// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // YUV->RGB conversion functions // // Author: Skal (pascal.massimino@gmail.com) #include "./yuv.h" #if defined(WEBP_USE_SSE2) #include #include // for memcpy typedef union { // handy struct for converting SSE2 registers int32_t i32[4]; uint8_t u8[16]; __m128i m; } VP8kCstSSE2; #if defined(WEBP_YUV_USE_SSE2_TABLES) #include "./yuv_tables_sse2.h" WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) {} #else static int done_sse2 = 0; static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256]; WEBP_TSAN_IGNORE_FUNCTION void VP8YUVInitSSE2(void) { if (!done_sse2) { int i; for (i = 0; i < 256; ++i) { VP8kYtoRGBA[i].i32[0] = VP8kYtoRGBA[i].i32[1] = VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2; VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2; VP8kUtoRGBA[i].i32[0] = 0; VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128); VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128); VP8kUtoRGBA[i].i32[3] = 0; VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128); VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128); VP8kVtoRGBA[i].i32[2] = 0; VP8kVtoRGBA[i].i32[3] = 0; } done_sse2 = 1; #if 0 // code used to generate 'yuv_tables_sse2.h' printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n", VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1], VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]); } printf("};\n\n"); printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n", VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]); } printf("};\n\n"); printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n"); for (i = 0; i < 256; ++i) { printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n", VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]); } printf("};\n\n"); #endif } } #endif // WEBP_YUV_USE_SSE2_TABLES //----------------------------------------------------------------------------- static WEBP_INLINE __m128i LoadUVPart(int u, int v) { const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m); const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m); const __m128i uv_part = _mm_add_epi32(u_part, v_part); return uv_part; } static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) { const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m); const __m128i rgba1 = _mm_add_epi32(y_part, uv_part); const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2); return rgba2; } static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) { const __m128i uv_part = LoadUVPart(u, v); return GetRGBA32bWithUV(y, uv_part); } static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgb) { const __m128i tmp0 = GetRGBA32b(y, u, v); const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0); const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1); // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp _mm_storel_epi64((__m128i*)rgb, tmp2); } static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgr) { const __m128i tmp0 = GetRGBA32b(y, u, v); const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1); const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2); // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp _mm_storel_epi64((__m128i*)bgr, tmp3); } //----------------------------------------------------------------------------- // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; for (n = 0; n < 32; n += 4) { const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]); const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]); const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); _mm_storeu_si128((__m128i*)dst, tmp2); dst += 4 * 4; } } void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; for (n = 0; n < 32; n += 2) { const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]); const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; } } void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; uint8_t tmp0[2 * 3 + 5 + 15]; uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3); } // Last two pixels are special: we write in a tmp buffer before sending // to dst. YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); memcpy(dst + n * 3, tmp, 2 * 3); } void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst) { int n; uint8_t tmp0[2 * 3 + 5 + 15]; uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align for (n = 0; n < 30; ++n) { YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3); } YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0); YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3); memcpy(dst + n * 3, tmp, 2 * 3); } //----------------------------------------------------------------------------- // Arbitrary-length row conversion functions static void YuvToRgbaRow(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 4 <= len; n += 4) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i uv_1 = LoadUVPart(u[1], v[1]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1); const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1); const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2); const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4); const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2); _mm_storeu_si128((__m128i*)dst, tmp2); dst += 4 * 4; y += 4; u += 2; v += 2; } // Finish off while (n < len) { VP8YuvToRgba(y[0], u[0], v[0], dst); dst += 4; ++y; u += (n & 1); v += (n & 1); ++n; } } static void YuvToBgraRow(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 <= len; n += 2) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; y += 2; ++u; ++v; } // Finish off if (len & 1) { VP8YuvToBgra(y[0], u[0], v[0], dst); } } static void YuvToArgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 <= len; n += 2) { const __m128i uv_0 = LoadUVPart(u[0], v[0]); const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0); const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0); const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3)); const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3)); const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2); const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1); _mm_storel_epi64((__m128i*)dst, tmp3); dst += 4 * 2; y += 2; ++u; ++v; } // Finish off if (len & 1) { VP8YuvToArgb(y[0], u[0], v[0], dst); } } static void YuvToRgbRow(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes dst += 3; ++y; u += (n & 1); v += (n & 1); } VP8YuvToRgb(y[0], u[0], v[0], dst); if (len > 1) { VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3); } } static void YuvToBgrRow(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst, int len) { int n; for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes dst += 3; ++y; u += (n & 1); v += (n & 1); } VP8YuvToBgr(y[0], u[0], v[0], dst + 0); if (len > 1) { VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3); } } //------------------------------------------------------------------------------ // Entry point extern void WebPInitSamplersSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE2(void) { WebPSamplers[MODE_RGB] = YuvToRgbRow; WebPSamplers[MODE_RGBA] = YuvToRgbaRow; WebPSamplers[MODE_BGR] = YuvToBgrRow; WebPSamplers[MODE_BGRA] = YuvToBgraRow; WebPSamplers[MODE_ARGB] = YuvToArgbRow; } //------------------------------------------------------------------------------ // RGB24/32 -> YUV converters // Load eight 16b-words from *src. #define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) // Store either 16b-words into *dst #define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) // Convert 8 packed RGB or BGR samples to r[], g[], b[] static WEBP_INLINE void RGB24PackedToPlanar(const uint8_t* const rgb, __m128i* const r, __m128i* const g, __m128i* const b, int input_is_bgr) { const __m128i zero = _mm_setzero_si128(); // in0: r0 g0 b0 r1 | g1 b1 r2 g2 | b2 r3 g3 b3 | r4 g4 b4 r5 // in1: b2 r3 g3 b3 | r4 g4 b4 r5 | g5 b5 r6 g6 | b6 r7 g7 b7 const __m128i in0 = LOAD_16(rgb + 0); const __m128i in1 = LOAD_16(rgb + 8); // A0: | r2 g2 b2 r3 | g3 b3 r4 g4 | b4 r5 ... // A1: ... b2 r3 | g3 b3 r4 g4 | b4 r5 g5 b5 | const __m128i A0 = _mm_srli_si128(in0, 6); const __m128i A1 = _mm_slli_si128(in1, 6); // B0: r0 r2 g0 g2 | b0 b2 r1 r3 | g1 g3 b1 b3 | r2 r4 b2 b4 // B1: g3 g5 b3 b5 | r4 r6 g4 g6 | b4 b6 r5 r7 | g5 g7 b5 b7 const __m128i B0 = _mm_unpacklo_epi8(in0, A0); const __m128i B1 = _mm_unpackhi_epi8(A1, in1); // C0: r1 r3 g1 g3 | b1 b3 r2 r4 | b2 b4 ... // C1: ... g3 g5 | b3 b5 r4 r6 | g4 g6 b4 b6 const __m128i C0 = _mm_srli_si128(B0, 6); const __m128i C1 = _mm_slli_si128(B1, 6); // D0: r0 r1 r2 r3 | g0 g1 g2 g3 | b0 b1 b2 b3 | r1 r2 r3 r4 // D1: b3 b4 b5 b6 | r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 | const __m128i D0 = _mm_unpacklo_epi8(B0, C0); const __m128i D1 = _mm_unpackhi_epi8(C1, B1); // r4 r5 r6 r7 | g4 g5 g6 g7 | b4 b5 b6 b7 | 0 const __m128i D2 = _mm_srli_si128(D1, 4); // r0 r1 r2 r3 | r4 r5 r6 r7 | g0 g1 g2 g3 | g4 g5 g6 g7 const __m128i E0 = _mm_unpacklo_epi32(D0, D2); // b0 b1 b2 b3 | b4 b5 b6 b7 | r1 r2 r3 r4 | 0 const __m128i E1 = _mm_unpackhi_epi32(D0, D2); // g0 g1 g2 g3 | g4 g5 g6 g7 | 0 const __m128i E2 = _mm_srli_si128(E0, 8); const __m128i F0 = _mm_unpacklo_epi8(E0, zero); // -> R const __m128i F1 = _mm_unpacklo_epi8(E1, zero); // -> B const __m128i F2 = _mm_unpacklo_epi8(E2, zero); // -> G *g = F2; if (input_is_bgr) { *r = F1; *b = F0; } else { *r = F0; *b = F1; } } // Convert 8 packed ARGB to r[], g[], b[] static WEBP_INLINE void RGB32PackedToPlanar(const uint32_t* const argb, __m128i* const r, __m128i* const g, __m128i* const b) { const __m128i zero = _mm_setzero_si128(); const __m128i in0 = LOAD_16(argb + 0); // argb3 | argb2 | argb1 | argb0 const __m128i in1 = LOAD_16(argb + 4); // argb7 | argb6 | argb5 | argb4 // column-wise transpose const __m128i A0 = _mm_unpacklo_epi8(in0, in1); const __m128i A1 = _mm_unpackhi_epi8(in0, in1); const __m128i B0 = _mm_unpacklo_epi8(A0, A1); const __m128i B1 = _mm_unpackhi_epi8(A0, A1); // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0 // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0 const __m128i C0 = _mm_unpacklo_epi8(B0, B1); const __m128i C1 = _mm_unpackhi_epi8(B0, B1); // store 16b *r = _mm_unpacklo_epi8(C1, zero); *g = _mm_unpackhi_epi8(C0, zero); *b = _mm_unpacklo_epi8(C0, zero); } // This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX // It's a macro and not a function because we need to use immediate values with // srai_epi32, e.g. #define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ ROUNDER, DESCALE_FIX, OUT) do { \ const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ } while (0) #define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) static WEBP_INLINE void ConvertRGBToY(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const Y) { const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); const __m128i kGB_y = MK_CST_16(16384, 6420); const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); } static WEBP_INLINE void ConvertRGBToUV(const __m128i* const R, const __m128i* const G, const __m128i* const B, __m128i* const U, __m128i* const V) { const __m128i kRG_u = MK_CST_16(-9719, -19081); const __m128i kGB_u = MK_CST_16(0, 28800); const __m128i kRG_v = MK_CST_16(28800, 0); const __m128i kGB_v = MK_CST_16(-24116, -4684); const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, kHALF_UV, YUV_FIX + 2, *U); TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, kHALF_UV, YUV_FIX + 2, *V); } #undef MK_CST_16 #undef TRANSFORM static void ConvertRGB24ToY(const uint8_t* rgb, uint8_t* y, int width) { const int max_width = width & ~15; int i; for (i = 0; i < max_width; i += 16, rgb += 3 * 16) { __m128i r, g, b, Y0, Y1; RGB24PackedToPlanar(rgb + 0 * 8, &r, &g, &b, 0); ConvertRGBToY(&r, &g, &b, &Y0); RGB24PackedToPlanar(rgb + 3 * 8, &r, &g, &b, 0); ConvertRGBToY(&r, &g, &b, &Y1); STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } for (; i < width; ++i, rgb += 3) { // left-over y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); } } static void ConvertBGR24ToY(const uint8_t* bgr, uint8_t* y, int width) { int i; const int max_width = width & ~15; for (i = 0; i < max_width; i += 16, bgr += 3 * 16) { __m128i r, g, b, Y0, Y1; RGB24PackedToPlanar(bgr + 0 * 8, &r, &g, &b, 1); ConvertRGBToY(&r, &g, &b, &Y0); RGB24PackedToPlanar(bgr + 3 * 8, &r, &g, &b, 1); ConvertRGBToY(&r, &g, &b, &Y1); STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } for (; i < width; ++i, bgr += 3) { // left-over y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); } } static void ConvertARGBToY(const uint32_t* argb, uint8_t* y, int width) { const int max_width = width & ~15; int i; for (i = 0; i < max_width; i += 16) { __m128i r, g, b, Y0, Y1; RGB32PackedToPlanar(&argb[i + 0], &r, &g, &b); ConvertRGBToY(&r, &g, &b, &Y0); RGB32PackedToPlanar(&argb[i + 8], &r, &g, &b); ConvertRGBToY(&r, &g, &b, &Y1); STORE_16(_mm_packus_epi16(Y0, Y1), y + i); } for (; i < width; ++i) { // left-over const uint32_t p = argb[i]; y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, YUV_HALF); } } // Horizontal add (doubled) of two 16b values, result is 16b. // in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... static void HorizontalAddPack(const __m128i* const A, const __m128i* const B, __m128i* const out) { const __m128i k2 = _mm_set1_epi16(2); const __m128i C = _mm_madd_epi16(*A, k2); const __m128i D = _mm_madd_epi16(*B, k2); *out = _mm_packs_epi32(C, D); } static void ConvertARGBToUV(const uint32_t* argb, uint8_t* u, uint8_t* v, int src_width, int do_store) { const int max_width = src_width & ~31; int i; for (i = 0; i < max_width; i += 32, u += 16, v += 16) { __m128i r0, g0, b0, r1, g1, b1, U0, V0, U1, V1; RGB32PackedToPlanar(&argb[i + 0], &r0, &g0, &b0); RGB32PackedToPlanar(&argb[i + 8], &r1, &g1, &b1); HorizontalAddPack(&r0, &r1, &r0); HorizontalAddPack(&g0, &g1, &g0); HorizontalAddPack(&b0, &b1, &b0); ConvertRGBToUV(&r0, &g0, &b0, &U0, &V0); RGB32PackedToPlanar(&argb[i + 16], &r0, &g0, &b0); RGB32PackedToPlanar(&argb[i + 24], &r1, &g1, &b1); HorizontalAddPack(&r0, &r1, &r0); HorizontalAddPack(&g0, &g1, &g0); HorizontalAddPack(&b0, &b1, &b0); ConvertRGBToUV(&r0, &g0, &b0, &U1, &V1); U0 = _mm_packus_epi16(U0, U1); V0 = _mm_packus_epi16(V0, V1); if (!do_store) { const __m128i prev_u = LOAD_16(u); const __m128i prev_v = LOAD_16(v); U0 = _mm_avg_epu8(U0, prev_u); V0 = _mm_avg_epu8(V0, prev_v); } STORE_16(U0, u); STORE_16(V0, v); } if (i < src_width) { // left-over WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); } } // Convert 16 packed ARGB 16b-values to r[], g[], b[] static WEBP_INLINE void RGBA32PackedToPlanar_16b(const uint16_t* const rgbx, __m128i* const r, __m128i* const g, __m128i* const b) { const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... // column-wise transpose const __m128i A0 = _mm_unpacklo_epi16(in0, in1); const __m128i A1 = _mm_unpackhi_epi16(in0, in1); const __m128i A2 = _mm_unpacklo_epi16(in2, in3); const __m128i A3 = _mm_unpackhi_epi16(in2, in3); const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // r0 r1 r2 r3 | g0 g1 .. const __m128i B1 = _mm_unpackhi_epi16(A0, A1); // b0 b1 b2 b3 | x x x x const __m128i B2 = _mm_unpacklo_epi16(A2, A3); // r4 r5 r6 r7 | g4 g5 .. const __m128i B3 = _mm_unpackhi_epi16(A2, A3); // b4 b5 b6 b7 | x x x x *r = _mm_unpacklo_epi64(B0, B2); *g = _mm_unpackhi_epi64(B0, B2); *b = _mm_unpacklo_epi64(B1, B3); } static void ConvertRGBA32ToUV(const uint16_t* rgb, uint8_t* u, uint8_t* v, int width) { const int max_width = width & ~15; const uint16_t* const last_rgb = rgb + 4 * max_width; while (rgb < last_rgb) { __m128i r, g, b, U0, V0, U1, V1; RGBA32PackedToPlanar_16b(rgb + 0, &r, &g, &b); ConvertRGBToUV(&r, &g, &b, &U0, &V0); RGBA32PackedToPlanar_16b(rgb + 32, &r, &g, &b); ConvertRGBToUV(&r, &g, &b, &U1, &V1); STORE_16(_mm_packus_epi16(U0, U1), u); STORE_16(_mm_packus_epi16(V0, V1), v); u += 16; v += 16; rgb += 2 * 32; } if (max_width < width) { // left-over WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); } } //------------------------------------------------------------------------------ extern void WebPInitConvertARGBToYUVSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) { WebPConvertARGBToY = ConvertARGBToY; WebPConvertARGBToUV = ConvertARGBToUV; WebPConvertRGB24ToY = ConvertRGB24ToY; WebPConvertBGR24ToY = ConvertBGR24ToY; WebPConvertRGBA32ToUV = ConvertRGBA32ToUV; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2) WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2) #endif // WEBP_USE_SSE2