prev_owner) { E->get() = p_skeleton_id; } } } //valid bone, first fill holes if needed for (int i = 0; i < p_holes.size(); i++) { int bone_idx = p_skeleton->get_bone_count(); p_skeleton->add_bone(p_holes[i].name); int parent_idx = p_skeleton->find_bone(p_holes[i].parent); if (parent_idx >= 0) { p_skeleton->set_bone_parent(bone_idx, parent_idx); } Transform pose_transform = _get_global_assimp_node_transform(p_holes[i].node); p_skeleton->set_bone_rest(bone_idx, pose_transform); state.bone_owners[p_holes[i].name] = skeleton_map[p_skeleton_id]; } //finally fill bone int bone_idx = p_skeleton->get_bone_count(); p_skeleton->add_bone(name); int parent_idx = p_skeleton->find_bone(p_parent_name); if (parent_idx >= 0) { p_skeleton->set_bone_parent(bone_idx, parent_idx); } //p_skeleton->set_bone_pose(bone_idx, pose); if (bind_xforms.has(name)) { //for now this is the full path to the bone in rest pose //when skeleton finds it's place in the tree, it will get fixed p_skeleton->set_bone_rest(bone_idx, bind_xforms[name]); } state.bone_owners[name] = skeleton_map[p_skeleton_id]; //go to children for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) { _fill_node_relationships(state, p_assimp_node->mChildren[i], ownership, skeleton_map, p_skeleton_id, p_skeleton, name, holecount, Vector(), bind_xforms); } } void EditorSceneImporterAssimp::_generate_skeletons(ImportState &state, const aiNode *p_assimp_node, Map &ownership, Map &skeleton_map, const Map &bind_xforms) { //find skeletons at this level, there may be multiple root nodes for each Map > skeletons_found; for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) { String name = _assimp_get_string(p_assimp_node->mChildren[i]->mName); if (ownership.has(name)) { int skeleton = ownership[name]; if (!skeletons_found.has(skeleton)) { skeletons_found[skeleton] = List(); } skeletons_found[skeleton].push_back(p_assimp_node->mChildren[i]); } } //go via the potential skeletons found and generate the actual skeleton for (Map >::Element *E = skeletons_found.front(); E; E = E->next()) { ERR_CONTINUE(skeleton_map.has(E->key())); //skeleton already exists? this can't be.. skip Skeleton *skeleton = memnew(Skeleton); //this the only way to reliably use multiple meshes with one skeleton, at the cost of less precision skeleton->set_use_bones_in_world_transform(true); skeleton_map[E->key()] = state.skeletons.size(); state.skeletons.push_back(skeleton); int holecount = 1; //fill the bones and their relationships for (List::Element *F = E->get().front(); F; F = F->next()) { _fill_node_relationships(state, F->get(), ownership, skeleton_map, E->key(), skeleton, "", holecount, Vector(), bind_xforms); } } //go to the children for (uint32_t i = 0; i < p_assimp_node->mNumChildren; i++) { String name = _assimp_get_string(p_assimp_node->mChildren[i]->mName); if (ownership.has(name)) { continue; //a bone, so don't bother with this } _generate_skeletons(state, p_assimp_node->mChildren[i], ownership, skeleton_map, bind_xforms); } } Spatial *EditorSceneImporterAssimp::_generate_scene(const String &p_path, const aiScene *scene, const uint32_t p_flags, int p_bake_fps, const int32_t p_max_bone_weights) { ERR_FAIL_COND_V(scene == NULL, NULL); ImportState state; state.path = p_path; state.assimp_scene = scene; state.max_bone_weights = p_max_bone_weights; state.root = memnew(Spatial); state.fbx = false; state.animation_player = NULL; real_t scale_factor = 1.0f; { //handle scale String ext = p_path.get_file().get_extension().to_lower(); if (ext == "fbx") { if (scene->mMetaData != NULL) { float factor = 1.0; scene->mMetaData->Get("UnitScaleFactor", factor); scale_factor = factor * 0.01f; } state.fbx = true; } } state.root->set_scale(Vector3(scale_factor, scale_factor, scale_factor)); //fill light map cache for (size_t l = 0; l < scene->mNumLights; l++) { aiLight *ai_light = scene->mLights[l]; ERR_CONTINUE(ai_light == NULL); state.light_cache[_assimp_get_string(ai_light->mName)] = l; } //fill camera cache for (size_t c = 0; c < scene->mNumCameras; c++) { aiCamera *ai_camera = scene->mCameras[c]; ERR_CONTINUE(ai_camera == NULL); state.camera_cache[_assimp_get_string(ai_camera->mName)] = c; } if (scene->mRootNode) { Map bind_xforms; //temporary map to store bind transforms //guess the skeletons, since assimp does not really support them directly Map ownership; //bone names to groups //fill this map with bone names and which group where they detected to, going mesh by mesh _generate_bone_groups(state, state.assimp_scene->mRootNode, ownership, bind_xforms); Map skeleton_map; //maps previously created groups to actual skeletons //generates the skeletons when bones are found in the hierarchy, and follows them (including gaps/holes). _generate_skeletons(state, state.assimp_scene->mRootNode, ownership, skeleton_map, bind_xforms); //generate nodes for (uint32_t i = 0; i < scene->mRootNode->mNumChildren; i++) { _generate_node(state, scene->mRootNode->mChildren[i], state.root); } //assign skeletons to nodes for (Map::Element *E = state.mesh_skeletons.front(); E; E = E->next()) { MeshInstance *mesh = E->key(); Skeleton *skeleton = E->get(); NodePath skeleton_path = mesh->get_path_to(skeleton); mesh->set_skeleton_path(skeleton_path); } } if (p_flags & IMPORT_ANIMATION && scene->mNumAnimations) { state.animation_player = memnew(AnimationPlayer); state.root->add_child(state.animation_player); state.animation_player->set_owner(state.root); for (uint32_t i = 0; i < scene->mNumAnimations; i++) { _import_animation(state, i, p_bake_fps); } } return state.root; } void EditorSceneImporterAssimp::_insert_animation_track(ImportState &scene, const aiAnimation *assimp_anim, int p_track, int p_bake_fps, Ref animation, float ticks_per_second, Skeleton *p_skeleton, const NodePath &p_path, const String &p_name) { const aiNodeAnim *assimp_track = assimp_anim->mChannels[p_track]; //make transform track int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_TRANSFORM); animation->track_set_path(track_idx, p_path); //first determine animation length float increment = 1.0 / float(p_bake_fps); float time = 0.0; bool last = false; int skeleton_bone = -1; if (p_skeleton) { skeleton_bone = p_skeleton->find_bone(p_name); } Vector pos_values; Vector pos_times; Vector scale_values; Vector scale_times; Vector rot_values; Vector rot_times; for (size_t p = 0; p < assimp_track->mNumPositionKeys; p++) { aiVector3D pos = assimp_track->mPositionKeys[p].mValue; pos_values.push_back(Vector3(pos.x, pos.y, pos.z)); pos_times.push_back(assimp_track->mPositionKeys[p].mTime / ticks_per_second); } for (size_t r = 0; r < assimp_track->mNumRotationKeys; r++) { aiQuaternion quat = assimp_track->mRotationKeys[r].mValue; rot_values.push_back(Quat(quat.x, quat.y, quat.z, quat.w).normalized()); rot_times.push_back(assimp_track->mRotationKeys[r].mTime / ticks_per_second); } for (size_t sc = 0; sc < assimp_track->mNumScalingKeys; sc++) { aiVector3D scale = assimp_track->mScalingKeys[sc].mValue; scale_values.push_back(Vector3(scale.x, scale.y, scale.z)); scale_times.push_back(assimp_track->mScalingKeys[sc].mTime / ticks_per_second); } while (true) { Vector3 pos; Quat rot; Vector3 scale(1, 1, 1); if (pos_values.size()) { pos = _interpolate_track(pos_times, pos_values, time, AssetImportAnimation::INTERP_LINEAR); } if (rot_values.size()) { rot = _interpolate_track(rot_times, rot_values, time, AssetImportAnimation::INTERP_LINEAR).normalized(); } if (scale_values.size()) { scale = _interpolate_track(scale_times, scale_values, time, AssetImportAnimation::INTERP_LINEAR); } if (skeleton_bone >= 0) { Transform xform; xform.basis.set_quat_scale(rot, scale); xform.origin = pos; Transform rest_xform = p_skeleton->get_bone_rest(skeleton_bone); xform = rest_xform.affine_inverse() * xform; rot = xform.basis.get_rotation_quat(); scale = xform.basis.get_scale(); pos = xform.origin; } rot.normalize(); animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR); animation->transform_track_insert_key(track_idx, time, pos, rot, scale); if (last) { //done this way so a key is always inserted past the end (for proper interpolation) break; } time += increment; if (time >= animation->get_length()) { last = true; } } } void EditorSceneImporterAssimp::_import_animation(ImportState &state, int p_animation_index, int p_bake_fps) { ERR_FAIL_INDEX(p_animation_index, (int)state.assimp_scene->mNumAnimations); const aiAnimation *anim = state.assimp_scene->mAnimations[p_animation_index]; String name = _assimp_anim_string_to_string(anim->mName); if (name == String()) { name = "Animation " + itos(p_animation_index + 1); } float ticks_per_second = anim->mTicksPerSecond; if (state.assimp_scene->mMetaData != NULL && Math::is_equal_approx(ticks_per_second, 0.0f)) { int32_t time_mode = 0; state.assimp_scene->mMetaData->Get("TimeMode", time_mode); ticks_per_second = _get_fbx_fps(time_mode, state.assimp_scene); } //? //if ((p_path.get_file().get_extension().to_lower() == "glb" || p_path.get_file().get_extension().to_lower() == "gltf") && Math::is_equal_approx(ticks_per_second, 0.0f)) { // ticks_per_second = 1000.0f; //} if (Math::is_equal_approx(ticks_per_second, 0.0f)) { ticks_per_second = 25.0f; } Ref animation; animation.instance(); animation->set_name(name); animation->set_length(anim->mDuration / ticks_per_second); //regular tracks for (size_t i = 0; i < anim->mNumChannels; i++) { const aiNodeAnim *track = anim->mChannels[i]; String node_name = _assimp_get_string(track->mNodeName); /* if (node_name.find(ASSIMP_FBX_KEY) != -1) { String p_track_type = node_name.get_slice(ASSIMP_FBX_KEY, 1); if (p_track_type == "_Translation" || p_track_type == "_Rotation" || p_track_type == "_Scaling") { continue; } } */ if (track->mNumRotationKeys == 0 && track->mNumPositionKeys == 0 && track->mNumScalingKeys == 0) { continue; //do not bother } bool is_bone = state.bone_owners.has(node_name); NodePath node_path; Skeleton *skeleton = NULL; if (is_bone) { skeleton = state.skeletons[state.bone_owners[node_name]]; String path = state.root->get_path_to(skeleton); path += ":" + node_name; node_path = path; } else { ERR_CONTINUE(!state.node_map.has(node_name)); Node *node = state.node_map[node_name]; node_path = state.root->get_path_to(node); } _insert_animation_track(state, anim, i, p_bake_fps, animation, ticks_per_second, skeleton, node_path, node_name); } //blend shape tracks for (size_t i = 0; i < anim->mNumMorphMeshChannels; i++) { const aiMeshMorphAnim *anim_mesh = anim->mMorphMeshChannels[i]; const String prop_name = _assimp_get_string(anim_mesh->mName); const String mesh_name = prop_name.split("*")[0]; ERR_CONTINUE(prop_name.split("*").size() != 2); ERR_CONTINUE(!state.node_map.has(mesh_name)); const MeshInstance *mesh_instance = Object::cast_to(state.node_map[mesh_name]); ERR_CONTINUE(mesh_instance == NULL); String base_path = state.root->get_path_to(mesh_instance); Ref mesh = mesh_instance->get_mesh(); ERR_CONTINUE(mesh.is_null()); //add the tracks for this mesh int base_track = animation->get_track_count(); for (int j = 0; j < mesh->get_blend_shape_count(); j++) { animation->add_track(Animation::TYPE_VALUE); animation->track_set_path(base_track + j, base_path + ":blend_shapes/" + mesh->get_blend_shape_name(j)); } for (size_t k = 0; k < anim_mesh->mNumKeys; k++) { for (size_t j = 0; j < anim_mesh->mKeys[k].mNumValuesAndWeights; j++) { float t = anim_mesh->mKeys[k].mTime / ticks_per_second; float w = anim_mesh->mKeys[k].mWeights[j]; animation->track_insert_key(base_track + j, t, w); } } } if (animation->get_track_count()) { state.animation_player->add_animation(name, animation); } } float EditorSceneImporterAssimp::_get_fbx_fps(int32_t time_mode, const aiScene *p_scene) { switch (time_mode) { case AssetImportFbx::TIME_MODE_DEFAULT: return 24; //hack case AssetImportFbx::TIME_MODE_120: return 120; case AssetImportFbx::TIME_MODE_100: return 100; case AssetImportFbx::TIME_MODE_60: return 60; case AssetImportFbx::TIME_MODE_50: return 50; case AssetImportFbx::TIME_MODE_48: return 48; case AssetImportFbx::TIME_MODE_30: return 30; case AssetImportFbx::TIME_MODE_30_DROP: return 30; case AssetImportFbx::TIME_MODE_NTSC_DROP_FRAME: return 29.9700262f; case AssetImportFbx::TIME_MODE_NTSC_FULL_FRAME: return 29.9700262f; case AssetImportFbx::TIME_MODE_PAL: return 25; case AssetImportFbx::TIME_MODE_CINEMA: return 24; case AssetImportFbx::TIME_MODE_1000: return 1000; case AssetImportFbx::TIME_MODE_CINEMA_ND: return 23.976f; case AssetImportFbx::TIME_MODE_CUSTOM: int32_t frame_rate; p_scene->mMetaData->Get("FrameRate", frame_rate); return frame_rate; } return 0; } Transform EditorSceneImporterAssimp::_get_global_assimp_node_transform(const aiNode *p_current_node) { aiNode const *current_node = p_current_node; Transform xform; while (current_node != NULL) { xform = _assimp_matrix_transform(current_node->mTransformation) * xform; current_node = current_node->mParent; } return xform; } Ref EditorSceneImporterAssimp::_load_texture(ImportState &state, String p_path) { Vector split_path = p_path.get_basename().split("*"); if (split_path.size() == 2) { size_t texture_idx = split_path[1].to_int(); ERR_FAIL_COND_V(texture_idx >= state.assimp_scene->mNumTextures, Ref()); aiTexture *tex = state.assimp_scene->mTextures[texture_idx]; String filename = _assimp_raw_string_to_string(tex->mFilename); filename = filename.get_file(); print_verbose("Open Asset Import: Loading embedded texture " + filename); if (tex->mHeight == 0) { if (tex->CheckFormat("png")) { Ref img = Image::_png_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth); ERR_FAIL_COND_V(img.is_null(), Ref()); Ref t; t.instance(); t->create_from_image(img); t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY); return t; } else if (tex->CheckFormat("jpg")) { Ref img = Image::_jpg_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth); ERR_FAIL_COND_V(img.is_null(), Ref()); Ref t; t.instance(); t->create_from_image(img); t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY); return t; } else if (tex->CheckFormat("dds")) { ERR_EXPLAIN("Open Asset Import: Embedded dds not implemented"); ERR_FAIL_COND_V(true, Ref()); //Ref img = Image::_dds_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth); //ERR_FAIL_COND_V(img.is_null(), Ref()); //Ref t; //t.instance(); //t->create_from_image(img); //t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY); //return t; } } else { Ref img; img.instance(); PoolByteArray arr; uint32_t size = tex->mWidth * tex->mHeight; arr.resize(size); memcpy(arr.write().ptr(), tex->pcData, size); ERR_FAIL_COND_V(arr.size() % 4 != 0, Ref()); //ARGB8888 to RGBA8888 for (int32_t i = 0; i < arr.size() / 4; i++) { arr.write().ptr()[(4 * i) + 3] = arr[(4 * i) + 0]; arr.write().ptr()[(4 * i) + 0] = arr[(4 * i) + 1]; arr.write().ptr()[(4 * i) + 1] = arr[(4 * i) + 2]; arr.write().ptr()[(4 * i) + 2] = arr[(4 * i) + 3]; } img->create(tex->mWidth, tex->mHeight, true, Image::FORMAT_RGBA8, arr); ERR_FAIL_COND_V(img.is_null(), Ref()); Ref t; t.instance(); t->create_from_image(img); t->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY); return t; } return Ref(); } Ref p_texture = ResourceLoader::load(p_path, "Texture"); return p_texture; } Ref EditorSceneImporterAssimp::_generate_material_from_index(ImportState &state, int p_index, bool p_double_sided) { ERR_FAIL_INDEX_V(p_index, (int)state.assimp_scene->mNumMaterials, Ref()); aiMaterial *ai_material = state.assimp_scene->mMaterials[p_index]; Ref mat; mat.instance(); int32_t mat_two_sided = 0; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_TWOSIDED, mat_two_sided)) { if (mat_two_sided > 0) { mat->set_cull_mode(SpatialMaterial::CULL_DISABLED); } } //const String mesh_name = _assimp_get_string(ai_mesh->mName); aiString mat_name; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_NAME, mat_name)) { mat->set_name(_assimp_get_string(mat_name)); } aiTextureType tex_normal = aiTextureType_NORMALS; { aiString ai_filename = aiString(); String filename = ""; aiTextureMapMode map_mode[2]; if (AI_SUCCESS == ai_material->GetTexture(tex_normal, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) { filename = _assimp_raw_string_to_string(ai_filename); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { if (map_mode != NULL) { _set_texture_mapping_mode(map_mode, texture); } mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture); } } } } { aiString ai_filename = aiString(); String filename = ""; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_NORMAL_TEXTURE, ai_filename)) { filename = _assimp_raw_string_to_string(ai_filename); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture); } } } } aiTextureType tex_emissive = aiTextureType_EMISSIVE; if (ai_material->GetTextureCount(tex_emissive) > 0) { aiString ai_filename = aiString(); String filename = ""; aiTextureMapMode map_mode[2]; if (AI_SUCCESS == ai_material->GetTexture(tex_emissive, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) { filename = _assimp_raw_string_to_string(ai_filename); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { _set_texture_mapping_mode(map_mode, texture); mat->set_feature(SpatialMaterial::FEATURE_EMISSION, true); mat->set_texture(SpatialMaterial::TEXTURE_EMISSION, texture); } } } } aiTextureType tex_albedo = aiTextureType_DIFFUSE; if (ai_material->GetTextureCount(tex_albedo) > 0) { aiString ai_filename = aiString(); String filename = ""; aiTextureMapMode map_mode[2]; if (AI_SUCCESS == ai_material->GetTexture(tex_albedo, 0, &ai_filename, NULL, NULL, NULL, NULL, map_mode)) { filename = _assimp_raw_string_to_string(ai_filename); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { if (texture->get_data()->detect_alpha() != Image::ALPHA_NONE) { _set_texture_mapping_mode(map_mode, texture); mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); } } } } else { aiColor4D clr_diffuse; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_COLOR_DIFFUSE, clr_diffuse)) { if (Math::is_equal_approx(clr_diffuse.a, 1.0f) == false) { mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_albedo(Color(clr_diffuse.r, clr_diffuse.g, clr_diffuse.b, clr_diffuse.a)); } } aiString tex_gltf_base_color_path = aiString(); aiTextureMapMode map_mode[2]; if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE, &tex_gltf_base_color_path, NULL, NULL, NULL, NULL, map_mode)) { String filename = _assimp_raw_string_to_string(tex_gltf_base_color_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) { _set_texture_mapping_mode(map_mode, texture); mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); } } } else { aiColor4D pbr_base_color; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR, pbr_base_color)) { if (Math::is_equal_approx(pbr_base_color.a, 1.0f) == false) { mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a)); } } { aiString tex_fbx_pbs_base_color_path = aiString(); if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_base_color_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) { mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); } } } else { aiColor4D pbr_base_color; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_FACTOR, pbr_base_color)) { mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a)); } } aiUVTransform pbr_base_color_uv_xform; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_BASE_COLOR_UV_XFORM, pbr_base_color_uv_xform)) { mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f)); mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f)); } } { aiString tex_fbx_pbs_normal_path = aiString(); if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_NORMAL_TEXTURE, tex_fbx_pbs_normal_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_normal_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture); } } } } if (p_double_sided) { mat->set_cull_mode(SpatialMaterial::CULL_DISABLED); } { aiString tex_fbx_stingray_normal_path = aiString(); if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_NORMAL_TEXTURE, tex_fbx_stingray_normal_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_stingray_normal_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { mat->set_feature(SpatialMaterial::Feature::FEATURE_NORMAL_MAPPING, true); mat->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture); } } } } { aiString tex_fbx_pbs_base_color_path = aiString(); if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_TEXTURE, tex_fbx_pbs_base_color_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_base_color_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) { mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); } } } else { aiColor4D pbr_base_color; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_BASE_COLOR_FACTOR, pbr_base_color)) { mat->set_albedo(Color(pbr_base_color.r, pbr_base_color.g, pbr_base_color.b, pbr_base_color.a)); } } aiUVTransform pbr_base_color_uv_xform; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_COLOR_UV_XFORM, pbr_base_color_uv_xform)) { mat->set_uv1_offset(Vector3(pbr_base_color_uv_xform.mTranslation.x, pbr_base_color_uv_xform.mTranslation.y, 0.0f)); mat->set_uv1_scale(Vector3(pbr_base_color_uv_xform.mScaling.x, pbr_base_color_uv_xform.mScaling.y, 1.0f)); } } { aiString tex_fbx_pbs_emissive_path = aiString(); if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_TEXTURE, tex_fbx_pbs_emissive_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_emissive_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); _find_texture_path(state.path, path, found); if (texture != NULL) { if (texture->get_data()->detect_alpha() == Image::ALPHA_BLEND) { mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); mat->set_depth_draw_mode(SpatialMaterial::DepthDrawMode::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } mat->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); } } } else { aiColor4D pbr_emmissive_color; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_FACTOR, pbr_emmissive_color)) { mat->set_emission(Color(pbr_emmissive_color.r, pbr_emmissive_color.g, pbr_emmissive_color.b, pbr_emmissive_color.a)); } } real_t pbr_emission_intensity; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_EMISSIVE_INTENSITY_FACTOR, pbr_emission_intensity)) { mat->set_emission_energy(pbr_emission_intensity); } } aiString tex_gltf_pbr_metallicroughness_path; if (AI_SUCCESS == ai_material->GetTexture(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE, &tex_gltf_pbr_metallicroughness_path)) { String filename = _assimp_raw_string_to_string(tex_gltf_pbr_metallicroughness_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture); mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE); mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture); mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN); } } } else { float pbr_roughness = 0.0f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR, pbr_roughness)) { mat->set_roughness(pbr_roughness); } float pbr_metallic = 0.0f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR, pbr_metallic)) { mat->set_metallic(pbr_metallic); } } { aiString tex_fbx_pbs_metallic_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_TEXTURE, tex_fbx_pbs_metallic_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_metallic_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture); mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE); } } } else { float pbr_metallic = 0.0f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_METALLIC_FACTOR, pbr_metallic)) { mat->set_metallic(pbr_metallic); } } aiString tex_fbx_pbs_rough_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_rough_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture); mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE); } } } else { float pbr_roughness = 0.04f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_STINGRAY_ROUGHNESS_FACTOR, pbr_roughness)) { mat->set_roughness(pbr_roughness); } } } { aiString tex_fbx_pbs_metallic_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_TEXTURE, tex_fbx_pbs_metallic_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_metallic_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture); mat->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE); } } } else { float pbr_metallic = 0.0f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_METALNESS_FACTOR, pbr_metallic)) { mat->set_metallic(pbr_metallic); } } aiString tex_fbx_pbs_rough_path; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_TEXTURE, tex_fbx_pbs_rough_path)) { String filename = _assimp_raw_string_to_string(tex_fbx_pbs_rough_path); String path = state.path.get_base_dir() + "/" + filename.replace("\\", "/"); bool found = false; _find_texture_path(state.path, path, found); if (found) { Ref texture = _load_texture(state, path); if (texture != NULL) { mat->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, texture); mat->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GRAYSCALE); } } } else { float pbr_roughness = 0.04f; if (AI_SUCCESS == ai_material->Get(AI_MATKEY_FBX_MAYA_DIFFUSE_ROUGHNESS_FACTOR, pbr_roughness)) { mat->set_roughness(pbr_roughness); } } } return mat; } Ref EditorSceneImporterAssimp::_generate_mesh_from_surface_indices(ImportState &state, const Vector &p_surface_indices, Skeleton *p_skeleton, bool p_double_sided_material) { Ref mesh; mesh.instance(); bool has_uvs = false; for (int i = 0; i < p_surface_indices.size(); i++) { const unsigned int mesh_idx = p_surface_indices[i]; const aiMesh *ai_mesh = state.assimp_scene->mMeshes[mesh_idx]; Map > vertex_weights; if (p_skeleton) { for (size_t b = 0; b < ai_mesh->mNumBones; b++) { aiBone *bone = ai_mesh->mBones[b]; String bone_name = _assimp_get_string(bone->mName); int bone_index = p_skeleton->find_bone(bone_name); ERR_CONTINUE(bone_index == -1); //bone refers to an unexisting index, wtf. for (size_t w = 0; w < bone->mNumWeights; w++) { aiVertexWeight ai_weights = bone->mWeights[w]; BoneInfo bi; uint32_t vertex_index = ai_weights.mVertexId; bi.bone = bone_index; bi.weight = ai_weights.mWeight; ; if (!vertex_weights.has(vertex_index)) { vertex_weights[vertex_index] = Vector(); } vertex_weights[vertex_index].push_back(bi); } } } Ref st; st.instance(); st->begin(Mesh::PRIMITIVE_TRIANGLES); for (size_t j = 0; j < ai_mesh->mNumVertices; j++) { if (ai_mesh->HasTextureCoords(0)) { has_uvs = true; st->add_uv(Vector2(ai_mesh->mTextureCoords[0][j].x, 1.0f - ai_mesh->mTextureCoords[0][j].y)); } if (ai_mesh->HasTextureCoords(1)) { has_uvs = true; st->add_uv2(Vector2(ai_mesh->mTextureCoords[1][j].x, 1.0f - ai_mesh->mTextureCoords[1][j].y)); } if (ai_mesh->HasVertexColors(0)) { Color color = Color(ai_mesh->mColors[0]->r, ai_mesh->mColors[0]->g, ai_mesh->mColors[0]->b, ai_mesh->mColors[0]->a); st->add_color(color); } if (ai_mesh->mNormals != NULL) { const aiVector3D normals = ai_mesh->mNormals[j]; const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z); st->add_normal(godot_normal); if (ai_mesh->HasTangentsAndBitangents()) { const aiVector3D tangents = ai_mesh->mTangents[j]; const Vector3 godot_tangent = Vector3(tangents.x, tangents.y, tangents.z); const aiVector3D bitangent = ai_mesh->mBitangents[j]; const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z); float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f; st->add_tangent(Plane(tangents.x, tangents.y, tangents.z, d)); } } if (vertex_weights.has(j)) { Vector bone_info = vertex_weights[j]; Vector bones; bones.resize(bone_info.size()); Vector weights; weights.resize(bone_info.size()); for (int k = 0; k < bone_info.size(); k++) { bones.write[k] = bone_info[k].bone; weights.write[k] = bone_info[k].weight; } st->add_bones(bones); st->add_weights(weights); } const aiVector3D pos = ai_mesh->mVertices[j]; Vector3 godot_pos = Vector3(pos.x, pos.y, pos.z); st->add_vertex(godot_pos); } for (size_t j = 0; j < ai_mesh->mNumFaces; j++) { const aiFace face = ai_mesh->mFaces[j]; ERR_CONTINUE(face.mNumIndices != 3); Vector order; order.push_back(2); order.push_back(1); order.push_back(0); for (int32_t k = 0; k < order.size(); k++) { st->add_index(face.mIndices[order[k]]); } } if (ai_mesh->HasTangentsAndBitangents() == false && has_uvs) { st->generate_tangents(); } Ref material; if (!state.material_cache.has(ai_mesh->mMaterialIndex)) { material = _generate_material_from_index(state, ai_mesh->mMaterialIndex, p_double_sided_material); } Array array_mesh = st->commit_to_arrays(); Array morphs; morphs.resize(ai_mesh->mNumAnimMeshes); Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; Map morph_mesh_idx_names; for (size_t j = 0; j < ai_mesh->mNumAnimMeshes; j++) { if (i == 0) { //only do this the first time String ai_anim_mesh_name = _assimp_get_string(ai_mesh->mAnimMeshes[j]->mName); mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); if (ai_anim_mesh_name.empty()) { ai_anim_mesh_name = String("morph_") + itos(j); } mesh->add_blend_shape(ai_anim_mesh_name); } Array array_copy; array_copy.resize(VisualServer::ARRAY_MAX); for (int l = 0; l < VisualServer::ARRAY_MAX; l++) { array_copy[l] = array_mesh[l].duplicate(true); } const size_t num_vertices = ai_mesh->mAnimMeshes[j]->mNumVertices; array_copy[Mesh::ARRAY_INDEX] = Variant(); if (ai_mesh->mAnimMeshes[j]->HasPositions()) { PoolVector3Array vertices; vertices.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiVector3D ai_pos = ai_mesh->mAnimMeshes[j]->mVertices[l]; Vector3 position = Vector3(ai_pos.x, ai_pos.y, ai_pos.z); vertices.write()[l] = position; } PoolVector3Array new_vertices = array_copy[VisualServer::ARRAY_VERTEX].duplicate(true); for (int32_t l = 0; l < vertices.size(); l++) { PoolVector3Array::Write w = new_vertices.write(); w[l] = vertices[l]; } ERR_CONTINUE(vertices.size() != new_vertices.size()); array_copy[VisualServer::ARRAY_VERTEX] = new_vertices; } int32_t color_set = 0; if (ai_mesh->mAnimMeshes[j]->HasVertexColors(color_set)) { PoolColorArray colors; colors.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiColor4D ai_color = ai_mesh->mAnimMeshes[j]->mColors[color_set][l]; Color color = Color(ai_color.r, ai_color.g, ai_color.b, ai_color.a); colors.write()[l] = color; } PoolColorArray new_colors = array_copy[VisualServer::ARRAY_COLOR].duplicate(true); for (int32_t l = 0; l < colors.size(); l++) { PoolColorArray::Write w = new_colors.write(); w[l] = colors[l]; } array_copy[VisualServer::ARRAY_COLOR] = new_colors; } if (ai_mesh->mAnimMeshes[j]->HasNormals()) { PoolVector3Array normals; normals.resize(num_vertices); for (size_t l = 0; l < num_vertices; l++) { const aiVector3D ai_normal = ai_mesh->mAnimMeshes[i]->mNormals[l]; Vector3 normal = Vector3(ai_normal.x, ai_normal.y, ai_normal.z); normals.write()[l] = normal; } PoolVector3Array new_normals = array_copy[VisualServer::ARRAY_NORMAL].duplicate(true); for (int l = 0; l < normals.size(); l++) { PoolVector3Array::Write w = new_normals.write(); w[l] = normals[l]; } array_copy[VisualServer::ARRAY_NORMAL] = new_normals; } if (ai_mesh->mAnimMeshes[j]->HasTangentsAndBitangents()) { PoolColorArray tangents; tangents.resize(num_vertices); PoolColorArray::Write w = tangents.write(); for (size_t l = 0; l < num_vertices; l++) { _calc_tangent_from_mesh(ai_mesh, j, l, l, w); } PoolRealArray new_tangents = array_copy[VisualServer::ARRAY_TANGENT].duplicate(true); ERR_CONTINUE(new_tangents.size() != tangents.size() * 4); for (int32_t l = 0; l < tangents.size(); l++) { new_tangents.write()[l + 0] = tangents[l].r; new_tangents.write()[l + 1] = tangents[l].g; new_tangents.write()[l + 2] = tangents[l].b; new_tangents.write()[l + 3] = tangents[l].a; } array_copy[VisualServer::ARRAY_TANGENT] = new_tangents; } morphs[j] = array_copy; } mesh->add_surface_from_arrays(primitive, array_mesh, morphs); mesh->surface_set_material(i, material); mesh->surface_set_name(i, _assimp_get_string(ai_mesh->mName)); } return mesh; } void EditorSceneImporterAssimp::_generate_node(ImportState &state, const aiNode *p_assimp_node, Node *p_parent) { Spatial *new_node = NULL; String node_name = _assimp_get_string(p_assimp_node->mName); Transform node_transform = _assimp_matrix_transform(p_assimp_node->mTransformation); if (p_assimp_node->mNumMeshes > 0) { /* MESH NODE */ Ref mesh; Skeleton *skeleton = NULL; { //see if we have mesh cache for this. Vector surface_indices; for (uint32_t i = 0; i < p_assimp_node->mNumMeshes; i++) { int mesh_index = p_assimp_node->mMeshes[i]; surface_indices.push_back(mesh_index); //take the chane and attempt to find the skeleton from the bones if (!skeleton) { aiMesh *ai_mesh = state.assimp_scene->mMeshes[p_assimp_node->mMeshes[i]]; for (uint32_t j = 0; j < ai_mesh->mNumBones; j++) { aiBone *bone = ai_mesh->mBones[j]; String bone_name = _assimp_get_string(bone->mName); if (state.bone_owners.has(bone_name)) { skeleton = state.skeletons[state.bone_owners[bone_name]]; break; } } } } surface_indices.sort(); String mesh_key; for (int i = 0; i < surface_indices.size(); i++) { if (i > 0) { mesh_key += ":"; } mesh_key += itos(surface_indices[i]); } if (!state.mesh_cache.has(mesh_key)) { //adding cache aiString cull_mode; //cull is on mesh, which is kind of stupid tbh bool double_sided_material = false; if (p_assimp_node->mMetaData) { p_assimp_node->mMetaData->Get("Culling", cull_mode); } if (cull_mode.length != 0 && cull_mode == aiString("CullingOff")) { double_sided_material = true; } mesh = _generate_mesh_from_surface_indices(state, surface_indices, skeleton, double_sided_material); state.mesh_cache[mesh_key] = mesh; } mesh = state.mesh_cache[mesh_key]; } MeshInstance *mesh_node = memnew(MeshInstance); if (skeleton) { state.mesh_skeletons[mesh_node] = skeleton; } mesh_node->set_mesh(mesh); new_node = mesh_node; } else if (state.light_cache.has(node_name)) { Light *light = NULL; aiLight *ai_light = state.assimp_scene->mLights[state.light_cache[node_name]]; ERR_FAIL_COND(!ai_light); if (ai_light->mType == aiLightSource_DIRECTIONAL) { light = memnew(DirectionalLight); Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z); dir.normalize(); Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z); Vector3 up = Vector3(ai_light->mUp.x, ai_light->mUp.y, ai_light->mUp.z); up.normalize(); Transform light_transform; light_transform.set_look_at(pos, pos + dir, up); node_transform *= light_transform; } else if (ai_light->mType == aiLightSource_POINT) { light = memnew(OmniLight); Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z); Transform xform; xform.origin = pos; node_transform *= xform; light->set_transform(xform); //light->set_param(Light::PARAM_ATTENUATION, 1); } else if (ai_light->mType == aiLightSource_SPOT) { light = memnew(SpotLight); Vector3 dir = Vector3(ai_light->mDirection.y, ai_light->mDirection.x, ai_light->mDirection.z); dir.normalize(); Vector3 pos = Vector3(ai_light->mPosition.x, ai_light->mPosition.y, ai_light->mPosition.z); Vector3 up = Vector3(ai_light->mUp.x, ai_light->mUp.y, ai_light->mUp.z); up.normalize(); Transform light_transform; light_transform.set_look_at(pos, pos + dir, up); node_transform *= light_transform; //light->set_param(Light::PARAM_ATTENUATION, 0.0f); } ERR_FAIL_COND(light == NULL); light->set_color(Color(ai_light->mColorDiffuse.r, ai_light->mColorDiffuse.g, ai_light->mColorDiffuse.b)); new_node = light; } else if (state.camera_cache.has(node_name)) { aiCamera *ai_camera = state.assimp_scene->mCameras[state.camera_cache[node_name]]; ERR_FAIL_COND(!ai_camera); Camera *camera = memnew(Camera); float near = ai_camera->mClipPlaneNear; if (Math::is_equal_approx(near, 0.0f)) { near = 0.1f; } camera->set_perspective(Math::rad2deg(ai_camera->mHorizontalFOV) * 2.0f, near, ai_camera->mClipPlaneFar); Vector3 pos = Vector3(ai_camera->mPosition.x, ai_camera->mPosition.y, ai_camera->mPosition.z); Vector3 look_at = Vector3(ai_camera->mLookAt.y, ai_camera->mLookAt.x, ai_camera->mLookAt.z).normalized(); Vector3 up = Vector3(ai_camera->mUp.x, ai_camera->mUp.y, ai_camera->mUp.z); Transform xform; xform.set_look_at(pos, look_at, up); new_node = camera; } else if (state.bone_owners.has(node_name)) { //have to actually put the skeleton somewhere, you know. Skeleton *skeleton = state.skeletons[state.bone_owners[node_name]]; if (skeleton->get_parent()) { //a bone for a skeleton already added.. //could go downwards here to add meshes children of skeleton bones //but let's not support it for now. return; } //restore rest poses to local, now that we know where the skeleton finally is Transform skeleton_transform; if (p_assimp_node->mParent) { skeleton_transform = _get_global_assimp_node_transform(p_assimp_node->mParent); } for (int i = 0; i < skeleton->get_bone_count(); i++) { Transform rest = skeleton_transform.affine_inverse() * skeleton->get_bone_rest(i); skeleton->set_bone_rest(i, rest.affine_inverse()); } skeleton->localize_rests(); node_name = "Skeleton"; //don't use the bone root name node_transform = Transform(); //dont transform new_node = skeleton; } else { //generic node new_node = memnew(Spatial); } { new_node->set_name(node_name); new_node->set_transform(node_transform); p_parent->add_child(new_node); new_node->set_owner(state.root); } state.node_map[node_name] = new_node; for (size_t i = 0; i < p_assimp_node->mNumChildren; i++) { _generate_node(state, p_assimp_node->mChildren[i], new_node); } } void EditorSceneImporterAssimp::_calc_tangent_from_mesh(const aiMesh *ai_mesh, int i, int tri_index, int index, PoolColorArray::Write &w) { const aiVector3D normals = ai_mesh->mAnimMeshes[i]->mNormals[tri_index]; const Vector3 godot_normal = Vector3(normals.x, normals.y, normals.z); const aiVector3D tangent = ai_mesh->mAnimMeshes[i]->mTangents[tri_index]; const Vector3 godot_tangent = Vector3(tangent.x, tangent.y, tangent.z); const aiVector3D bitangent = ai_mesh->mAnimMeshes[i]->mBitangents[tri_index]; const Vector3 godot_bitangent = Vector3(bitangent.x, bitangent.y, bitangent.z); float d = godot_normal.cross(godot_tangent).dot(godot_bitangent) > 0.0f ? 1.0f : -1.0f; Color plane_tangent = Color(tangent.x, tangent.y, tangent.z, d); w[index] = plane_tangent; } void EditorSceneImporterAssimp::_set_texture_mapping_mode(aiTextureMapMode *map_mode, Ref texture) { ERR_FAIL_COND(map_mode == NULL); aiTextureMapMode tex_mode = aiTextureMapMode::aiTextureMapMode_Wrap; //for (size_t i = 0; i < 3; i++) { tex_mode = map_mode[0]; //} int32_t flags = Texture::FLAGS_DEFAULT; if (tex_mode == aiTextureMapMode_Wrap) { //Default } else if (tex_mode == aiTextureMapMode_Clamp) { flags = flags & ~Texture::FLAG_REPEAT; } else if (tex_mode == aiTextureMapMode_Mirror) { flags = flags | Texture::FLAG_MIRRORED_REPEAT; } texture->set_flags(flags); } void EditorSceneImporterAssimp::_find_texture_path(const String &r_p_path, String &r_path, bool &r_found) { _Directory dir; List exts; ImageLoader::get_recognized_extensions(&exts); Vector split_path = r_path.get_basename().split("*"); if (split_path.size() == 2) { r_found = true; return; } if (dir.file_exists(r_p_path.get_base_dir() + r_path.get_file())) { r_path = r_p_path.get_base_dir() + r_path.get_file(); r_found = true; return; } for (int32_t i = 0; i < exts.size(); i++) { if (r_found) { return; } if (r_found == false) { _find_texture_path(r_p_path, dir, r_path, r_found, "." + exts[i]); } } } void EditorSceneImporterAssimp::_find_texture_path(const String &p_path, _Directory &dir, String &path, bool &found, String extension) { String name = path.get_basename() + extension; if (dir.file_exists(name)) { found = true; path = name; return; } String name_ignore_sub_directory = p_path.get_base_dir() + "/" + path.get_file().get_basename() + extension; if (dir.file_exists(name_ignore_sub_directory)) { found = true; path = name_ignore_sub_directory; return; } String name_find_texture_sub_directory = p_path.get_base_dir() + "/textures/" + path.get_file().get_basename() + extension; if (dir.file_exists(name_find_texture_sub_directory)) { found = true; path = name_find_texture_sub_directory; return; } String name_find_texture_upper_sub_directory = p_path.get_base_dir() + "/Textures/" + path.get_file().get_basename() + extension; if (dir.file_exists(name_find_texture_upper_sub_directory)) { found = true; path = name_find_texture_upper_sub_directory; return; } String name_find_texture_outside_sub_directory = p_path.get_base_dir() + "/../textures/" + path.get_file().get_basename() + extension; if (dir.file_exists(name_find_texture_outside_sub_directory)) { found = true; path = name_find_texture_outside_sub_directory; return; } String name_find_upper_texture_outside_sub_directory = p_path.get_base_dir() + "/../Textures/" + path.get_file().get_basename() + extension; if (dir.file_exists(name_find_upper_texture_outside_sub_directory)) { found = true; path = name_find_upper_texture_outside_sub_directory; return; } } String EditorSceneImporterAssimp::_assimp_get_string(const aiString p_string) const { //convert an assimp String to a Godot String String name; name.parse_utf8(p_string.C_Str() /*,p_string.length*/); if (name.find(":") != -1) { String replaced_name = name.split(":")[1]; print_verbose("Replacing " + name + " containing : with " + replaced_name); name = replaced_name; } name = name.replace(".", ""); //can break things, specially bone names return name; } String EditorSceneImporterAssimp::_assimp_anim_string_to_string(const aiString p_string) const { String name; name.parse_utf8(p_string.C_Str() /*,p_string.length*/); if (name.find(":") != -1) { String replaced_name = name.split(":")[1]; print_verbose("Replacing " + name + " containing : with " + replaced_name); name = replaced_name; } return name; } String EditorSceneImporterAssimp::_assimp_raw_string_to_string(const aiString p_string) const { String name; name.parse_utf8(p_string.C_Str() /*,p_string.length*/); return name; } Ref EditorSceneImporterAssimp::import_animation(const String &p_path, uint32_t p_flags, int p_bake_fps) { return Ref(); } const Transform EditorSceneImporterAssimp::_assimp_matrix_transform(const aiMatrix4x4 p_matrix) { aiMatrix4x4 matrix = p_matrix; Transform xform; //xform.set(matrix.a1, matrix.b1, matrix.c1, matrix.a2, matrix.b2, matrix.c2, matrix.a3, matrix.b3, matrix.c3, matrix.a4, matrix.b4, matrix.c4); xform.set(matrix.a1, matrix.a2, matrix.a3, matrix.b1, matrix.b2, matrix.b3, matrix.c1, matrix.c2, matrix.c3, matrix.a4, matrix.b4, matrix.c4); return xform; }