// Copyright 2010 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Speed-critical decoding functions, default plain-C implementations. // // Author: Skal (pascal.massimino@gmail.com) #include "./dsp.h" #include "../dec/vp8i.h" //------------------------------------------------------------------------------ static WEBP_INLINE uint8_t clip_8b(int v) { return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; } //------------------------------------------------------------------------------ // Transforms (Paragraph 14.4) #define STORE(x, y, v) \ dst[x + y * BPS] = clip_8b(dst[x + y * BPS] + ((v) >> 3)) #define STORE2(y, dc, d, c) do { \ const int DC = (dc); \ STORE(0, y, DC + (d)); \ STORE(1, y, DC + (c)); \ STORE(2, y, DC - (c)); \ STORE(3, y, DC - (d)); \ } while (0) #define MUL1(a) ((((a) * 20091) >> 16) + (a)) #define MUL2(a) (((a) * 35468) >> 16) static void TransformOne(const int16_t* in, uint8_t* dst) { int C[4 * 4], *tmp; int i; tmp = C; for (i = 0; i < 4; ++i) { // vertical pass const int a = in[0] + in[8]; // [-4096, 4094] const int b = in[0] - in[8]; // [-4095, 4095] const int c = MUL2(in[4]) - MUL1(in[12]); // [-3783, 3783] const int d = MUL1(in[4]) + MUL2(in[12]); // [-3785, 3781] tmp[0] = a + d; // [-7881, 7875] tmp[1] = b + c; // [-7878, 7878] tmp[2] = b - c; // [-7878, 7878] tmp[3] = a - d; // [-7877, 7879] tmp += 4; in++; } // Each pass is expanding the dynamic range by ~3.85 (upper bound). // The exact value is (2. + (20091 + 35468) / 65536). // After the second pass, maximum interval is [-3794, 3794], assuming // an input in [-2048, 2047] interval. We then need to add a dst value // in the [0, 255] range. // In the worst case scenario, the input to clip_8b() can be as large as // [-60713, 60968]. tmp = C; for (i = 0; i < 4; ++i) { // horizontal pass const int dc = tmp[0] + 4; const int a = dc + tmp[8]; const int b = dc - tmp[8]; const int c = MUL2(tmp[4]) - MUL1(tmp[12]); const int d = MUL1(tmp[4]) + MUL2(tmp[12]); STORE(0, 0, a + d); STORE(1, 0, b + c); STORE(2, 0, b - c); STORE(3, 0, a - d); tmp++; dst += BPS; } } // Simplified transform when only in[0], in[1] and in[4] are non-zero static void TransformAC3(const int16_t* in, uint8_t* dst) { const int a = in[0] + 4; const int c4 = MUL2(in[4]); const int d4 = MUL1(in[4]); const int c1 = MUL2(in[1]); const int d1 = MUL1(in[1]); STORE2(0, a + d4, d1, c1); STORE2(1, a + c4, d1, c1); STORE2(2, a - c4, d1, c1); STORE2(3, a - d4, d1, c1); } #undef MUL1 #undef MUL2 #undef STORE2 static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) { TransformOne(in, dst); if (do_two) { TransformOne(in + 16, dst + 4); } } static void TransformUV(const int16_t* in, uint8_t* dst) { VP8Transform(in + 0 * 16, dst, 1); VP8Transform(in + 2 * 16, dst + 4 * BPS, 1); } static void TransformDC(const int16_t* in, uint8_t* dst) { const int DC = in[0] + 4; int i, j; for (j = 0; j < 4; ++j) { for (i = 0; i < 4; ++i) { STORE(i, j, DC); } } } static void TransformDCUV(const int16_t* in, uint8_t* dst) { if (in[0 * 16]) VP8TransformDC(in + 0 * 16, dst); if (in[1 * 16]) VP8TransformDC(in + 1 * 16, dst + 4); if (in[2 * 16]) VP8TransformDC(in + 2 * 16, dst + 4 * BPS); if (in[3 * 16]) VP8TransformDC(in + 3 * 16, dst + 4 * BPS + 4); } #undef STORE //------------------------------------------------------------------------------ // Paragraph 14.3 static void TransformWHT(const int16_t* in, int16_t* out) { int tmp[16]; int i; for (i = 0; i < 4; ++i) { const int a0 = in[0 + i] + in[12 + i]; const int a1 = in[4 + i] + in[ 8 + i]; const int a2 = in[4 + i] - in[ 8 + i]; const int a3 = in[0 + i] - in[12 + i]; tmp[0 + i] = a0 + a1; tmp[8 + i] = a0 - a1; tmp[4 + i] = a3 + a2; tmp[12 + i] = a3 - a2; } for (i = 0; i < 4; ++i) { const int dc = tmp[0 + i * 4] + 3; // w/ rounder const int a0 = dc + tmp[3 + i * 4]; const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4]; const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4]; const int a3 = dc - tmp[3 + i * 4]; out[ 0] = (a0 + a1) >> 3; out[16] = (a3 + a2) >> 3; out[32] = (a0 - a1) >> 3; out[48] = (a3 - a2) >> 3; out += 64; } } void (*VP8TransformWHT)(const int16_t* in, int16_t* out); //------------------------------------------------------------------------------ // Intra predictions #define DST(x, y) dst[(x) + (y) * BPS] static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) { const uint8_t* top = dst - BPS; const uint8_t* const clip0 = VP8kclip1 - top[-1]; int y; for (y = 0; y < size; ++y) { const uint8_t* const clip = clip0 + dst[-1]; int x; for (x = 0; x < size; ++x) { dst[x] = clip[top[x]]; } dst += BPS; } } static void TM4(uint8_t* dst) { TrueMotion(dst, 4); } static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); } static void TM16(uint8_t* dst) { TrueMotion(dst, 16); } //------------------------------------------------------------------------------ // 16x16 static void VE16(uint8_t* dst) { // vertical int j; for (j = 0; j < 16; ++j) { memcpy(dst + j * BPS, dst - BPS, 16); } } static void HE16(uint8_t* dst) { // horizontal int j; for (j = 16; j > 0; --j) { memset(dst, dst[-1], 16); dst += BPS; } } static WEBP_INLINE void Put16(int v, uint8_t* dst) { int j; for (j = 0; j < 16; ++j) { memset(dst + j * BPS, v, 16); } } static void DC16(uint8_t* dst) { // DC int DC = 16; int j; for (j = 0; j < 16; ++j) { DC += dst[-1 + j * BPS] + dst[j - BPS]; } Put16(DC >> 5, dst); } static void DC16NoTop(uint8_t* dst) { // DC with top samples not available int DC = 8; int j; for (j = 0; j < 16; ++j) { DC += dst[-1 + j * BPS]; } Put16(DC >> 4, dst); } static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available int DC = 8; int i; for (i = 0; i < 16; ++i) { DC += dst[i - BPS]; } Put16(DC >> 4, dst); } static void DC16NoTopLeft(uint8_t* dst) { // DC with no top and left samples Put16(0x80, dst); } VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES]; //------------------------------------------------------------------------------ // 4x4 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) #define AVG2(a, b) (((a) + (b) + 1) >> 1) static void VE4(uint8_t* dst) { // vertical const uint8_t* top = dst - BPS; const uint8_t vals[4] = { AVG3(top[-1], top[0], top[1]), AVG3(top[ 0], top[1], top[2]), AVG3(top[ 1], top[2], top[3]), AVG3(top[ 2], top[3], top[4]) }; int i; for (i = 0; i < 4; ++i) { memcpy(dst + i * BPS, vals, sizeof(vals)); } } static void HE4(uint8_t* dst) { // horizontal const int A = dst[-1 - BPS]; const int B = dst[-1]; const int C = dst[-1 + BPS]; const int D = dst[-1 + 2 * BPS]; const int E = dst[-1 + 3 * BPS]; *(uint32_t*)(dst + 0 * BPS) = 0x01010101U * AVG3(A, B, C); *(uint32_t*)(dst + 1 * BPS) = 0x01010101U * AVG3(B, C, D); *(uint32_t*)(dst + 2 * BPS) = 0x01010101U * AVG3(C, D, E); *(uint32_t*)(dst + 3 * BPS) = 0x01010101U * AVG3(D, E, E); } static void DC4(uint8_t* dst) { // DC uint32_t dc = 4; int i; for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS]; dc >>= 3; for (i = 0; i < 4; ++i) memset(dst + i * BPS, dc, 4); } static void RD4(uint8_t* dst) { // Down-right const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; DST(0, 3) = AVG3(J, K, L); DST(1, 3) = DST(0, 2) = AVG3(I, J, K); DST(2, 3) = DST(1, 2) = DST(0, 1) = AVG3(X, I, J); DST(3, 3) = DST(2, 2) = DST(1, 1) = DST(0, 0) = AVG3(A, X, I); DST(3, 2) = DST(2, 1) = DST(1, 0) = AVG3(B, A, X); DST(3, 1) = DST(2, 0) = AVG3(C, B, A); DST(3, 0) = AVG3(D, C, B); } static void LD4(uint8_t* dst) { // Down-Left const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; const int E = dst[4 - BPS]; const int F = dst[5 - BPS]; const int G = dst[6 - BPS]; const int H = dst[7 - BPS]; DST(0, 0) = AVG3(A, B, C); DST(1, 0) = DST(0, 1) = AVG3(B, C, D); DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); DST(3, 2) = DST(2, 3) = AVG3(F, G, H); DST(3, 3) = AVG3(G, H, H); } static void VR4(uint8_t* dst) { // Vertical-Right const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; DST(0, 0) = DST(1, 2) = AVG2(X, A); DST(1, 0) = DST(2, 2) = AVG2(A, B); DST(2, 0) = DST(3, 2) = AVG2(B, C); DST(3, 0) = AVG2(C, D); DST(0, 3) = AVG3(K, J, I); DST(0, 2) = AVG3(J, I, X); DST(0, 1) = DST(1, 3) = AVG3(I, X, A); DST(1, 1) = DST(2, 3) = AVG3(X, A, B); DST(2, 1) = DST(3, 3) = AVG3(A, B, C); DST(3, 1) = AVG3(B, C, D); } static void VL4(uint8_t* dst) { // Vertical-Left const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; const int D = dst[3 - BPS]; const int E = dst[4 - BPS]; const int F = dst[5 - BPS]; const int G = dst[6 - BPS]; const int H = dst[7 - BPS]; DST(0, 0) = AVG2(A, B); DST(1, 0) = DST(0, 2) = AVG2(B, C); DST(2, 0) = DST(1, 2) = AVG2(C, D); DST(3, 0) = DST(2, 2) = AVG2(D, E); DST(0, 1) = AVG3(A, B, C); DST(1, 1) = DST(0, 3) = AVG3(B, C, D); DST(2, 1) = DST(1, 3) = AVG3(C, D, E); DST(3, 1) = DST(2, 3) = AVG3(D, E, F); DST(3, 2) = AVG3(E, F, G); DST(3, 3) = AVG3(F, G, H); } static void HU4(uint8_t* dst) { // Horizontal-Up const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; DST(0, 0) = AVG2(I, J); DST(2, 0) = DST(0, 1) = AVG2(J, K); DST(2, 1) = DST(0, 2) = AVG2(K, L); DST(1, 0) = AVG3(I, J, K); DST(3, 0) = DST(1, 1) = AVG3(J, K, L); DST(3, 1) = DST(1, 2) = AVG3(K, L, L); DST(3, 2) = DST(2, 2) = DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; } static void HD4(uint8_t* dst) { // Horizontal-Down const int I = dst[-1 + 0 * BPS]; const int J = dst[-1 + 1 * BPS]; const int K = dst[-1 + 2 * BPS]; const int L = dst[-1 + 3 * BPS]; const int X = dst[-1 - BPS]; const int A = dst[0 - BPS]; const int B = dst[1 - BPS]; const int C = dst[2 - BPS]; DST(0, 0) = DST(2, 1) = AVG2(I, X); DST(0, 1) = DST(2, 2) = AVG2(J, I); DST(0, 2) = DST(2, 3) = AVG2(K, J); DST(0, 3) = AVG2(L, K); DST(3, 0) = AVG3(A, B, C); DST(2, 0) = AVG3(X, A, B); DST(1, 0) = DST(3, 1) = AVG3(I, X, A); DST(1, 1) = DST(3, 2) = AVG3(J, I, X); DST(1, 2) = DST(3, 3) = AVG3(K, J, I); DST(1, 3) = AVG3(L, K, J); } #undef DST #undef AVG3 #undef AVG2 VP8PredFunc VP8PredLuma4[NUM_BMODES]; //------------------------------------------------------------------------------ // Chroma static void VE8uv(uint8_t* dst) { // vertical int j; for (j = 0; j < 8; ++j) { memcpy(dst + j * BPS, dst - BPS, 8); } } static void HE8uv(uint8_t* dst) { // horizontal int j; for (j = 0; j < 8; ++j) { memset(dst, dst[-1], 8); dst += BPS; } } // helper for chroma-DC predictions static WEBP_INLINE void Put8x8uv(uint8_t value, uint8_t* dst) { int j; for (j = 0; j < 8; ++j) { memset(dst + j * BPS, value, 8); } } static void DC8uv(uint8_t* dst) { // DC int dc0 = 8; int i; for (i = 0; i < 8; ++i) { dc0 += dst[i - BPS] + dst[-1 + i * BPS]; } Put8x8uv(dc0 >> 4, dst); } static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples int dc0 = 4; int i; for (i = 0; i < 8; ++i) { dc0 += dst[i - BPS]; } Put8x8uv(dc0 >> 3, dst); } static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples int dc0 = 4; int i; for (i = 0; i < 8; ++i) { dc0 += dst[-1 + i * BPS]; } Put8x8uv(dc0 >> 3, dst); } static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing Put8x8uv(0x80, dst); } VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES]; //------------------------------------------------------------------------------ // Edge filtering functions // 4 pixels in, 2 pixels out static WEBP_INLINE void do_filter2(uint8_t* p, int step) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; const int a = 3 * (q0 - p0) + VP8ksclip1[p1 - q1]; // in [-893,892] const int a1 = VP8ksclip2[(a + 4) >> 3]; // in [-16,15] const int a2 = VP8ksclip2[(a + 3) >> 3]; p[-step] = VP8kclip1[p0 + a2]; p[ 0] = VP8kclip1[q0 - a1]; } // 4 pixels in, 4 pixels out static WEBP_INLINE void do_filter4(uint8_t* p, int step) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; const int a = 3 * (q0 - p0); const int a1 = VP8ksclip2[(a + 4) >> 3]; const int a2 = VP8ksclip2[(a + 3) >> 3]; const int a3 = (a1 + 1) >> 1; p[-2*step] = VP8kclip1[p1 + a3]; p[- step] = VP8kclip1[p0 + a2]; p[ 0] = VP8kclip1[q0 - a1]; p[ step] = VP8kclip1[q1 - a3]; } // 6 pixels in, 6 pixels out static WEBP_INLINE void do_filter6(uint8_t* p, int step) { const int p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step]; const int q0 = p[0], q1 = p[step], q2 = p[2*step]; const int a = VP8ksclip1[3 * (q0 - p0) + VP8ksclip1[p1 - q1]]; // a is in [-128,127], a1 in [-27,27], a2 in [-18,18] and a3 in [-9,9] const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7 const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7 const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7 p[-3*step] = VP8kclip1[p2 + a3]; p[-2*step] = VP8kclip1[p1 + a2]; p[- step] = VP8kclip1[p0 + a1]; p[ 0] = VP8kclip1[q0 - a1]; p[ step] = VP8kclip1[q1 - a2]; p[ 2*step] = VP8kclip1[q2 - a3]; } static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) { const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; return (VP8kabs0[p1 - p0] > thresh) || (VP8kabs0[q1 - q0] > thresh); } static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int t) { const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; return ((4 * VP8kabs0[p0 - q0] + VP8kabs0[p1 - q1]) <= t); } static WEBP_INLINE int needs_filter2(const uint8_t* p, int step, int t, int it) { const int p3 = p[-4 * step], p2 = p[-3 * step], p1 = p[-2 * step]; const int p0 = p[-step], q0 = p[0]; const int q1 = p[step], q2 = p[2 * step], q3 = p[3 * step]; if ((4 * VP8kabs0[p0 - q0] + VP8kabs0[p1 - q1]) > t) return 0; return VP8kabs0[p3 - p2] <= it && VP8kabs0[p2 - p1] <= it && VP8kabs0[p1 - p0] <= it && VP8kabs0[q3 - q2] <= it && VP8kabs0[q2 - q1] <= it && VP8kabs0[q1 - q0] <= it; } //------------------------------------------------------------------------------ // Simple In-loop filtering (Paragraph 15.2) static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { int i; const int thresh2 = 2 * thresh + 1; for (i = 0; i < 16; ++i) { if (needs_filter(p + i, stride, thresh2)) { do_filter2(p + i, stride); } } } static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { int i; const int thresh2 = 2 * thresh + 1; for (i = 0; i < 16; ++i) { if (needs_filter(p + i * stride, 1, thresh2)) { do_filter2(p + i * stride, 1); } } } static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; SimpleVFilter16(p, stride, thresh); } } static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { int k; for (k = 3; k > 0; --k) { p += 4; SimpleHFilter16(p, stride, thresh); } } //------------------------------------------------------------------------------ // Complex In-loop filtering (Paragraph 15.3) static WEBP_INLINE void FilterLoop26(uint8_t* p, int hstride, int vstride, int size, int thresh, int ithresh, int hev_thresh) { const int thresh2 = 2 * thresh + 1; while (size-- > 0) { if (needs_filter2(p, hstride, thresh2, ithresh)) { if (hev(p, hstride, hev_thresh)) { do_filter2(p, hstride); } else { do_filter6(p, hstride); } } p += vstride; } } static WEBP_INLINE void FilterLoop24(uint8_t* p, int hstride, int vstride, int size, int thresh, int ithresh, int hev_thresh) { const int thresh2 = 2 * thresh + 1; while (size-- > 0) { if (needs_filter2(p, hstride, thresh2, ithresh)) { if (hev(p, hstride, hev_thresh)) { do_filter2(p, hstride); } else { do_filter4(p, hstride); } } p += vstride; } } // on macroblock edges static void VFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh); } static void HFilter16(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh); } // on three inner edges static void VFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { p += 4 * stride; FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh); } } static void HFilter16i(uint8_t* p, int stride, int thresh, int ithresh, int hev_thresh) { int k; for (k = 3; k > 0; --k) { p += 4; FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh); } } // 8-pixels wide variant, for chroma filtering static void VFilter8(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh); FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh); } static void HFilter8(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh); FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh); } static void VFilter8i(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); } static void HFilter8i(uint8_t* u, uint8_t* v, int stride, int thresh, int ithresh, int hev_thresh) { FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh); FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh); } //------------------------------------------------------------------------------ VP8DecIdct2 VP8Transform; VP8DecIdct VP8TransformAC3; VP8DecIdct VP8TransformUV; VP8DecIdct VP8TransformDC; VP8DecIdct VP8TransformDCUV; VP8LumaFilterFunc VP8VFilter16; VP8LumaFilterFunc VP8HFilter16; VP8ChromaFilterFunc VP8VFilter8; VP8ChromaFilterFunc VP8HFilter8; VP8LumaFilterFunc VP8VFilter16i; VP8LumaFilterFunc VP8HFilter16i; VP8ChromaFilterFunc VP8VFilter8i; VP8ChromaFilterFunc VP8HFilter8i; VP8SimpleFilterFunc VP8SimpleVFilter16; VP8SimpleFilterFunc VP8SimpleHFilter16; VP8SimpleFilterFunc VP8SimpleVFilter16i; VP8SimpleFilterFunc VP8SimpleHFilter16i; extern void VP8DspInitSSE2(void); extern void VP8DspInitSSE41(void); extern void VP8DspInitNEON(void); extern void VP8DspInitMIPS32(void); extern void VP8DspInitMIPSdspR2(void); static volatile VP8CPUInfo dec_last_cpuinfo_used = (VP8CPUInfo)&dec_last_cpuinfo_used; WEBP_TSAN_IGNORE_FUNCTION void VP8DspInit(void) { if (dec_last_cpuinfo_used == VP8GetCPUInfo) return; VP8InitClipTables(); VP8TransformWHT = TransformWHT; VP8Transform = TransformTwo; VP8TransformUV = TransformUV; VP8TransformDC = TransformDC; VP8TransformDCUV = TransformDCUV; VP8TransformAC3 = TransformAC3; VP8VFilter16 = VFilter16; VP8HFilter16 = HFilter16; VP8VFilter8 = VFilter8; VP8HFilter8 = HFilter8; VP8VFilter16i = VFilter16i; VP8HFilter16i = HFilter16i; VP8VFilter8i = VFilter8i; VP8HFilter8i = HFilter8i; VP8SimpleVFilter16 = SimpleVFilter16; VP8SimpleHFilter16 = SimpleHFilter16; VP8SimpleVFilter16i = SimpleVFilter16i; VP8SimpleHFilter16i = SimpleHFilter16i; VP8PredLuma4[0] = DC4; VP8PredLuma4[1] = TM4; VP8PredLuma4[2] = VE4; VP8PredLuma4[3] = HE4; VP8PredLuma4[4] = RD4; VP8PredLuma4[5] = VR4; VP8PredLuma4[6] = LD4; VP8PredLuma4[7] = VL4; VP8PredLuma4[8] = HD4; VP8PredLuma4[9] = HU4; VP8PredLuma16[0] = DC16; VP8PredLuma16[1] = TM16; VP8PredLuma16[2] = VE16; VP8PredLuma16[3] = HE16; VP8PredLuma16[4] = DC16NoTop; VP8PredLuma16[5] = DC16NoLeft; VP8PredLuma16[6] = DC16NoTopLeft; VP8PredChroma8[0] = DC8uv; VP8PredChroma8[1] = TM8uv; VP8PredChroma8[2] = VE8uv; VP8PredChroma8[3] = HE8uv; VP8PredChroma8[4] = DC8uvNoTop; VP8PredChroma8[5] = DC8uvNoLeft; VP8PredChroma8[6] = DC8uvNoTopLeft; // If defined, use CPUInfo() to overwrite some pointers with faster versions. if (VP8GetCPUInfo != NULL) { #if defined(WEBP_USE_SSE2) if (VP8GetCPUInfo(kSSE2)) { VP8DspInitSSE2(); #if defined(WEBP_USE_SSE41) if (VP8GetCPUInfo(kSSE4_1)) { VP8DspInitSSE41(); } #endif } #endif #if defined(WEBP_USE_NEON) if (VP8GetCPUInfo(kNEON)) { VP8DspInitNEON(); } #endif #if defined(WEBP_USE_MIPS32) if (VP8GetCPUInfo(kMIPS32)) { VP8DspInitMIPS32(); } #endif #if defined(WEBP_USE_MIPS_DSP_R2) if (VP8GetCPUInfo(kMIPSdspR2)) { VP8DspInitMIPSdspR2(); } #endif } dec_last_cpuinfo_used = VP8GetCPUInfo; }