/*************************************************************************/ /* input_default.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "input_default.h" #include "core/input_map.h" #include "core/os/os.h" #include "main/default_controller_mappings.h" #include "scene/resources/texture.h" #include "servers/visual_server.h" void InputDefault::SpeedTrack::update(const Vector2 &p_delta_p) { uint64_t tick = OS::get_singleton()->get_ticks_usec(); uint32_t tdiff = tick - last_tick; float delta_t = tdiff / 1000000.0; last_tick = tick; accum += p_delta_p; accum_t += delta_t; if (accum_t > max_ref_frame * 10) accum_t = max_ref_frame * 10; while (accum_t >= min_ref_frame) { float slice_t = min_ref_frame / accum_t; Vector2 slice = accum * slice_t; accum = accum - slice; accum_t -= min_ref_frame; speed = (slice / min_ref_frame).linear_interpolate(speed, min_ref_frame / max_ref_frame); } } void InputDefault::SpeedTrack::reset() { last_tick = OS::get_singleton()->get_ticks_usec(); speed = Vector2(); accum_t = 0; } InputDefault::SpeedTrack::SpeedTrack() { min_ref_frame = 0.1; max_ref_frame = 0.3; reset(); } bool InputDefault::is_key_pressed(int p_scancode) const { _THREAD_SAFE_METHOD_ return keys_pressed.has(p_scancode); } bool InputDefault::is_mouse_button_pressed(int p_button) const { _THREAD_SAFE_METHOD_ return (mouse_button_mask & (1 << (p_button - 1))) != 0; } static int _combine_device(int p_value, int p_device) { return p_value | (p_device << 20); } bool InputDefault::is_joy_button_pressed(int p_device, int p_button) const { _THREAD_SAFE_METHOD_ return joy_buttons_pressed.has(_combine_device(p_button, p_device)); } bool InputDefault::is_action_pressed(const StringName &p_action) const { return action_state.has(p_action) && action_state[p_action].pressed; } bool InputDefault::is_action_just_pressed(const StringName &p_action) const { const Map<StringName, Action>::Element *E = action_state.find(p_action); if (!E) return false; if (Engine::get_singleton()->is_in_physics_frame()) { return E->get().pressed && E->get().physics_frame == Engine::get_singleton()->get_physics_frames(); } else { return E->get().pressed && E->get().idle_frame == Engine::get_singleton()->get_idle_frames(); } } bool InputDefault::is_action_just_released(const StringName &p_action) const { const Map<StringName, Action>::Element *E = action_state.find(p_action); if (!E) return false; if (Engine::get_singleton()->is_in_physics_frame()) { return !E->get().pressed && E->get().physics_frame == Engine::get_singleton()->get_physics_frames(); } else { return !E->get().pressed && E->get().idle_frame == Engine::get_singleton()->get_idle_frames(); } } float InputDefault::get_action_strength(const StringName &p_action) const { const Map<StringName, Action>::Element *E = action_state.find(p_action); if (!E) return 0.0f; return E->get().strength; } float InputDefault::get_joy_axis(int p_device, int p_axis) const { _THREAD_SAFE_METHOD_ int c = _combine_device(p_axis, p_device); if (_joy_axis.has(c)) { return _joy_axis[c]; } else { return 0; } } String InputDefault::get_joy_name(int p_idx) { _THREAD_SAFE_METHOD_ return joy_names[p_idx].name; }; Vector2 InputDefault::get_joy_vibration_strength(int p_device) { if (joy_vibration.has(p_device)) { return Vector2(joy_vibration[p_device].weak_magnitude, joy_vibration[p_device].strong_magnitude); } else { return Vector2(0, 0); } } uint64_t InputDefault::get_joy_vibration_timestamp(int p_device) { if (joy_vibration.has(p_device)) { return joy_vibration[p_device].timestamp; } else { return 0; } } float InputDefault::get_joy_vibration_duration(int p_device) { if (joy_vibration.has(p_device)) { return joy_vibration[p_device].duration; } else { return 0.f; } } static String _hex_str(uint8_t p_byte) { static const char *dict = "0123456789abcdef"; char ret[3]; ret[2] = 0; ret[0] = dict[p_byte >> 4]; ret[1] = dict[p_byte & 0xf]; return ret; }; void InputDefault::joy_connection_changed(int p_idx, bool p_connected, String p_name, String p_guid) { _THREAD_SAFE_METHOD_ Joypad js; js.name = p_connected ? p_name : ""; js.uid = p_connected ? p_guid : ""; if (p_connected) { String uidname = p_guid; if (p_guid == "") { int uidlen = MIN(p_name.length(), 16); for (int i = 0; i < uidlen; i++) { uidname = uidname + _hex_str(p_name[i]); }; }; js.uid = uidname; js.connected = true; int mapping = fallback_mapping; for (int i = 0; i < map_db.size(); i++) { if (js.uid == map_db[i].uid) { mapping = i; js.name = map_db[i].name; }; }; js.mapping = mapping; } else { js.connected = false; for (int i = 0; i < JOY_BUTTON_MAX; i++) { if (i < JOY_AXIS_MAX) set_joy_axis(p_idx, i, 0.0f); int c = _combine_device(i, p_idx); joy_buttons_pressed.erase(c); }; }; joy_names[p_idx] = js; emit_signal("joy_connection_changed", p_idx, p_connected); }; Vector3 InputDefault::get_gravity() const { _THREAD_SAFE_METHOD_ return gravity; } Vector3 InputDefault::get_accelerometer() const { _THREAD_SAFE_METHOD_ return accelerometer; } Vector3 InputDefault::get_magnetometer() const { _THREAD_SAFE_METHOD_ return magnetometer; } Vector3 InputDefault::get_gyroscope() const { _THREAD_SAFE_METHOD_ return gyroscope; } void InputDefault::parse_input_event(const Ref<InputEvent> &p_event) { _parse_input_event_impl(p_event, false); } void InputDefault::_parse_input_event_impl(const Ref<InputEvent> &p_event, bool p_is_emulated) { // Notes on mouse-touch emulation: // - Emulated mouse events are parsed, that is, re-routed to this method, so they make the same effects // as true mouse events. The only difference is the situation is flagged as emulated so they are not // emulated back to touch events in an endless loop. // - Emulated touch events are handed right to the main loop (i.e., the SceneTree) because they don't // require additional handling by this class. _THREAD_SAFE_METHOD_ Ref<InputEventKey> k = p_event; if (k.is_valid() && !k->is_echo() && k->get_scancode() != 0) { if (k->is_pressed()) keys_pressed.insert(k->get_scancode()); else keys_pressed.erase(k->get_scancode()); } Ref<InputEventMouseButton> mb = p_event; if (mb.is_valid()) { if (mb->is_pressed()) { mouse_button_mask |= (1 << (mb->get_button_index() - 1)); } else { mouse_button_mask &= ~(1 << (mb->get_button_index() - 1)); } Point2 pos = mb->get_global_position(); if (mouse_pos != pos) { set_mouse_position(pos); } if (main_loop && emulate_touch_from_mouse && !p_is_emulated && mb->get_button_index() == 1) { Ref<InputEventScreenTouch> touch_event; touch_event.instance(); touch_event->set_pressed(mb->is_pressed()); touch_event->set_position(mb->get_position()); main_loop->input_event(touch_event); } } Ref<InputEventMouseMotion> mm = p_event; if (mm.is_valid()) { Point2 pos = mm->get_global_position(); if (mouse_pos != pos) { set_mouse_position(pos); } if (main_loop && emulate_touch_from_mouse && !p_is_emulated && mm->get_button_mask() & 1) { Ref<InputEventScreenDrag> drag_event; drag_event.instance(); drag_event->set_position(mm->get_position()); drag_event->set_relative(mm->get_relative()); drag_event->set_speed(mm->get_speed()); main_loop->input_event(drag_event); } } Ref<InputEventScreenTouch> st = p_event; if (st.is_valid()) { if (st->is_pressed()) { SpeedTrack &track = touch_speed_track[st->get_index()]; track.reset(); } else { // Since a pointer index may not occur again (OSs may or may not reuse them), // imperatively remove it from the map to keep no fossil entries in it touch_speed_track.erase(st->get_index()); } if (emulate_mouse_from_touch) { bool translate = false; if (st->is_pressed()) { if (mouse_from_touch_index == -1) { translate = true; mouse_from_touch_index = st->get_index(); } } else { if (st->get_index() == mouse_from_touch_index) { translate = true; mouse_from_touch_index = -1; } } if (translate) { Ref<InputEventMouseButton> button_event; button_event.instance(); button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); button_event->set_position(st->get_position()); button_event->set_global_position(st->get_position()); button_event->set_pressed(st->is_pressed()); button_event->set_button_index(BUTTON_LEFT); if (st->is_pressed()) { button_event->set_button_mask(mouse_button_mask | (1 << (BUTTON_LEFT - 1))); } else { button_event->set_button_mask(mouse_button_mask & ~(1 << (BUTTON_LEFT - 1))); } _parse_input_event_impl(button_event, true); } } } Ref<InputEventScreenDrag> sd = p_event; if (sd.is_valid()) { SpeedTrack &track = touch_speed_track[sd->get_index()]; track.update(sd->get_relative()); sd->set_speed(track.speed); if (emulate_mouse_from_touch && sd->get_index() == mouse_from_touch_index) { Ref<InputEventMouseMotion> motion_event; motion_event.instance(); motion_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); motion_event->set_position(sd->get_position()); motion_event->set_global_position(sd->get_position()); motion_event->set_relative(sd->get_relative()); motion_event->set_speed(sd->get_speed()); motion_event->set_button_mask(mouse_button_mask); _parse_input_event_impl(motion_event, true); } } Ref<InputEventJoypadButton> jb = p_event; if (jb.is_valid()) { int c = _combine_device(jb->get_button_index(), jb->get_device()); if (jb->is_pressed()) joy_buttons_pressed.insert(c); else joy_buttons_pressed.erase(c); } Ref<InputEventJoypadMotion> jm = p_event; if (jm.is_valid()) { set_joy_axis(jm->get_device(), jm->get_axis(), jm->get_axis_value()); } Ref<InputEventGesture> ge = p_event; if (ge.is_valid()) { if (main_loop) { main_loop->input_event(ge); } } for (const Map<StringName, InputMap::Action>::Element *E = InputMap::get_singleton()->get_action_map().front(); E; E = E->next()) { if (InputMap::get_singleton()->event_is_action(p_event, E->key())) { // Save the action's state if (!p_event->is_echo() && is_action_pressed(E->key()) != p_event->is_action_pressed(E->key())) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.idle_frame = Engine::get_singleton()->get_idle_frames(); action.pressed = p_event->is_action_pressed(E->key()); action.strength = 0.f; action_state[E->key()] = action; } action_state[E->key()].strength = p_event->get_action_strength(E->key()); } } if (main_loop) main_loop->input_event(p_event); } void InputDefault::set_joy_axis(int p_device, int p_axis, float p_value) { _THREAD_SAFE_METHOD_ int c = _combine_device(p_axis, p_device); _joy_axis[c] = p_value; } void InputDefault::start_joy_vibration(int p_device, float p_weak_magnitude, float p_strong_magnitude, float p_duration) { _THREAD_SAFE_METHOD_ if (p_weak_magnitude < 0.f || p_weak_magnitude > 1.f || p_strong_magnitude < 0.f || p_strong_magnitude > 1.f) { return; } VibrationInfo vibration; vibration.weak_magnitude = p_weak_magnitude; vibration.strong_magnitude = p_strong_magnitude; vibration.duration = p_duration; vibration.timestamp = OS::get_singleton()->get_ticks_usec(); joy_vibration[p_device] = vibration; } void InputDefault::stop_joy_vibration(int p_device) { _THREAD_SAFE_METHOD_ VibrationInfo vibration; vibration.weak_magnitude = 0; vibration.strong_magnitude = 0; vibration.duration = 0; vibration.timestamp = OS::get_singleton()->get_ticks_usec(); joy_vibration[p_device] = vibration; } void InputDefault::vibrate_handheld(int p_duration_ms) { OS::get_singleton()->vibrate_handheld(p_duration_ms); } void InputDefault::set_gravity(const Vector3 &p_gravity) { _THREAD_SAFE_METHOD_ gravity = p_gravity; } void InputDefault::set_accelerometer(const Vector3 &p_accel) { _THREAD_SAFE_METHOD_ accelerometer = p_accel; } void InputDefault::set_magnetometer(const Vector3 &p_magnetometer) { _THREAD_SAFE_METHOD_ magnetometer = p_magnetometer; } void InputDefault::set_gyroscope(const Vector3 &p_gyroscope) { _THREAD_SAFE_METHOD_ gyroscope = p_gyroscope; } void InputDefault::set_main_loop(MainLoop *p_main_loop) { main_loop = p_main_loop; } void InputDefault::set_mouse_position(const Point2 &p_posf) { mouse_speed_track.update(p_posf - mouse_pos); mouse_pos = p_posf; } Point2 InputDefault::get_mouse_position() const { return mouse_pos; } Point2 InputDefault::get_last_mouse_speed() const { return mouse_speed_track.speed; } int InputDefault::get_mouse_button_mask() const { return mouse_button_mask; // do not trust OS implementation, should remove it - OS::get_singleton()->get_mouse_button_state(); } void InputDefault::warp_mouse_position(const Vector2 &p_to) { OS::get_singleton()->warp_mouse_position(p_to); } Point2i InputDefault::warp_mouse_motion(const Ref<InputEventMouseMotion> &p_motion, const Rect2 &p_rect) { // The relative distance reported for the next event after a warp is in the boundaries of the // size of the rect on that axis, but it may be greater, in which case there's not problem as fmod() // will warp it, but if the pointer has moved in the opposite direction between the pointer relocation // and the subsequent event, the reported relative distance will be less than the size of the rect // and thus fmod() will be disabled for handling the situation. // And due to this mouse warping mechanism being stateless, we need to apply some heuristics to // detect the warp: if the relative distance is greater than the half of the size of the relevant rect // (checked per each axis), it will be considered as the consequence of a former pointer warp. const Point2i rel_sgn(p_motion->get_relative().x >= 0.0f ? 1 : -1, p_motion->get_relative().y >= 0.0 ? 1 : -1); const Size2i warp_margin = p_rect.size * 0.5f; const Point2i rel_warped( Math::fmod(p_motion->get_relative().x + rel_sgn.x * warp_margin.x, p_rect.size.x) - rel_sgn.x * warp_margin.x, Math::fmod(p_motion->get_relative().y + rel_sgn.y * warp_margin.y, p_rect.size.y) - rel_sgn.y * warp_margin.y); const Point2i pos_local = p_motion->get_global_position() - p_rect.position; const Point2i pos_warped(Math::fposmod(pos_local.x, p_rect.size.x), Math::fposmod(pos_local.y, p_rect.size.y)); if (pos_warped != pos_local) { OS::get_singleton()->warp_mouse_position(pos_warped + p_rect.position); } return rel_warped; } void InputDefault::iteration(float p_step) { } void InputDefault::action_press(const StringName &p_action, float p_strength) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.idle_frame = Engine::get_singleton()->get_idle_frames(); action.pressed = true; action.strength = p_strength; action_state[p_action] = action; } void InputDefault::action_release(const StringName &p_action) { Action action; action.physics_frame = Engine::get_singleton()->get_physics_frames(); action.idle_frame = Engine::get_singleton()->get_idle_frames(); action.pressed = false; action.strength = 0.f; action_state[p_action] = action; } void InputDefault::set_emulate_touch_from_mouse(bool p_emulate) { emulate_touch_from_mouse = p_emulate; } bool InputDefault::is_emulating_touch_from_mouse() const { return emulate_touch_from_mouse; } // Calling this whenever the game window is focused helps unstucking the "touch mouse" // if the OS or its abstraction class hasn't properly reported that touch pointers raised void InputDefault::ensure_touch_mouse_raised() { if (mouse_from_touch_index != -1) { mouse_from_touch_index = -1; Ref<InputEventMouseButton> button_event; button_event.instance(); button_event->set_device(InputEvent::DEVICE_ID_TOUCH_MOUSE); button_event->set_position(mouse_pos); button_event->set_global_position(mouse_pos); button_event->set_pressed(false); button_event->set_button_index(BUTTON_LEFT); button_event->set_button_mask(mouse_button_mask & ~(1 << (BUTTON_LEFT - 1))); _parse_input_event_impl(button_event, true); } } void InputDefault::set_emulate_mouse_from_touch(bool p_emulate) { emulate_mouse_from_touch = p_emulate; } bool InputDefault::is_emulating_mouse_from_touch() const { return emulate_mouse_from_touch; } Input::CursorShape InputDefault::get_default_cursor_shape() const { return default_shape; } void InputDefault::set_default_cursor_shape(CursorShape p_shape) { if (default_shape == p_shape) return; default_shape = p_shape; // The default shape is set in Viewport::_gui_input_event. To instantly // see the shape in the viewport we need to trigger a mouse motion event. Ref<InputEventMouseMotion> mm; mm.instance(); mm->set_position(mouse_pos); mm->set_global_position(mouse_pos); parse_input_event(mm); } Input::CursorShape InputDefault::get_current_cursor_shape() const { return (Input::CursorShape)OS::get_singleton()->get_cursor_shape(); } void InputDefault::set_custom_mouse_cursor(const RES &p_cursor, CursorShape p_shape, const Vector2 &p_hotspot) { if (Engine::get_singleton()->is_editor_hint()) return; OS::get_singleton()->set_custom_mouse_cursor(p_cursor, (OS::CursorShape)p_shape, p_hotspot); } void InputDefault::accumulate_input_event(const Ref<InputEvent> &p_event) { ERR_FAIL_COND(p_event.is_null()); if (!use_accumulated_input) { parse_input_event(p_event); return; } if (!accumulated_events.empty() && accumulated_events.back()->get()->accumulate(p_event)) { return; //event was accumulated, exit } accumulated_events.push_back(p_event); } void InputDefault::flush_accumulated_events() { while (accumulated_events.front()) { parse_input_event(accumulated_events.front()->get()); accumulated_events.pop_front(); } } void InputDefault::set_use_accumulated_input(bool p_enable) { use_accumulated_input = p_enable; } void InputDefault::release_pressed_events() { flush_accumulated_events(); // this is needed to release actions strengths keys_pressed.clear(); joy_buttons_pressed.clear(); _joy_axis.clear(); for (Map<StringName, InputDefault::Action>::Element *E = action_state.front(); E; E = E->next()) { if (E->get().pressed) action_release(E->key()); } } InputDefault::InputDefault() { use_accumulated_input = true; mouse_button_mask = 0; emulate_touch_from_mouse = false; emulate_mouse_from_touch = false; mouse_from_touch_index = -1; main_loop = NULL; default_shape = CURSOR_ARROW; hat_map_default[HAT_UP].type = TYPE_BUTTON; hat_map_default[HAT_UP].index = JOY_DPAD_UP; hat_map_default[HAT_UP].value = 0; hat_map_default[HAT_RIGHT].type = TYPE_BUTTON; hat_map_default[HAT_RIGHT].index = JOY_DPAD_RIGHT; hat_map_default[HAT_RIGHT].value = 0; hat_map_default[HAT_DOWN].type = TYPE_BUTTON; hat_map_default[HAT_DOWN].index = JOY_DPAD_DOWN; hat_map_default[HAT_DOWN].value = 0; hat_map_default[HAT_LEFT].type = TYPE_BUTTON; hat_map_default[HAT_LEFT].index = JOY_DPAD_LEFT; hat_map_default[HAT_LEFT].value = 0; fallback_mapping = -1; // Parse default mappings. { int i = 0; while (DefaultControllerMappings::mappings[i]) { parse_mapping(DefaultControllerMappings::mappings[i++]); } } // If defined, parse SDL_GAMECONTROLLERCONFIG for possible new mappings/overrides. String env_mapping = OS::get_singleton()->get_environment("SDL_GAMECONTROLLERCONFIG"); if (env_mapping != "") { Vector<String> entries = env_mapping.split("\n"); for (int i = 0; i < entries.size(); i++) { if (entries[i] == "") continue; parse_mapping(entries[i]); } } } void InputDefault::joy_button(int p_device, int p_button, bool p_pressed) { _THREAD_SAFE_METHOD_; Joypad &joy = joy_names[p_device]; //printf("got button %i, mapping is %i\n", p_button, joy.mapping); if (joy.last_buttons[p_button] == p_pressed) { return; } joy.last_buttons[p_button] = p_pressed; if (joy.mapping == -1) { _button_event(p_device, p_button, p_pressed); return; } const Map<int, JoyEvent>::Element *el = map_db[joy.mapping].buttons.find(p_button); if (!el) { //don't process un-mapped events for now, it could mess things up badly for devices with additional buttons/axis //return _button_event(p_last_id, p_device, p_button, p_pressed); return; } JoyEvent map = el->get(); if (map.type == TYPE_BUTTON) { //fake additional axis event for triggers if (map.index == JOY_L2 || map.index == JOY_R2) { float value = p_pressed ? 1.0f : 0.0f; int axis = map.index == JOY_L2 ? JOY_ANALOG_L2 : JOY_ANALOG_R2; _axis_event(p_device, axis, value); } _button_event(p_device, map.index, p_pressed); return; } if (map.type == TYPE_AXIS) { _axis_event(p_device, map.index, p_pressed ? 1.0 : 0.0); } // no event? } void InputDefault::joy_axis(int p_device, int p_axis, const JoyAxis &p_value) { _THREAD_SAFE_METHOD_; ERR_FAIL_INDEX(p_axis, JOY_AXIS_MAX); Joypad &joy = joy_names[p_device]; if (joy.last_axis[p_axis] == p_value.value) { return; } if (p_value.value > joy.last_axis[p_axis]) { if (p_value.value < joy.last_axis[p_axis] + joy.filter) { return; } } else if (p_value.value > joy.last_axis[p_axis] - joy.filter) { return; } //when changing direction quickly, insert fake event to release pending inputmap actions float last = joy.last_axis[p_axis]; if (p_value.min == 0 && (last < 0.25 || last > 0.75) && (last - 0.5) * (p_value.value - 0.5) < 0) { JoyAxis jx; jx.min = p_value.min; jx.value = p_value.value < 0.5 ? 0.6 : 0.4; joy_axis(p_device, p_axis, jx); } else if (ABS(last) > 0.5 && last * p_value.value < 0) { JoyAxis jx; jx.min = p_value.min; jx.value = p_value.value < 0 ? 0.1 : -0.1; joy_axis(p_device, p_axis, jx); } joy.last_axis[p_axis] = p_value.value; float val = p_value.min == 0 ? -1.0f + 2.0f * p_value.value : p_value.value; if (joy.mapping == -1) { _axis_event(p_device, p_axis, val); return; }; const Map<int, JoyEvent>::Element *el = map_db[joy.mapping].axis.find(p_axis); if (!el) { //return _axis_event(p_last_id, p_device, p_axis, p_value); return; }; JoyEvent map = el->get(); if (map.type == TYPE_BUTTON) { //send axis event for triggers if (map.index == JOY_L2 || map.index == JOY_R2) { float value = p_value.min == 0 ? p_value.value : 0.5f + p_value.value / 2.0f; int axis = map.index == JOY_L2 ? JOY_ANALOG_L2 : JOY_ANALOG_R2; _axis_event(p_device, axis, value); } if (map.index == JOY_DPAD_UP || map.index == JOY_DPAD_DOWN) { bool pressed = p_value.value != 0.0f; int button = p_value.value < 0 ? JOY_DPAD_UP : JOY_DPAD_DOWN; if (!pressed) { if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_UP, p_device))) { _button_event(p_device, JOY_DPAD_UP, false); } if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_DOWN, p_device))) { _button_event(p_device, JOY_DPAD_DOWN, false); } } if (pressed == joy_buttons_pressed.has(_combine_device(button, p_device))) { return; } _button_event(p_device, button, true); return; } if (map.index == JOY_DPAD_LEFT || map.index == JOY_DPAD_RIGHT) { bool pressed = p_value.value != 0.0f; int button = p_value.value < 0 ? JOY_DPAD_LEFT : JOY_DPAD_RIGHT; if (!pressed) { if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_LEFT, p_device))) { _button_event(p_device, JOY_DPAD_LEFT, false); } if (joy_buttons_pressed.has(_combine_device(JOY_DPAD_RIGHT, p_device))) { _button_event(p_device, JOY_DPAD_RIGHT, false); } } if (pressed == joy_buttons_pressed.has(_combine_device(button, p_device))) { return; } _button_event(p_device, button, true); return; } float deadzone = p_value.min == 0 ? 0.5f : 0.0f; bool pressed = p_value.value > deadzone; if (pressed == joy_buttons_pressed.has(_combine_device(map.index, p_device))) { // button already pressed or released, this is an axis bounce value return; } _button_event(p_device, map.index, pressed); return; } if (map.type == TYPE_AXIS) { _axis_event(p_device, map.index, val); return; } //printf("invalid mapping\n"); } void InputDefault::joy_hat(int p_device, int p_val) { _THREAD_SAFE_METHOD_; const Joypad &joy = joy_names[p_device]; const JoyEvent *map; if (joy.mapping == -1) { map = hat_map_default; } else { map = map_db[joy.mapping].hat; }; int cur_val = joy_names[p_device].hat_current; if ((p_val & HAT_MASK_UP) != (cur_val & HAT_MASK_UP)) { _button_event(p_device, map[HAT_UP].index, p_val & HAT_MASK_UP); } if ((p_val & HAT_MASK_RIGHT) != (cur_val & HAT_MASK_RIGHT)) { _button_event(p_device, map[HAT_RIGHT].index, p_val & HAT_MASK_RIGHT); } if ((p_val & HAT_MASK_DOWN) != (cur_val & HAT_MASK_DOWN)) { _button_event(p_device, map[HAT_DOWN].index, p_val & HAT_MASK_DOWN); } if ((p_val & HAT_MASK_LEFT) != (cur_val & HAT_MASK_LEFT)) { _button_event(p_device, map[HAT_LEFT].index, p_val & HAT_MASK_LEFT); } joy_names[p_device].hat_current = p_val; } void InputDefault::_button_event(int p_device, int p_index, bool p_pressed) { Ref<InputEventJoypadButton> ievent; ievent.instance(); ievent->set_device(p_device); ievent->set_button_index(p_index); ievent->set_pressed(p_pressed); parse_input_event(ievent); } void InputDefault::_axis_event(int p_device, int p_axis, float p_value) { Ref<InputEventJoypadMotion> ievent; ievent.instance(); ievent->set_device(p_device); ievent->set_axis(p_axis); ievent->set_axis_value(p_value); parse_input_event(ievent); }; InputDefault::JoyEvent InputDefault::_find_to_event(String p_to) { // string names of the SDL buttons in the same order as input_event.h godot buttons static const char *buttons[] = { "a", "b", "x", "y", "leftshoulder", "rightshoulder", "lefttrigger", "righttrigger", "leftstick", "rightstick", "back", "start", "dpup", "dpdown", "dpleft", "dpright", "guide", NULL }; static const char *axis[] = { "leftx", "lefty", "rightx", "righty", NULL }; JoyEvent ret; ret.type = -1; ret.index = 0; int i = 0; while (buttons[i]) { if (p_to == buttons[i]) { ret.type = TYPE_BUTTON; ret.index = i; ret.value = 0; return ret; }; ++i; }; i = 0; while (axis[i]) { if (p_to == axis[i]) { ret.type = TYPE_AXIS; ret.index = i; ret.value = 0; return ret; }; ++i; }; return ret; }; void InputDefault::parse_mapping(String p_mapping) { _THREAD_SAFE_METHOD_; JoyDeviceMapping mapping; for (int i = 0; i < HAT_MAX; ++i) mapping.hat[i].index = 1024 + i; Vector<String> entry = p_mapping.split(","); if (entry.size() < 2) { return; } CharString uid; uid.resize(17); mapping.uid = entry[0]; mapping.name = entry[1]; int idx = 1; while (++idx < entry.size()) { if (entry[idx] == "") continue; String from = entry[idx].get_slice(":", 1).replace(" ", ""); String to = entry[idx].get_slice(":", 0).replace(" ", ""); JoyEvent to_event = _find_to_event(to); if (to_event.type == -1) continue; String etype = from.substr(0, 1); if (etype == "a") { int aid = from.substr(1, from.length() - 1).to_int(); mapping.axis[aid] = to_event; } else if (etype == "b") { int bid = from.substr(1, from.length() - 1).to_int(); mapping.buttons[bid] = to_event; } else if (etype == "h") { int hat_value = from.get_slice(".", 1).to_int(); switch (hat_value) { case 1: mapping.hat[HAT_UP] = to_event; break; case 2: mapping.hat[HAT_RIGHT] = to_event; break; case 4: mapping.hat[HAT_DOWN] = to_event; break; case 8: mapping.hat[HAT_LEFT] = to_event; break; }; }; }; map_db.push_back(mapping); //printf("added mapping with uuid %ls\n", mapping.uid.c_str()); }; void InputDefault::add_joy_mapping(String p_mapping, bool p_update_existing) { parse_mapping(p_mapping); if (p_update_existing) { Vector<String> entry = p_mapping.split(","); String uid = entry[0]; for (int i = 0; i < joy_names.size(); i++) { if (uid == joy_names[i].uid) { joy_names[i].mapping = map_db.size() - 1; } } } } void InputDefault::remove_joy_mapping(String p_guid) { for (int i = map_db.size() - 1; i >= 0; i--) { if (p_guid == map_db[i].uid) { map_db.remove(i); } } for (int i = 0; i < joy_names.size(); i++) { if (joy_names[i].uid == p_guid) { joy_names[i].mapping = -1; } } } void InputDefault::set_fallback_mapping(String p_guid) { for (int i = 0; i < map_db.size(); i++) { if (map_db[i].uid == p_guid) { fallback_mapping = i; return; } } } //Defaults to simple implementation for platforms with a fixed gamepad layout, like consoles. bool InputDefault::is_joy_known(int p_device) { return OS::get_singleton()->is_joy_known(p_device); } String InputDefault::get_joy_guid(int p_device) const { return OS::get_singleton()->get_joy_guid(p_device); } //platforms that use the remapping system can override and call to these ones bool InputDefault::is_joy_mapped(int p_device) { int mapping = joy_names[p_device].mapping; return mapping != -1 ? (mapping != fallback_mapping) : false; } String InputDefault::get_joy_guid_remapped(int p_device) const { ERR_FAIL_COND_V(!joy_names.has(p_device), ""); return joy_names[p_device].uid; } Array InputDefault::get_connected_joypads() { Array ret; Map<int, Joypad>::Element *elem = joy_names.front(); while (elem) { if (elem->get().connected) { ret.push_back(elem->key()); } elem = elem->next(); } return ret; } static const char *_buttons[JOY_BUTTON_MAX] = { "Face Button Bottom", "Face Button Right", "Face Button Left", "Face Button Top", "L", "R", "L2", "R2", "L3", "R3", "Select", "Start", "DPAD Up", "DPAD Down", "DPAD Left", "DPAD Right" }; static const char *_axes[JOY_AXIS_MAX] = { "Left Stick X", "Left Stick Y", "Right Stick X", "Right Stick Y", "", "", "L2", "R2", "", "" }; String InputDefault::get_joy_button_string(int p_button) { ERR_FAIL_INDEX_V(p_button, JOY_BUTTON_MAX, ""); return _buttons[p_button]; } int InputDefault::get_joy_button_index_from_string(String p_button) { for (int i = 0; i < JOY_BUTTON_MAX; i++) { if (p_button == _buttons[i]) { return i; } } ERR_FAIL_V(-1); } int InputDefault::get_unused_joy_id() { for (int i = 0; i < JOYPADS_MAX; i++) { if (!joy_names.has(i) || !joy_names[i].connected) { return i; } } return -1; } String InputDefault::get_joy_axis_string(int p_axis) { ERR_FAIL_INDEX_V(p_axis, JOY_AXIS_MAX, ""); return _axes[p_axis]; } int InputDefault::get_joy_axis_index_from_string(String p_axis) { for (int i = 0; i < JOY_AXIS_MAX; i++) { if (p_axis == _axes[i]) { return i; } } ERR_FAIL_V(-1); }