/*************************************************************************/ /* main_timer_sync.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "main_timer_sync.h" void MainFrameTime::clamp_idle(float min_idle_step, float max_idle_step) { if (idle_step < min_idle_step) { idle_step = min_idle_step; } else if (idle_step > max_idle_step) { idle_step = max_idle_step; } } ///////////////////////////////// // returns the fraction of p_frame_slice required for the timer to overshoot // before advance_core considers changing the physics_steps return from // the typical values as defined by typical_physics_steps float MainTimerSync::get_physics_jitter_fix() { return Engine::get_singleton()->get_physics_jitter_fix(); } // gets our best bet for the average number of physics steps per render frame // return value: number of frames back this data is consistent int MainTimerSync::get_average_physics_steps(float &p_min, float &p_max) { p_min = typical_physics_steps[0]; p_max = p_min + 1; for (int i = 1; i < CONTROL_STEPS; ++i) { const float typical_lower = typical_physics_steps[i]; const float current_min = typical_lower / (i + 1); if (current_min > p_max) return i; // bail out of further restrictions would void the interval else if (current_min > p_min) p_min = current_min; const float current_max = (typical_lower + 1) / (i + 1); if (current_max < p_min) return i; else if (current_max < p_max) p_max = current_max; } return CONTROL_STEPS; } // advance physics clock by p_idle_step, return appropriate number of steps to simulate MainFrameTime MainTimerSync::advance_core(float p_frame_slice, int p_iterations_per_second, float p_idle_step) { MainFrameTime ret; ret.idle_step = p_idle_step; // simple determination of number of physics iteration time_accum += ret.idle_step; ret.physics_steps = floor(time_accum * p_iterations_per_second); int min_typical_steps = typical_physics_steps[0]; int max_typical_steps = min_typical_steps + 1; // given the past recorded steps and typical steps to match, calculate bounds for this // step to be typical bool update_typical = false; for (int i = 0; i < CONTROL_STEPS - 1; ++i) { int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i]; if (steps_left_to_match_typical > max_typical_steps || steps_left_to_match_typical + 1 < min_typical_steps) { update_typical = true; break; } if (steps_left_to_match_typical > min_typical_steps) min_typical_steps = steps_left_to_match_typical; if (steps_left_to_match_typical + 1 < max_typical_steps) max_typical_steps = steps_left_to_match_typical + 1; } // try to keep it consistent with previous iterations if (ret.physics_steps < min_typical_steps) { const int max_possible_steps = floor((time_accum)*p_iterations_per_second + get_physics_jitter_fix()); if (max_possible_steps < min_typical_steps) { ret.physics_steps = max_possible_steps; update_typical = true; } else { ret.physics_steps = min_typical_steps; } } else if (ret.physics_steps > max_typical_steps) { const int min_possible_steps = floor((time_accum)*p_iterations_per_second - get_physics_jitter_fix()); if (min_possible_steps > max_typical_steps) { ret.physics_steps = min_possible_steps; update_typical = true; } else { ret.physics_steps = max_typical_steps; } } time_accum -= ret.physics_steps * p_frame_slice; // keep track of accumulated step counts for (int i = CONTROL_STEPS - 2; i >= 0; --i) { accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps; } accumulated_physics_steps[0] = ret.physics_steps; if (update_typical) { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { if (typical_physics_steps[i] > accumulated_physics_steps[i]) { typical_physics_steps[i] = accumulated_physics_steps[i]; } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) { typical_physics_steps[i] = accumulated_physics_steps[i] - 1; } } } return ret; } // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero MainFrameTime MainTimerSync::advance_checked(float p_frame_slice, int p_iterations_per_second, float p_idle_step) { if (fixed_fps != -1) p_idle_step = 1.0 / fixed_fps; // compensate for last deficit p_idle_step += time_deficit; MainFrameTime ret = advance_core(p_frame_slice, p_iterations_per_second, p_idle_step); // we will do some clamping on ret.idle_step and need to sync those changes to time_accum, // that's easiest if we just remember their fixed difference now const double idle_minus_accum = ret.idle_step - time_accum; // first, least important clamping: keep ret.idle_step consistent with typical_physics_steps. // this smoothes out the idle steps and culls small but quick variations. { float min_average_physics_steps, max_average_physics_steps; int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps); if (consistent_steps > 3) { ret.clamp_idle(min_average_physics_steps * p_frame_slice, max_average_physics_steps * p_frame_slice); } } // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise float max_clock_deviation = get_physics_jitter_fix() * p_frame_slice; ret.clamp_idle(p_idle_step - max_clock_deviation, p_idle_step + max_clock_deviation); // last clamping: make sure time_accum is between 0 and p_frame_slice for consistency between physics and idle ret.clamp_idle(idle_minus_accum, idle_minus_accum + p_frame_slice); // restore time_accum time_accum = ret.idle_step - idle_minus_accum; // track deficit time_deficit = p_idle_step - ret.idle_step; // p_frame_slice is 1.0 / iterations_per_sec // i.e. the time in seconds taken by a physics tick ret.interpolation_fraction = time_accum / p_frame_slice; return ret; } // determine wall clock step since last iteration float MainTimerSync::get_cpu_idle_step() { uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec; last_cpu_ticks_usec = current_cpu_ticks_usec; return cpu_ticks_elapsed / 1000000.0; } MainTimerSync::MainTimerSync() { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { typical_physics_steps[i] = i; accumulated_physics_steps[i] = i; } } // start the clock void MainTimerSync::init(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec; } // set measured wall clock time void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = p_cpu_ticks_usec; } void MainTimerSync::set_fixed_fps(int p_fixed_fps) { fixed_fps = p_fixed_fps; } // advance one frame, return timesteps to take MainFrameTime MainTimerSync::advance(float p_frame_slice, int p_iterations_per_second) { float cpu_idle_step = get_cpu_idle_step(); return advance_checked(p_frame_slice, p_iterations_per_second, cpu_idle_step); }