/*************************************************************************/ /* collada.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collada.h" #include //#define DEBUG_DEFAULT_ANIMATION //#define DEBUG_COLLADA #ifdef DEBUG_COLLADA #define COLLADA_PRINT(m_what) print_line(m_what) #else #define COLLADA_PRINT(m_what) #endif #define COLLADA_IMPORT_SCALE_SCENE /* HELPERS */ String Collada::Effect::get_texture_path(const String &p_source, Collada &state) const { const String &image = p_source; ERR_FAIL_COND_V(!state.state.image_map.has(image), ""); return state.state.image_map[image].path; } Transform3D Collada::get_root_transform() const { Transform3D unit_scale_transform; #ifndef COLLADA_IMPORT_SCALE_SCENE unit_scale_transform.scale(Vector3(state.unit_scale, state.unit_scale, state.unit_scale)); #endif return unit_scale_transform; } void Collada::Vertex::fix_unit_scale(Collada &state) { #ifdef COLLADA_IMPORT_SCALE_SCENE vertex *= state.state.unit_scale; #endif } static String _uri_to_id(const String &p_uri) { if (p_uri.begins_with("#")) { return p_uri.substr(1, p_uri.size() - 1); } else { return p_uri; } } /** HELPER FUNCTIONS **/ Transform3D Collada::fix_transform(const Transform3D &p_transform) { Transform3D tr = p_transform; #ifndef NO_UP_AXIS_SWAP if (state.up_axis != Vector3::AXIS_Y) { for (int i = 0; i < 3; i++) { SWAP(tr.basis[1][i], tr.basis[state.up_axis][i]); } for (int i = 0; i < 3; i++) { SWAP(tr.basis[i][1], tr.basis[i][state.up_axis]); } SWAP(tr.origin[1], tr.origin[state.up_axis]); tr.basis[state.up_axis][0] = -tr.basis[state.up_axis][0]; tr.basis[state.up_axis][1] = -tr.basis[state.up_axis][1]; tr.basis[0][state.up_axis] = -tr.basis[0][state.up_axis]; tr.basis[1][state.up_axis] = -tr.basis[1][state.up_axis]; tr.origin[state.up_axis] = -tr.origin[state.up_axis]; } #endif //tr.scale(Vector3(state.unit_scale.unit_scale.unit_scale)); return tr; //return state.matrix_fix * p_transform; } static Transform3D _read_transform_from_array(const Vector &array, int ofs = 0) { Transform3D tr; // i wonder why collada matrices are transposed, given that's opposed to opengl.. tr.basis.elements[0][0] = array[0 + ofs]; tr.basis.elements[0][1] = array[1 + ofs]; tr.basis.elements[0][2] = array[2 + ofs]; tr.basis.elements[1][0] = array[4 + ofs]; tr.basis.elements[1][1] = array[5 + ofs]; tr.basis.elements[1][2] = array[6 + ofs]; tr.basis.elements[2][0] = array[8 + ofs]; tr.basis.elements[2][1] = array[9 + ofs]; tr.basis.elements[2][2] = array[10 + ofs]; tr.origin.x = array[3 + ofs]; tr.origin.y = array[7 + ofs]; tr.origin.z = array[11 + ofs]; return tr; } /* STRUCTURES */ Transform3D Collada::Node::compute_transform(Collada &state) const { Transform3D xform; for (int i = 0; i < xform_list.size(); i++) { Transform3D xform_step; const XForm &xf = xform_list[i]; switch (xf.op) { case XForm::OP_ROTATE: { if (xf.data.size() >= 4) { xform_step.rotate(Vector3(xf.data[0], xf.data[1], xf.data[2]), Math::deg2rad(xf.data[3])); } } break; case XForm::OP_SCALE: { if (xf.data.size() >= 3) { xform_step.scale(Vector3(xf.data[0], xf.data[1], xf.data[2])); } } break; case XForm::OP_TRANSLATE: { if (xf.data.size() >= 3) { xform_step.origin = Vector3(xf.data[0], xf.data[1], xf.data[2]); } } break; case XForm::OP_MATRIX: { if (xf.data.size() >= 16) { xform_step = _read_transform_from_array(xf.data, 0); } } break; default: { } } xform = xform * xform_step; } #ifdef COLLADA_IMPORT_SCALE_SCENE xform.origin *= state.state.unit_scale; #endif return xform; } Transform3D Collada::Node::get_transform() const { return default_transform; } Transform3D Collada::Node::get_global_transform() const { if (parent) { return parent->get_global_transform() * default_transform; } else { return default_transform; } } Vector Collada::AnimationTrack::get_value_at_time(float p_time) const { ERR_FAIL_COND_V(keys.size() == 0, Vector()); int i = 0; for (i = 0; i < keys.size(); i++) { if (keys[i].time > p_time) { break; } } if (i == 0) { return keys[0].data; } if (i == keys.size()) { return keys[keys.size() - 1].data; } switch (keys[i].interp_type) { case INTERP_BEZIER: //wait for bezier case INTERP_LINEAR: { float c = (p_time - keys[i - 1].time) / (keys[i].time - keys[i - 1].time); if (keys[i].data.size() == 16) { //interpolate a matrix Transform3D src = _read_transform_from_array(keys[i - 1].data); Transform3D dst = _read_transform_from_array(keys[i].data); Transform3D interp = c < 0.001 ? src : src.interpolate_with(dst, c); Vector ret; ret.resize(16); Transform3D tr; // i wonder why collada matrices are transposed, given that's opposed to opengl.. ret.write[0] = interp.basis.elements[0][0]; ret.write[1] = interp.basis.elements[0][1]; ret.write[2] = interp.basis.elements[0][2]; ret.write[4] = interp.basis.elements[1][0]; ret.write[5] = interp.basis.elements[1][1]; ret.write[6] = interp.basis.elements[1][2]; ret.write[8] = interp.basis.elements[2][0]; ret.write[9] = interp.basis.elements[2][1]; ret.write[10] = interp.basis.elements[2][2]; ret.write[3] = interp.origin.x; ret.write[7] = interp.origin.y; ret.write[11] = interp.origin.z; ret.write[12] = 0; ret.write[13] = 0; ret.write[14] = 0; ret.write[15] = 1; return ret; } else { Vector dest; dest.resize(keys[i].data.size()); for (int j = 0; j < dest.size(); j++) { dest.write[j] = keys[i].data[j] * c + keys[i - 1].data[j] * (1.0 - c); } return dest; //interpolate one by one } } break; } ERR_FAIL_V(Vector()); } void Collada::_parse_asset(XMLParser &parser) { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "up_axis") { parser.read(); if (parser.get_node_data() == "X_UP") { state.up_axis = Vector3::AXIS_X; } if (parser.get_node_data() == "Y_UP") { state.up_axis = Vector3::AXIS_Y; } if (parser.get_node_data() == "Z_UP") { state.up_axis = Vector3::AXIS_Z; } COLLADA_PRINT("up axis: " + parser.get_node_data()); } else if (name == "unit") { state.unit_scale = parser.get_attribute_value("meter").to_float(); COLLADA_PRINT("unit scale: " + rtos(state.unit_scale)); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "asset") { break; //end of } } } void Collada::_parse_image(XMLParser &parser) { String id = parser.get_attribute_value("id"); if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } Image image; if (state.version < State::Version(1, 4, 0)) { /* <1.4 */ String path = parser.get_attribute_value("source").strip_edges(); if (path.find("://") == -1 && path.is_relative_path()) { // path is relative to file being loaded, so convert to a resource path image.path = ProjectSettings::get_singleton()->localize_path(state.local_path.get_base_dir().plus_file(path.uri_decode())); } } else { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "init_from") { parser.read(); String path = parser.get_node_data().strip_edges().uri_decode(); if (path.find("://") == -1 && path.is_relative_path()) { // path is relative to file being loaded, so convert to a resource path path = ProjectSettings::get_singleton()->localize_path(state.local_path.get_base_dir().plus_file(path)); } else if (path.find("file:///") == 0) { path = path.replace_first("file:///", ""); path = ProjectSettings::get_singleton()->localize_path(path); } image.path = path; } else if (name == "data") { ERR_PRINT("COLLADA Embedded image data not supported!"); } else if (name == "extra" && !parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "image") { break; //end of } } } state.image_map[id] = image; } void Collada::_parse_material(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } Material material; String id = parser.get_attribute_value("id"); if (parser.has_attribute("name")) { material.name = parser.get_attribute_value("name"); } if (state.version < State::Version(1, 4, 0)) { /* <1.4 */ ERR_PRINT("Collada Materials < 1.4 are not supported (yet)"); } else { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT && parser.get_node_name() == "instance_effect") { material.instance_effect = _uri_to_id(parser.get_attribute_value("url")); } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "material") { break; //end of } } } state.material_map[id] = material; } //! reads floats from inside of xml element until end of xml element Vector Collada::_read_float_array(XMLParser &parser) { if (parser.is_empty()) { return Vector(); } Vector splitters; splitters.push_back(" "); splitters.push_back("\n"); splitters.push_back("\r"); splitters.push_back("\t"); Vector array; while (parser.read() == OK) { // TODO: check for comments inside the element // and ignore them. if (parser.get_node_type() == XMLParser::NODE_TEXT) { // parse float data String str = parser.get_node_data(); array = str.split_floats_mk(splitters, false); //array=str.split_floats(" ",false); } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END) { break; // end parsing text } } return array; } Vector Collada::_read_string_array(XMLParser &parser) { if (parser.is_empty()) { return Vector(); } Vector array; while (parser.read() == OK) { // TODO: check for comments inside the element // and ignore them. if (parser.get_node_type() == XMLParser::NODE_TEXT) { // parse String data String str = parser.get_node_data(); array = str.split_spaces(); } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END) { break; // end parsing text } } return array; } Transform3D Collada::_read_transform(XMLParser &parser) { if (parser.is_empty()) return Transform3D(); Vector array; while (parser.read() == OK) { // TODO: check for comments inside the element // and ignore them. if (parser.get_node_type() == XMLParser::NODE_TEXT) { // parse float data String str = parser.get_node_data(); array = str.split_spaces(); } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END) { break; // end parsing text } } ERR_FAIL_COND_V(array.size() != 16, Transform3D()); Vector farr; farr.resize(16); for (int i = 0; i < 16; i++) { farr.write[i] = array[i].to_float(); } return _read_transform_from_array(farr); } String Collada::_read_empty_draw_type(XMLParser &parser) { String empty_draw_type = ""; if (parser.is_empty()) { return empty_draw_type; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_TEXT) { empty_draw_type = parser.get_node_data(); } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END) { break; // end parsing text } } return empty_draw_type; } Variant Collada::_parse_param(XMLParser &parser) { if (parser.is_empty()) { return Variant(); } String from = parser.get_node_name(); Variant data; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "float") { parser.read(); if (parser.get_node_type() == XMLParser::NODE_TEXT) { data = parser.get_node_data().to_float(); } } else if (parser.get_node_name() == "float2") { Vector v2 = _read_float_array(parser); if (v2.size() >= 2) { data = Vector2(v2[0], v2[1]); } } else if (parser.get_node_name() == "float3") { Vector v3 = _read_float_array(parser); if (v3.size() >= 3) { data = Vector3(v3[0], v3[1], v3[2]); } } else if (parser.get_node_name() == "float4") { Vector v4 = _read_float_array(parser); if (v4.size() >= 4) { data = Color(v4[0], v4[1], v4[2], v4[3]); } } else if (parser.get_node_name() == "sampler2D") { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "source") { parser.read(); if (parser.get_node_type() == XMLParser::NODE_TEXT) { data = parser.get_node_data(); } } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "sampler2D") { break; } } } else if (parser.get_node_name() == "surface") { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "init_from") { parser.read(); if (parser.get_node_type() == XMLParser::NODE_TEXT) { data = parser.get_node_data(); } } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "surface") { break; } } } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == from) { break; } } COLLADA_PRINT("newparam ending " + parser.get_node_name()); return data; } void Collada::_parse_effect_material(XMLParser &parser, Effect &effect, String &id) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { // first come the tags we descend, but ignore the top-levels COLLADA_PRINT("node name: " + parser.get_node_name()); if (!parser.is_empty() && (parser.get_node_name() == "profile_COMMON" || parser.get_node_name() == "technique" || parser.get_node_name() == "extra")) { _parse_effect_material(parser, effect, id); // try again } else if (parser.get_node_name() == "newparam") { String name = parser.get_attribute_value("sid"); Variant value = _parse_param(parser); effect.params[name] = value; COLLADA_PRINT("param: " + name + " value:" + String(value)); } else if (parser.get_node_name() == "constant" || parser.get_node_name() == "lambert" || parser.get_node_name() == "phong" || parser.get_node_name() == "blinn") { COLLADA_PRINT("shade model: " + parser.get_node_name()); while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String what = parser.get_node_name(); if (what == "emission" || what == "diffuse" || what == "specular" || what == "reflective") { // color or texture types while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "color") { Vector colorarr = _read_float_array(parser); COLLADA_PRINT("colorarr size: " + rtos(colorarr.size())); if (colorarr.size() >= 3) { // alpha strangely not alright? maybe it needs to be multiplied by value as a channel intensity Color color(colorarr[0], colorarr[1], colorarr[2], 1.0); if (what == "diffuse") { effect.diffuse.color = color; } if (what == "specular") { effect.specular.color = color; } if (what == "emission") { effect.emission.color = color; } COLLADA_PRINT(what + " color: " + color); } } else if (parser.get_node_name() == "texture") { String sampler = parser.get_attribute_value("texture"); if (!effect.params.has(sampler)) { ERR_PRINT(String("Couldn't find sampler: " + sampler + " in material:" + id).utf8().get_data()); } else { String surface = effect.params[sampler]; if (!effect.params.has(surface)) { ERR_PRINT(String("Couldn't find surface: " + surface + " in material:" + id).utf8().get_data()); } else { String uri = effect.params[surface]; if (what == "diffuse") { effect.diffuse.texture = uri; } else if (what == "specular") { effect.specular.texture = uri; } else if (what == "emission") { effect.emission.texture = uri; } else if (what == "bump") { if (parser.has_attribute("bumptype") && parser.get_attribute_value("bumptype") != "NORMALMAP") { WARN_PRINT("'bump' texture type is not NORMALMAP, only NORMALMAP is supported."); } effect.bump.texture = uri; } COLLADA_PRINT(what + " texture: " + uri); } } } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == what) { break; } } } else if (what == "shininess") { effect.shininess = _parse_param(parser); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && (parser.get_node_name() == "constant" || parser.get_node_name() == "lambert" || parser.get_node_name() == "phong" || parser.get_node_name() == "blinn")) { break; } } } else if (parser.get_node_name() == "double_sided" || parser.get_node_name() == "show_double_sided") { // colladamax / google earth // 3DS Max / Google Earth double sided extension parser.read(); effect.found_double_sided = true; effect.double_sided = parser.get_node_data().to_int(); COLLADA_PRINT("double sided: " + itos(parser.get_node_data().to_int())); } else if (parser.get_node_name() == "unshaded") { parser.read(); effect.unshaded = parser.get_node_data().to_int(); } else if (parser.get_node_name() == "bump") { // color or texture types while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "texture") { String sampler = parser.get_attribute_value("texture"); if (!effect.params.has(sampler)) { ERR_PRINT(String("Couldn't find sampler: " + sampler + " in material:" + id).utf8().get_data()); } else { String surface = effect.params[sampler]; if (!effect.params.has(surface)) { ERR_PRINT(String("Couldn't find surface: " + surface + " in material:" + id).utf8().get_data()); } else { String uri = effect.params[surface]; if (parser.has_attribute("bumptype") && parser.get_attribute_value("bumptype") != "NORMALMAP") { WARN_PRINT("'bump' texture type is not NORMALMAP, only NORMALMAP is supported."); } effect.bump.texture = uri; COLLADA_PRINT(" bump: " + uri); } } } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "bump") { break; } } } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && (parser.get_node_name() == "effect" || parser.get_node_name() == "profile_COMMON" || parser.get_node_name() == "technique" || parser.get_node_name() == "extra")) { break; } } } void Collada::_parse_effect(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } String id = parser.get_attribute_value("id"); Effect effect; if (parser.has_attribute("name")) { effect.name = parser.get_attribute_value("name"); } _parse_effect_material(parser, effect, id); state.effect_map[id] = effect; COLLADA_PRINT("Effect ID:" + id); } void Collada::_parse_camera(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } String id = parser.get_attribute_value("id"); state.camera_data_map[id] = CameraData(); CameraData &camera = state.camera_data_map[id]; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "perspective") { camera.mode = CameraData::MODE_PERSPECTIVE; } else if (name == "orthographic") { camera.mode = CameraData::MODE_ORTHOGONAL; } else if (name == "xfov") { parser.read(); camera.perspective.x_fov = parser.get_node_data().to_float(); } else if (name == "yfov") { parser.read(); camera.perspective.y_fov = parser.get_node_data().to_float(); } else if (name == "xmag") { parser.read(); camera.orthogonal.x_mag = parser.get_node_data().to_float(); } else if (name == "ymag") { parser.read(); camera.orthogonal.y_mag = parser.get_node_data().to_float(); } else if (name == "aspect_ratio") { parser.read(); camera.aspect = parser.get_node_data().to_float(); } else if (name == "znear") { parser.read(); camera.z_near = parser.get_node_data().to_float(); } else if (name == "zfar") { parser.read(); camera.z_far = parser.get_node_data().to_float(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "camera") { break; //end of } } COLLADA_PRINT("Camera ID:" + id); } void Collada::_parse_light(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } String id = parser.get_attribute_value("id"); state.light_data_map[id] = LightData(); LightData &light = state.light_data_map[id]; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "ambient") { light.mode = LightData::MODE_AMBIENT; } else if (name == "directional") { light.mode = LightData::MODE_DIRECTIONAL; } else if (name == "point") { light.mode = LightData::MODE_OMNI; } else if (name == "spot") { light.mode = LightData::MODE_SPOT; } else if (name == "color") { parser.read(); Vector colorarr = _read_float_array(parser); COLLADA_PRINT("colorarr size: " + rtos(colorarr.size())); if (colorarr.size() >= 4) { // alpha strangely not alright? maybe it needs to be multiplied by value as a channel intensity Color color(colorarr[0], colorarr[1], colorarr[2], 1.0); light.color = color; } } else if (name == "constant_attenuation") { parser.read(); light.constant_att = parser.get_node_data().to_float(); } else if (name == "linear_attenuation") { parser.read(); light.linear_att = parser.get_node_data().to_float(); } else if (name == "quadratic_attenuation") { parser.read(); light.quad_att = parser.get_node_data().to_float(); } else if (name == "falloff_angle") { parser.read(); light.spot_angle = parser.get_node_data().to_float(); } else if (name == "falloff_exponent") { parser.read(); light.spot_exp = parser.get_node_data().to_float(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "light") { break; //end of } } COLLADA_PRINT("Light ID:" + id); } void Collada::_parse_curve_geometry(XMLParser &parser, String p_id, String p_name) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } //load everything into a pre dictionary state.curve_data_map[p_id] = CurveData(); CurveData &curvedata = state.curve_data_map[p_id]; curvedata.name = p_name; COLLADA_PRINT("curve name: " + p_name); String current_source; // handles geometry node and the curve children in this loop // read sources with arrays and accessor for each curve if (parser.is_empty()) { return; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "source") { String id = parser.get_attribute_value("id"); curvedata.sources[id] = CurveData::Source(); current_source = id; COLLADA_PRINT("source data: " + id); } else if (section == "float_array" || section == "array") { // create a new array and read it. if (curvedata.sources.has(current_source)) { curvedata.sources[current_source].array = _read_float_array(parser); COLLADA_PRINT("section: " + current_source + " read " + itos(curvedata.sources[current_source].array.size()) + " values."); } } else if (section == "Name_array") { // create a new array and read it. if (curvedata.sources.has(current_source)) { curvedata.sources[current_source].sarray = _read_string_array(parser); COLLADA_PRINT("section: " + current_source + " read " + itos(curvedata.sources[current_source].array.size()) + " values."); } } else if (section == "technique_common") { //skip it } else if (section == "accessor") { // child of source (below a technique tag) if (curvedata.sources.has(current_source)) { curvedata.sources[current_source].stride = parser.get_attribute_value("stride").to_int(); COLLADA_PRINT("section: " + current_source + " stride " + itos(curvedata.sources[current_source].stride)); } } else if (section == "control_vertices") { while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "input") { String semantic = parser.get_attribute_value("semantic"); String source = _uri_to_id(parser.get_attribute_value("source")); curvedata.control_vertices[semantic] = source; COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == section) { break; } } } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "spline") { break; } } } void Collada::_parse_mesh_geometry(XMLParser &parser, String p_id, String p_name) { if (!(state.import_flags & IMPORT_FLAG_SCENE)) { if (!parser.is_empty()) { parser.skip_section(); } return; } //load everything into a pre dictionary state.mesh_data_map[p_id] = MeshData(); MeshData &meshdata = state.mesh_data_map[p_id]; meshdata.name = p_name; COLLADA_PRINT("mesh name: " + p_name); String current_source; // handles geometry node and the mesh children in this loop // read sources with arrays and accessor for each mesh if (parser.is_empty()) { return; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "source") { String id = parser.get_attribute_value("id"); meshdata.sources[id] = MeshData::Source(); current_source = id; COLLADA_PRINT("source data: " + id); } else if (section == "float_array" || section == "array") { // create a new array and read it. if (meshdata.sources.has(current_source)) { meshdata.sources[current_source].array = _read_float_array(parser); COLLADA_PRINT("section: " + current_source + " read " + itos(meshdata.sources[current_source].array.size()) + " values."); } } else if (section == "technique_common") { //skip it } else if (section == "accessor") { // child of source (below a technique tag) if (meshdata.sources.has(current_source)) { meshdata.sources[current_source].stride = parser.get_attribute_value("stride").to_int(); COLLADA_PRINT("section: " + current_source + " stride " + itos(meshdata.sources[current_source].stride)); } } else if (section == "vertices") { MeshData::Vertices vert; String id = parser.get_attribute_value("id"); int last_ref = 0; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "input") { String semantic = parser.get_attribute_value("semantic"); String source = _uri_to_id(parser.get_attribute_value("source")); if (semantic == "TEXCOORD") { semantic = "TEXCOORD" + itos(last_ref++); } vert.sources[semantic] = source; COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == section) { break; } } meshdata.vertices[id] = vert; } else if (section == "triangles" || section == "polylist" || section == "polygons") { bool polygons = (section == "polygons"); if (polygons) { WARN_PRINT("Primitive type \"polygons\" is not well supported (concave shapes may fail). To ensure that the geometry is properly imported, please re-export using \"triangles\" or \"polylist\"."); } MeshData::Primitives prim; if (parser.has_attribute("material")) { prim.material = parser.get_attribute_value("material"); } prim.count = parser.get_attribute_value("count").to_int(); prim.vertex_size = 0; int last_ref = 0; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "input") { String semantic = parser.get_attribute_value("semantic"); String source = _uri_to_id(parser.get_attribute_value("source")); if (semantic == "TEXCOORD") { /* if (parser.has_attribute("set"))// a texcoord semantic+=parser.get_attribute_value("set"); else semantic="TEXCOORD0";*/ semantic = "TEXCOORD" + itos(last_ref++); } int offset = parser.get_attribute_value("offset").to_int(); MeshData::Primitives::SourceRef sref; sref.source = source; sref.offset = offset; prim.sources[semantic] = sref; prim.vertex_size = MAX(prim.vertex_size, offset + 1); COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source + " offset: " + itos(offset)); } else if (parser.get_node_name() == "p") { //indices Vector values = _read_float_array(parser); if (polygons) { ERR_CONTINUE(prim.vertex_size == 0); prim.polygons.push_back(values.size() / prim.vertex_size); int from = prim.indices.size(); prim.indices.resize(from + values.size()); for (int i = 0; i < values.size(); i++) { prim.indices.write[from + i] = values[i]; } } else if (prim.vertex_size > 0) { prim.indices = values; } COLLADA_PRINT("read " + itos(values.size()) + " index values"); } else if (parser.get_node_name() == "vcount") { // primitive Vector values = _read_float_array(parser); prim.polygons = values; COLLADA_PRINT("read " + itos(values.size()) + " polygon values"); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == section) { break; } } meshdata.primitives.push_back(prim); } else if (parser.get_node_name() == "double_sided") { parser.read(); meshdata.found_double_sided = true; meshdata.double_sided = parser.get_node_data().to_int(); } else if (parser.get_node_name() == "polygons") { ERR_PRINT("Primitive type \"polygons\" not supported, re-export using \"polylist\" or \"triangles\"."); } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "mesh") { break; } } } void Collada::_parse_skin_controller(XMLParser &parser, String p_id) { state.skin_controller_data_map[p_id] = SkinControllerData(); SkinControllerData &skindata = state.skin_controller_data_map[p_id]; skindata.base = _uri_to_id(parser.get_attribute_value("source")); String current_source; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "bind_shape_matrix") { skindata.bind_shape = _read_transform(parser); #ifdef COLLADA_IMPORT_SCALE_SCENE skindata.bind_shape.origin *= state.unit_scale; #endif COLLADA_PRINT("skeleton bind shape transform: " + skindata.bind_shape); } else if (section == "source") { String id = parser.get_attribute_value("id"); skindata.sources[id] = SkinControllerData::Source(); current_source = id; COLLADA_PRINT("source data: " + id); } else if (section == "float_array" || section == "array") { // create a new array and read it. if (skindata.sources.has(current_source)) { skindata.sources[current_source].array = _read_float_array(parser); COLLADA_PRINT("section: " + current_source + " read " + itos(skindata.sources[current_source].array.size()) + " values."); } } else if (section == "Name_array" || section == "IDREF_array") { // create a new array and read it. if (section == "IDREF_array") { skindata.use_idrefs = true; } if (skindata.sources.has(current_source)) { skindata.sources[current_source].sarray = _read_string_array(parser); if (section == "IDREF_array") { Vector sa = skindata.sources[current_source].sarray; for (int i = 0; i < sa.size(); i++) { state.idref_joints.insert(sa[i]); } } COLLADA_PRINT("section: " + current_source + " read " + itos(skindata.sources[current_source].array.size()) + " values."); } } else if (section == "technique_common") { //skip it } else if (section == "accessor") { // child of source (below a technique tag) if (skindata.sources.has(current_source)) { int stride = 1; if (parser.has_attribute("stride")) { stride = parser.get_attribute_value("stride").to_int(); } skindata.sources[current_source].stride = stride; COLLADA_PRINT("section: " + current_source + " stride " + itos(skindata.sources[current_source].stride)); } } else if (section == "joints") { SkinControllerData::Joints joint; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "input") { String semantic = parser.get_attribute_value("semantic"); String source = _uri_to_id(parser.get_attribute_value("source")); joint.sources[semantic] = source; COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == section) { break; } } skindata.joints = joint; } else if (section == "vertex_weights") { SkinControllerData::Weights weights; weights.count = parser.get_attribute_value("count").to_int(); while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "input") { String semantic = parser.get_attribute_value("semantic"); String source = _uri_to_id(parser.get_attribute_value("source")); int offset = parser.get_attribute_value("offset").to_int(); SkinControllerData::Weights::SourceRef sref; sref.source = source; sref.offset = offset; weights.sources[semantic] = sref; COLLADA_PRINT(section + " input semantic: " + semantic + " source: " + source + " offset: " + itos(offset)); } else if (parser.get_node_name() == "v") { //indices Vector values = _read_float_array(parser); weights.indices = values; COLLADA_PRINT("read " + itos(values.size()) + " index values"); } else if (parser.get_node_name() == "vcount") { // weightsitive Vector values = _read_float_array(parser); weights.sets = values; COLLADA_PRINT("read " + itos(values.size()) + " polygon values"); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == section) { break; } } skindata.weights = weights; } /* else if (!parser.is_empty()) parser.skip_section(); */ } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "skin") { break; } } /* STORE REST MATRICES */ Vector rests; ERR_FAIL_COND(!skindata.joints.sources.has("JOINT")); ERR_FAIL_COND(!skindata.joints.sources.has("INV_BIND_MATRIX")); String joint_arr = skindata.joints.sources["JOINT"]; String ibm = skindata.joints.sources["INV_BIND_MATRIX"]; ERR_FAIL_COND(!skindata.sources.has(joint_arr)); ERR_FAIL_COND(!skindata.sources.has(ibm)); SkinControllerData::Source &joint_source = skindata.sources[joint_arr]; SkinControllerData::Source &ibm_source = skindata.sources[ibm]; ERR_FAIL_COND(joint_source.sarray.size() != ibm_source.array.size() / 16); for (int i = 0; i < joint_source.sarray.size(); i++) { String name = joint_source.sarray[i]; Transform3D xform = _read_transform_from_array(ibm_source.array, i * 16); //<- this is a mistake, it must be applied to vertices xform.affine_invert(); // inverse for rest, because it's an inverse #ifdef COLLADA_IMPORT_SCALE_SCENE xform.origin *= state.unit_scale; #endif skindata.bone_rest_map[name] = xform; } } void Collada::_parse_morph_controller(XMLParser &parser, String p_id) { state.morph_controller_data_map[p_id] = MorphControllerData(); MorphControllerData &morphdata = state.morph_controller_data_map[p_id]; morphdata.mesh = _uri_to_id(parser.get_attribute_value("source")); morphdata.mode = parser.get_attribute_value("method"); String current_source; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "source") { String id = parser.get_attribute_value("id"); morphdata.sources[id] = MorphControllerData::Source(); current_source = id; COLLADA_PRINT("source data: " + id); } else if (section == "float_array" || section == "array") { // create a new array and read it. if (morphdata.sources.has(current_source)) { morphdata.sources[current_source].array = _read_float_array(parser); COLLADA_PRINT("section: " + current_source + " read " + itos(morphdata.sources[current_source].array.size()) + " values."); } } else if (section == "Name_array" || section == "IDREF_array") { // create a new array and read it. /* if (section=="IDREF_array") morphdata.use_idrefs=true; */ if (morphdata.sources.has(current_source)) { morphdata.sources[current_source].sarray = _read_string_array(parser); /* if (section=="IDREF_array") { Vector sa = morphdata.sources[current_source].sarray; for(int i=0;icontroller = type == "instance_controller"; geom->source = _uri_to_id(parser.get_attribute_value_safe("url")); if (parser.is_empty()) { //nothing else to parse... return geom; } // try to find also many materials and skeletons! while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "instance_material") { String symbol = parser.get_attribute_value("symbol"); String target = _uri_to_id(parser.get_attribute_value("target")); NodeGeometry::Material mat; mat.target = target; geom->material_map[symbol] = mat; COLLADA_PRINT("uses material: '" + target + "' on primitive'" + symbol + "'"); } else if (parser.get_node_name() == "skeleton") { parser.read(); String uri = _uri_to_id(parser.get_node_data()); if (!uri.is_empty()) { geom->skeletons.push_back(uri); } } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == type) { break; } } if (geom->controller) { if (geom->skeletons.is_empty()) { //XSI style if (state.skin_controller_data_map.has(geom->source)) { SkinControllerData *skin = &state.skin_controller_data_map[geom->source]; //case where skeletons reference bones with IDREF (XSI) ERR_FAIL_COND_V(!skin->joints.sources.has("JOINT"), geom); String joint_arr = skin->joints.sources["JOINT"]; ERR_FAIL_COND_V(!skin->sources.has(joint_arr), geom); Collada::SkinControllerData::Source &joint_source = skin->sources[joint_arr]; geom->skeletons = joint_source.sarray; //quite crazy, but should work. } } } return geom; } Collada::Node *Collada::_parse_visual_instance_camera(XMLParser &parser) { NodeCamera *cam = memnew(NodeCamera); cam->camera = _uri_to_id(parser.get_attribute_value_safe("url")); if (state.up_axis == Vector3::AXIS_Z) { //collada weirdness cam->post_transform.basis.rotate(Vector3(1, 0, 0), -Math_PI * 0.5); } if (parser.is_empty()) { //nothing else to parse... return cam; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "instance_camera") { break; } } return cam; } Collada::Node *Collada::_parse_visual_instance_light(XMLParser &parser) { NodeLight *cam = memnew(NodeLight); cam->light = _uri_to_id(parser.get_attribute_value_safe("url")); if (state.up_axis == Vector3::AXIS_Z) { //collada weirdness cam->post_transform.basis.rotate(Vector3(1, 0, 0), -Math_PI * 0.5); } if (parser.is_empty()) { //nothing else to parse... return cam; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "instance_light") { break; } } return cam; } Collada::Node *Collada::_parse_visual_node_instance_data(XMLParser &parser) { String instance_type = parser.get_node_name(); if (instance_type == "instance_geometry" || instance_type == "instance_controller") { return _parse_visual_instance_geometry(parser); } else if (instance_type == "instance_camera") { return _parse_visual_instance_camera(parser); } else if (instance_type == "instance_light") { return _parse_visual_instance_light(parser); } if (parser.is_empty()) { //nothing else to parse... return nullptr; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == instance_type) { break; } } return nullptr; } Collada::Node *Collada::_parse_visual_scene_node(XMLParser &parser) { String name; String id = parser.get_attribute_value_safe("id"); bool found_name = false; if (id.is_empty()) { id = "%NODEID%" + itos(Math::rand()); } else { found_name = true; } Vector xform_list; Vector children; String empty_draw_type = ""; Node *node = nullptr; name = parser.has_attribute("name") ? parser.get_attribute_value_safe("name") : parser.get_attribute_value_safe("id"); if (name.is_empty()) { name = id; } else { found_name = true; } if ((parser.has_attribute("type") && parser.get_attribute_value("type") == "JOINT") || state.idref_joints.has(name)) { // handle a bone NodeJoint *joint = memnew(NodeJoint); if (parser.has_attribute("sid")) { //bones may not have sid joint->sid = parser.get_attribute_value("sid"); //state.bone_map[joint->sid]=joint; } else if (state.idref_joints.has(name)) { joint->sid = name; //kind of a cheat but.. } else if (parser.has_attribute("name")) { joint->sid = parser.get_attribute_value_safe("name"); } if (!joint->sid.is_empty()) { state.sid_to_node_map[joint->sid] = id; } node = joint; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "translate") { Node::XForm xf; if (parser.has_attribute("sid")) { xf.id = parser.get_attribute_value("sid"); } xf.op = Node::XForm::OP_TRANSLATE; Vector xlt = _read_float_array(parser); xf.data = xlt; xform_list.push_back(xf); } else if (section == "rotate") { Node::XForm xf; if (parser.has_attribute("sid")) { xf.id = parser.get_attribute_value("sid"); } xf.op = Node::XForm::OP_ROTATE; Vector rot = _read_float_array(parser); xf.data = rot; xform_list.push_back(xf); } else if (section == "scale") { Node::XForm xf; if (parser.has_attribute("sid")) { xf.id = parser.get_attribute_value("sid"); } xf.op = Node::XForm::OP_SCALE; Vector scale = _read_float_array(parser); xf.data = scale; xform_list.push_back(xf); } else if (section == "matrix") { Node::XForm xf; if (parser.has_attribute("sid")) { xf.id = parser.get_attribute_value("sid"); } xf.op = Node::XForm::OP_MATRIX; Vector matrix = _read_float_array(parser); xf.data = matrix; String mtx; for (int i = 0; i < matrix.size(); i++) { mtx += " " + rtos(matrix[i]); } xform_list.push_back(xf); } else if (section == "visibility") { Node::XForm xf; if (parser.has_attribute("sid")) { xf.id = parser.get_attribute_value("sid"); } xf.op = Node::XForm::OP_VISIBILITY; Vector visible = _read_float_array(parser); xf.data = visible; xform_list.push_back(xf); } else if (section == "empty_draw_type") { empty_draw_type = _read_empty_draw_type(parser); } else if (section == "technique" || section == "extra") { } else if (section != "node") { //usually what defines the type of node if (section.begins_with("instance_")) { if (!node) { node = _parse_visual_node_instance_data(parser); } else { ERR_PRINT("Multiple instance_* not supported."); } } } else { /* Found a child node!! what to do..*/ Node *child = _parse_visual_scene_node(parser); children.push_back(child); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "node") { break; } } if (!node) { node = memnew(Node); //generic node, nothing of relevance found } node->noname = !found_name; node->xform_list = xform_list; node->children = children; for (int i = 0; i < children.size(); i++) { node->children[i]->parent = node; } node->name = name; node->id = id; node->empty_draw_type = empty_draw_type; if (node->children.size() == 1) { if (node->children[0]->noname && !node->noname) { node->children[0]->name = node->name; node->name = node->name + "-base"; } } node->default_transform = node->compute_transform(*this); state.scene_map[id] = node; return node; } void Collada::_parse_visual_scene(XMLParser &parser) { String id = parser.get_attribute_value("id"); if (parser.is_empty()) { return; } state.visual_scene_map[id] = VisualScene(); VisualScene &vscene = state.visual_scene_map[id]; if (parser.has_attribute("name")) { vscene.name = parser.get_attribute_value("name"); } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String section = parser.get_node_name(); if (section == "node") { vscene.root_nodes.push_back(_parse_visual_scene_node(parser)); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "visual_scene") { break; } } COLLADA_PRINT("Scene ID:" + id); } void Collada::_parse_animation(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_ANIMATION)) { if (!parser.is_empty()) { parser.skip_section(); } return; } Map> float_sources; Map> string_sources; Map source_strides; Map> samplers; Map> source_param_names; Map> source_param_types; String id = ""; if (parser.has_attribute("id")) { id = parser.get_attribute_value("id"); } String current_source; String current_sampler; Vector channel_sources; Vector channel_targets; while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "source") { current_source = parser.get_attribute_value("id"); source_param_names[current_source] = Vector(); source_param_types[current_source] = Vector(); } else if (name == "float_array") { if (!current_source.is_empty()) { float_sources[current_source] = _read_float_array(parser); } } else if (name == "Name_array") { if (!current_source.is_empty()) { string_sources[current_source] = _read_string_array(parser); } } else if (name == "accessor") { if (!current_source.is_empty() && parser.has_attribute("stride")) { source_strides[current_source] = parser.get_attribute_value("stride").to_int(); } } else if (name == "sampler") { current_sampler = parser.get_attribute_value("id"); samplers[current_sampler] = Map(); } else if (name == "param") { if (parser.has_attribute("name")) { source_param_names[current_source].push_back(parser.get_attribute_value("name")); } else { source_param_names[current_source].push_back(""); } if (parser.has_attribute("type")) { source_param_types[current_source].push_back(parser.get_attribute_value("type")); } else { source_param_types[current_source].push_back(""); } } else if (name == "input") { if (!current_sampler.is_empty()) { samplers[current_sampler][parser.get_attribute_value("semantic")] = parser.get_attribute_value("source"); } } else if (name == "channel") { channel_sources.push_back(parser.get_attribute_value("source")); channel_targets.push_back(parser.get_attribute_value("target")); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "animation") { break; //end of } } for (int i = 0; i < channel_sources.size(); i++) { String source = _uri_to_id(channel_sources[i]); String target = channel_targets[i]; ERR_CONTINUE(!samplers.has(source)); Map &sampler = samplers[source]; ERR_CONTINUE(!sampler.has("INPUT")); //no input semantic? wtf? String input_id = _uri_to_id(sampler["INPUT"]); COLLADA_PRINT("input id is " + input_id); ERR_CONTINUE(!float_sources.has(input_id)); ERR_CONTINUE(!sampler.has("OUTPUT")); String output_id = _uri_to_id(sampler["OUTPUT"]); ERR_CONTINUE(!float_sources.has(output_id)); ERR_CONTINUE(!source_param_names.has(output_id)); Vector &names = source_param_names[output_id]; for (int l = 0; l < names.size(); l++) { String name = names[l]; Vector &time_keys = float_sources[input_id]; int key_count = time_keys.size(); AnimationTrack track; //begin crating track track.id = id; track.keys.resize(key_count); for (int j = 0; j < key_count; j++) { track.keys.write[j].time = time_keys[j]; state.animation_length = MAX(state.animation_length, time_keys[j]); } //now read actual values int stride = 1; if (source_strides.has(output_id)) { stride = source_strides[output_id]; } int output_len = stride / names.size(); ERR_CONTINUE(output_len == 0); ERR_CONTINUE(!float_sources.has(output_id)); Vector &output = float_sources[output_id]; ERR_CONTINUE_MSG((output.size() / stride) != key_count, "Wrong number of keys in output."); for (int j = 0; j < key_count; j++) { track.keys.write[j].data.resize(output_len); for (int k = 0; k < output_len; k++) { track.keys.write[j].data.write[k] = output[l + j * stride + k]; //super weird but should work: } } if (sampler.has("INTERPOLATION")) { String interp_id = _uri_to_id(sampler["INTERPOLATION"]); ERR_CONTINUE(!string_sources.has(interp_id)); Vector &interps = string_sources[interp_id]; ERR_CONTINUE(interps.size() != key_count); for (int j = 0; j < key_count; j++) { if (interps[j] == "BEZIER") { track.keys.write[j].interp_type = AnimationTrack::INTERP_BEZIER; } else { track.keys.write[j].interp_type = AnimationTrack::INTERP_LINEAR; } } } if (sampler.has("IN_TANGENT") && sampler.has("OUT_TANGENT")) { //bezier control points.. String intangent_id = _uri_to_id(sampler["IN_TANGENT"]); ERR_CONTINUE(!float_sources.has(intangent_id)); Vector &intangents = float_sources[intangent_id]; ERR_CONTINUE(intangents.size() != key_count * 2 * names.size()); String outangent_id = _uri_to_id(sampler["OUT_TANGENT"]); ERR_CONTINUE(!float_sources.has(outangent_id)); Vector &outangents = float_sources[outangent_id]; ERR_CONTINUE(outangents.size() != key_count * 2 * names.size()); for (int j = 0; j < key_count; j++) { track.keys.write[j].in_tangent = Vector2(intangents[j * 2 * names.size() + 0 + l * 2], intangents[j * 2 * names.size() + 1 + l * 2]); track.keys.write[j].out_tangent = Vector2(outangents[j * 2 * names.size() + 0 + l * 2], outangents[j * 2 * names.size() + 1 + l * 2]); } } if (target.find("/") != -1) { //transform component track.target = target.get_slicec('/', 0); track.param = target.get_slicec('/', 1); if (track.param.find(".") != -1) { track.component = track.param.get_slice(".", 1).to_upper(); } track.param = track.param.get_slice(".", 0); if (names.size() > 1 && track.component.is_empty()) { //this is a guess because the collada spec is ambiguous here... //i suppose if you have many names (outputs) you can't use a component and i should abide to that. track.component = name; } } else { track.target = target; } state.animation_tracks.push_back(track); if (!state.referenced_tracks.has(target)) { state.referenced_tracks[target] = Vector(); } state.referenced_tracks[target].push_back(state.animation_tracks.size() - 1); if (!id.is_empty()) { if (!state.by_id_tracks.has(id)) { state.by_id_tracks[id] = Vector(); } state.by_id_tracks[id].push_back(state.animation_tracks.size() - 1); } COLLADA_PRINT("loaded animation with " + itos(key_count) + " keys"); } } } void Collada::_parse_animation_clip(XMLParser &parser) { if (!(state.import_flags & IMPORT_FLAG_ANIMATION)) { if (!parser.is_empty()) { parser.skip_section(); } return; } AnimationClip clip; if (parser.has_attribute("name")) { clip.name = parser.get_attribute_value("name"); } else if (parser.has_attribute("id")) { clip.name = parser.get_attribute_value("id"); } if (parser.has_attribute("start")) { clip.begin = parser.get_attribute_value("start").to_float(); } if (parser.has_attribute("end")) { clip.end = parser.get_attribute_value("end").to_float(); } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "instance_animation") { String url = _uri_to_id(parser.get_attribute_value("url")); clip.tracks.push_back(url); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "animation_clip") { break; //end of } } state.animation_clips.push_back(clip); } void Collada::_parse_scene(XMLParser &parser) { if (parser.is_empty()) { return; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); if (name == "instance_visual_scene") { state.root_visual_scene = _uri_to_id(parser.get_attribute_value("url")); } else if (name == "instance_physics_scene") { state.root_physics_scene = _uri_to_id(parser.get_attribute_value("url")); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "scene") { break; //end of } } } void Collada::_parse_library(XMLParser &parser) { if (parser.is_empty()) { return; } while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { String name = parser.get_node_name(); COLLADA_PRINT("library name is: " + name); if (name == "image") { _parse_image(parser); } else if (name == "material") { _parse_material(parser); } else if (name == "effect") { _parse_effect(parser); } else if (name == "camera") { _parse_camera(parser); } else if (name == "light") { _parse_light(parser); } else if (name == "geometry") { String id = parser.get_attribute_value("id"); String name2 = parser.get_attribute_value_safe("name"); while (parser.read() == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "mesh") { state.mesh_name_map[id] = (!name2.is_empty()) ? name2 : id; _parse_mesh_geometry(parser, id, name2); } else if (parser.get_node_name() == "spline") { state.mesh_name_map[id] = (!name2.is_empty()) ? name2 : id; _parse_curve_geometry(parser, id, name2); } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name() == "geometry") { break; } } } else if (name == "controller") { _parse_controller(parser); } else if (name == "animation") { _parse_animation(parser); } else if (name == "animation_clip") { _parse_animation_clip(parser); } else if (name == "visual_scene") { COLLADA_PRINT("visual scene"); _parse_visual_scene(parser); } else if (!parser.is_empty()) { parser.skip_section(); } } else if (parser.get_node_type() == XMLParser::NODE_ELEMENT_END && parser.get_node_name().begins_with("library_")) { break; //end of } } } void Collada::_joint_set_owner(Collada::Node *p_node, NodeSkeleton *p_owner) { if (p_node->type == Node::TYPE_JOINT) { NodeJoint *nj = static_cast(p_node); nj->owner = p_owner; for (int i = 0; i < nj->children.size(); i++) { _joint_set_owner(nj->children.write[i], p_owner); } } } void Collada::_create_skeletons(Collada::Node **p_node, NodeSkeleton *p_skeleton) { Node *node = *p_node; if (node->type == Node::TYPE_JOINT) { if (!p_skeleton) { // ohohohoohoo it's a joint node, time to work! NodeSkeleton *sk = memnew(NodeSkeleton); *p_node = sk; sk->children.push_back(node); sk->parent = node->parent; node->parent = sk; p_skeleton = sk; } NodeJoint *nj = static_cast(node); nj->owner = p_skeleton; } else { p_skeleton = nullptr; } for (int i = 0; i < node->children.size(); i++) { _create_skeletons(&node->children.write[i], p_skeleton); } } bool Collada::_remove_node(Node *p_parent, Node *p_node) { for (int i = 0; i < p_parent->children.size(); i++) { if (p_parent->children[i] == p_node) { p_parent->children.remove_at(i); return true; } if (_remove_node(p_parent->children[i], p_node)) { return true; } } return false; } void Collada::_remove_node(VisualScene *p_vscene, Node *p_node) { for (int i = 0; i < p_vscene->root_nodes.size(); i++) { if (p_vscene->root_nodes[i] == p_node) { p_vscene->root_nodes.remove_at(i); return; } if (_remove_node(p_vscene->root_nodes[i], p_node)) { return; } } ERR_PRINT("ERROR: Not found node to remove?"); } void Collada::_merge_skeletons(VisualScene *p_vscene, Node *p_node) { if (p_node->type == Node::TYPE_GEOMETRY) { NodeGeometry *gnode = static_cast(p_node); if (gnode->controller) { // recount skeletons used Set skeletons; for (int i = 0; i < gnode->skeletons.size(); i++) { String nodeid = gnode->skeletons[i]; ERR_CONTINUE(!state.scene_map.has(nodeid)); //weird, it should have it... #ifdef NO_SAFE_CAST NodeJoint *nj = static_cast(state.scene_map[nodeid]); #else NodeJoint *nj = dynamic_cast(state.scene_map[nodeid]); #endif ERR_CONTINUE(!nj); //broken collada ERR_CONTINUE(!nj->owner); //weird, node should have a skeleton owner skeletons.insert(nj->owner); } if (skeletons.size() > 1) { //do the merger!! Set::Element *E = skeletons.front(); NodeSkeleton *base = E->get(); for (E = E->next(); E; E = E->next()) { NodeSkeleton *merged = E->get(); _remove_node(p_vscene, merged); for (int i = 0; i < merged->children.size(); i++) { _joint_set_owner(merged->children[i], base); base->children.push_back(merged->children[i]); merged->children[i]->parent = base; } merged->children.clear(); //take children from it memdelete(merged); } } } } for (int i = 0; i < p_node->children.size(); i++) { _merge_skeletons(p_vscene, p_node->children[i]); } } void Collada::_merge_skeletons2(VisualScene *p_vscene) { for (KeyValue &E : state.skin_controller_data_map) { SkinControllerData &cd = E.value; NodeSkeleton *skeleton = nullptr; for (const KeyValue &F : cd.bone_rest_map) { String name; if (!state.sid_to_node_map.has(F.key)) { continue; } name = state.sid_to_node_map[F.key]; ERR_CONTINUE(!state.scene_map.has(name)); Node *node = state.scene_map[name]; ERR_CONTINUE(node->type != Node::TYPE_JOINT); NodeSkeleton *sk = nullptr; while (node && !sk) { if (node->type == Node::TYPE_SKELETON) { sk = static_cast(node); } node = node->parent; } ERR_CONTINUE(!sk); if (!skeleton) { skeleton = sk; continue; } if (skeleton != sk) { //whoa.. wtf, merge. _remove_node(p_vscene, sk); for (int i = 0; i < sk->children.size(); i++) { _joint_set_owner(sk->children[i], skeleton); skeleton->children.push_back(sk->children[i]); sk->children[i]->parent = skeleton; } sk->children.clear(); //take children from it memdelete(sk); } } } } bool Collada::_optimize_skeletons(VisualScene *p_vscene, Node *p_node) { Node *node = p_node; if (node->type == Node::TYPE_SKELETON && node->parent && node->parent->type == Node::TYPE_NODE && node->parent->children.size() == 1) { //replace parent by this... Node *parent = node->parent; //i wonder if this is alright.. i think it is since created skeleton (first joint) is already animated by bone.. node->id = parent->id; node->name = parent->name; node->xform_list = parent->xform_list; node->default_transform = parent->default_transform; state.scene_map[node->id] = node; node->parent = parent->parent; if (parent->parent) { Node *gp = parent->parent; bool found = false; for (int i = 0; i < gp->children.size(); i++) { if (gp->children[i] == parent) { gp->children.write[i] = node; found = true; break; } } if (!found) { ERR_PRINT("BUG"); } } else { bool found = false; for (int i = 0; i < p_vscene->root_nodes.size(); i++) { if (p_vscene->root_nodes[i] == parent) { p_vscene->root_nodes.write[i] = node; found = true; break; } } if (!found) { ERR_PRINT("BUG"); } } parent->children.clear(); memdelete(parent); return true; } for (int i = 0; i < node->children.size(); i++) { if (_optimize_skeletons(p_vscene, node->children[i])) { return false; //stop processing, go up } } return false; } bool Collada::_move_geometry_to_skeletons(VisualScene *p_vscene, Node *p_node, List *p_mgeom) { // Bind Shape Matrix scales the bones and makes them gigantic, so the matrix then shrinks the model? // Solution: apply the Bind Shape Matrix to the VERTICES, and if the object comes scaled, it seems to be left alone! if (p_node->type == Node::TYPE_GEOMETRY) { NodeGeometry *ng = static_cast(p_node); if (ng->ignore_anim) { return false; //already made child of skeleton and processeg } if (ng->controller && ng->skeletons.size()) { String nodeid = ng->skeletons[0]; ERR_FAIL_COND_V(!state.scene_map.has(nodeid), false); //weird, it should have it... #ifdef NO_SAFE_CAST NodeJoint *nj = static_cast(state.scene_map[nodeid]); #else NodeJoint *nj = dynamic_cast(state.scene_map[nodeid]); #endif ERR_FAIL_COND_V(!nj, false); ERR_FAIL_COND_V(!nj->owner, false); //weird, node should have a skeleton owner NodeSkeleton *sk = nj->owner; Node *p = sk->parent; bool node_is_parent_of_skeleton = false; while (p) { if (p == p_node) { node_is_parent_of_skeleton = true; break; } p = p->parent; // try again } ERR_FAIL_COND_V(node_is_parent_of_skeleton, false); //this should be correct ERR_FAIL_COND_V(!state.skin_controller_data_map.has(ng->source), false); SkinControllerData &skin = state.skin_controller_data_map[ng->source]; Transform3D skel_inv = sk->get_global_transform().affine_inverse(); p_node->default_transform = skel_inv * (skin.bind_shape /* p_node->get_global_transform()*/); // i honestly have no idea what to do with a previous model xform.. most exporters ignore it //make rests relative to the skeleton (they seem to be always relative to world) for (KeyValue &E : skin.bone_rest_map) { E.value = skel_inv * E.value; //make the bone rest local to the skeleton state.bone_rest_map[E.key] = E.value; // make it remember where the bone is globally, now that it's relative } //but most exporters seem to work only if i do this.. //p_node->default_transform = p_node->get_global_transform(); //p_node->default_transform=Transform3D(); //this seems to be correct, because bind shape makes the object local to the skeleton p_node->ignore_anim = true; // collada may animate this later, if it does, then this is not supported (redo your original asset and don't animate the base mesh) p_node->parent = sk; //sk->children.push_back(0,p_node); //avoid INFINITE loop p_mgeom->push_back(p_node); return true; } } for (int i = 0; i < p_node->children.size(); i++) { if (_move_geometry_to_skeletons(p_vscene, p_node->children[i], p_mgeom)) { p_node->children.remove_at(i); i--; } } return false; } void Collada::_find_morph_nodes(VisualScene *p_vscene, Node *p_node) { if (p_node->type == Node::TYPE_GEOMETRY) { NodeGeometry *nj = static_cast(p_node); if (nj->controller) { String base = nj->source; while (!base.is_empty() && !state.mesh_data_map.has(base)) { if (state.skin_controller_data_map.has(base)) { SkinControllerData &sk = state.skin_controller_data_map[base]; base = sk.base; } else if (state.morph_controller_data_map.has(base)) { state.morph_ownership_map[base] = nj->id; break; } else { ERR_FAIL_MSG("Invalid scene."); } } } } for (int i = 0; i < p_node->children.size(); i++) { _find_morph_nodes(p_vscene, p_node->children[i]); } } void Collada::_optimize() { for (KeyValue &E : state.visual_scene_map) { VisualScene &vs = E.value; for (int i = 0; i < vs.root_nodes.size(); i++) { _create_skeletons(&vs.root_nodes.write[i]); } for (int i = 0; i < vs.root_nodes.size(); i++) { _merge_skeletons(&vs, vs.root_nodes[i]); } _merge_skeletons2(&vs); for (int i = 0; i < vs.root_nodes.size(); i++) { _optimize_skeletons(&vs, vs.root_nodes[i]); } for (int i = 0; i < vs.root_nodes.size(); i++) { List mgeom; if (_move_geometry_to_skeletons(&vs, vs.root_nodes[i], &mgeom)) { vs.root_nodes.remove_at(i); i--; } while (!mgeom.is_empty()) { Node *n = mgeom.front()->get(); n->parent->children.push_back(n); mgeom.pop_front(); } } for (int i = 0; i < vs.root_nodes.size(); i++) { _find_morph_nodes(&vs, vs.root_nodes[i]); } } } int Collada::get_uv_channel(String p_name) { if (!channel_map.has(p_name)) { ERR_FAIL_COND_V(channel_map.size() == 2, 0); channel_map[p_name] = channel_map.size(); } return channel_map[p_name]; } Error Collada::load(const String &p_path, int p_flags) { Ref parserr = memnew(XMLParser); XMLParser &parser = *parserr.ptr(); Error err = parser.open(p_path); ERR_FAIL_COND_V_MSG(err, err, "Cannot open Collada file '" + p_path + "'."); state.local_path = ProjectSettings::get_singleton()->localize_path(p_path); state.import_flags = p_flags; /* Skip headers */ while ((err = parser.read()) == OK) { if (parser.get_node_type() == XMLParser::NODE_ELEMENT) { if (parser.get_node_name() == "COLLADA") { break; } else if (!parser.is_empty()) { parser.skip_section(); // unknown section, likely headers } } } ERR_FAIL_COND_V_MSG(err != OK, ERR_FILE_CORRUPT, "Corrupted Collada file '" + p_path + "'."); /* Start loading Collada */ { //version String version = parser.get_attribute_value("version"); state.version.major = version.get_slice(".", 0).to_int(); state.version.minor = version.get_slice(".", 1).to_int(); state.version.rev = version.get_slice(".", 2).to_int(); COLLADA_PRINT("Collada VERSION: " + version); } while ((err = parser.read()) == OK) { /* Read all the main sections.. */ if (parser.get_node_type() != XMLParser::NODE_ELEMENT) { continue; //no idea what this may be, but skipping anyway } String section = parser.get_node_name(); COLLADA_PRINT("section: " + section); if (section == "asset") { _parse_asset(parser); } else if (section.begins_with("library_")) { _parse_library(parser); } else if (section == "scene") { _parse_scene(parser); } else if (!parser.is_empty()) { parser.skip_section(); // unknown section, likely headers } } _optimize(); return OK; } Collada::Collada() { }