// Copyright 2010 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // inline YUV<->RGB conversion function // // The exact naming is Y'CbCr, following the ITU-R BT.601 standard. // More information at: http://en.wikipedia.org/wiki/YCbCr // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). // // For the Y'CbCr to RGB conversion, the BT.601 specification reads: // R = 1.164 * (Y-16) + 1.596 * (V-128) // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) // B = 1.164 * (Y-16) + 2.018 * (U-128) // where Y is in the [16,235] range, and U/V in the [16,240] range. // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. // So in this case the formulae should read: // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 // once factorized. // For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2). // That's the maximum possible for a convenient ARM implementation. // // Author: Skal (pascal.massimino@gmail.com) #ifndef WEBP_DSP_YUV_H_ #define WEBP_DSP_YUV_H_ #include "./dsp.h" #include "../dec/decode_vp8.h" // Define the following to use the LUT-based code: // #define WEBP_YUV_USE_TABLE #if defined(WEBP_EXPERIMENTAL_FEATURES) // Do NOT activate this feature for real compression. This is only experimental! // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. // This colorspace is close to Rec.601's Y'CbCr model with the notable // difference of allowing larger range for luma/chroma. // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion // #define USE_YUVj #endif //------------------------------------------------------------------------------ // YUV -> RGB conversion #ifdef __cplusplus extern "C" { #endif enum { YUV_FIX = 16, // fixed-point precision for RGB->YUV YUV_HALF = 1 << (YUV_FIX - 1), YUV_MASK = (256 << YUV_FIX) - 1, YUV_RANGE_MIN = -227, // min value of r/g/b output YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output YUV_FIX2 = 14, // fixed-point precision for YUV->RGB YUV_HALF2 = 1 << (YUV_FIX2 - 1), YUV_MASK2 = (256 << YUV_FIX2) - 1 }; // These constants are 14b fixed-point version of ITU-R BT.601 constants. #define kYScale 19077 // 1.164 = 255 / 219 #define kVToR 26149 // 1.596 = 255 / 112 * 0.701 #define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 #define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 #define kUToB 33050 // 2.018 = 255 / 112 * 0.886 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2) #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2) #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2) //------------------------------------------------------------------------------ #if !defined(WEBP_YUV_USE_TABLE) // slower on x86 by ~7-8%, but bit-exact with the SSE2 version static WEBP_INLINE int VP8Clip8(int v) { return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; } static WEBP_INLINE int VP8YUVToR(int y, int v) { return VP8Clip8(kYScale * y + kVToR * v + kRCst); } static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst); } static WEBP_INLINE int VP8YUVToB(int y, int u) { return VP8Clip8(kYScale * y + kUToB * u + kBCst); } static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, uint8_t* const rgb) { rgb[0] = VP8YUVToR(y, v); rgb[1] = VP8YUVToG(y, u, v); rgb[2] = VP8YUVToB(y, u); } static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, uint8_t* const bgr) { bgr[0] = VP8YUVToB(y, u); bgr[1] = VP8YUVToG(y, u, v); bgr[2] = VP8YUVToR(y, v); } static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { const int r = VP8YUVToR(y, v); // 5 usable bits const int g = VP8YUVToG(y, u, v); // 6 usable bits const int b = VP8YUVToB(y, u); // 5 usable bits const int rg = (r & 0xf8) | (g >> 5); const int gb = ((g << 3) & 0xe0) | (b >> 3); #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; #else rgb[0] = rg; rgb[1] = gb; #endif } static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { const int r = VP8YUVToR(y, v); // 4 usable bits const int g = VP8YUVToG(y, u, v); // 4 usable bits const int b = VP8YUVToB(y, u); // 4 usable bits const int rg = (r & 0xf0) | (g >> 4); const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; #else argb[0] = rg; argb[1] = ba; #endif } #else // Table-based version, not totally equivalent to the SSE2 version. // Rounding diff is only +/-1 though. extern int16_t VP8kVToR[256], VP8kUToB[256]; extern int32_t VP8kVToG[256], VP8kUToG[256]; extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, uint8_t* const rgb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; } static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, uint8_t* const bgr) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; } static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; #else rgb[0] = rg; rgb[1] = gb; #endif } static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { const int r_off = VP8kVToR[v]; const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; const int b_off = VP8kUToB[u]; const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; #else argb[0] = rg; argb[1] = ba; #endif } #endif // WEBP_YUV_USE_TABLE //----------------------------------------------------------------------------- // Alpha handling variants static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { argb[0] = 0xff; VP8YuvToRgb(y, u, v, argb + 1); } static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) { VP8YuvToBgr(y, u, v, bgra); bgra[3] = 0xff; } static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) { VP8YuvToRgb(y, u, v, rgba); rgba[3] = 0xff; } // Must be called before everything, to initialize the tables. void VP8YUVInit(void); //----------------------------------------------------------------------------- // SSE2 extra functions (mostly for upsampling_sse2.c) #if defined(WEBP_USE_SSE2) #if defined(FANCY_UPSAMPLING) // Process 32 pixels and store the result (24b or 32b per pixel) in *dst. void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, uint8_t* dst); #endif // FANCY_UPSAMPLING // Must be called to initialize tables before using the functions. void VP8YUVInitSSE2(void); #endif // WEBP_USE_SSE2 //------------------------------------------------------------------------------ // RGB -> YUV conversion // Stub functions that can be called with various rounding values: static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; } #ifndef USE_YUVj static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { const int luma = 16839 * r + 33059 * g + 6420 * b; return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip } static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { const int u = -9719 * r - 19081 * g + 28800 * b; return VP8ClipUV(u, rounding); } static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { const int v = +28800 * r - 24116 * g - 4684 * b; return VP8ClipUV(v, rounding); } #else // This JPEG-YUV colorspace, only for comparison! // These are also 16bit precision coefficients from Rec.601, but with full // [0..255] output range. static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { const int luma = 19595 * r + 38470 * g + 7471 * b; return (luma + rounding) >> YUV_FIX; // no need to clip } static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) { const int u = -11058 * r - 21710 * g + 32768 * b; return VP8ClipUV(u, rounding); } static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) { const int v = 32768 * r - 27439 * g - 5329 * b; return VP8ClipUV(v, rounding); } #endif // USE_YUVj #ifdef __cplusplus } // extern "C" #endif #endif /* WEBP_DSP_YUV_H_ */