/*************************************************************************/ /* vulkan_context.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "vulkan_context.h" #include "core/config/engine.h" #include "core/config/project_settings.h" #include "core/string/ustring.h" #include "core/templates/local_vector.h" #include "core/version.h" #include "servers/rendering/rendering_device.h" #include "vk_enum_string_helper.h" #include #include #include #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define APP_SHORT_NAME "GodotEngine" VulkanHooks *VulkanContext::vulkan_hooks = nullptr; Vector VulkanContext::_convert_VkAttachmentReference2(uint32_t p_count, const VkAttachmentReference2 *p_refs) { Vector att_refs; if (p_refs != nullptr) { for (uint32_t i = 0; i < p_count; i++) { // We lose aspectMask in this conversion but we don't use it currently. VkAttachmentReference ref = { p_refs[i].attachment, /* attachment */ p_refs[i].layout /* layout */ }; att_refs.push_back(ref); } } return att_refs; } VkResult VulkanContext::vkCreateRenderPass2KHR(VkDevice p_device, const VkRenderPassCreateInfo2 *p_create_info, const VkAllocationCallbacks *p_allocator, VkRenderPass *p_render_pass) { if (has_renderpass2_ext) { if (fpCreateRenderPass2KHR == nullptr) { fpCreateRenderPass2KHR = (PFN_vkCreateRenderPass2KHR)vkGetDeviceProcAddr(p_device, "vkCreateRenderPass2KHR"); } if (fpCreateRenderPass2KHR == nullptr) { return VK_ERROR_EXTENSION_NOT_PRESENT; } else { return (fpCreateRenderPass2KHR)(p_device, p_create_info, p_allocator, p_render_pass); } } else { // need to fall back on vkCreateRenderPass const void *next = p_create_info->pNext; // ATM we only support multiview which should work if supported. Vector attachments; for (uint32_t i = 0; i < p_create_info->attachmentCount; i++) { // Basically the old layout just misses type and next. VkAttachmentDescription att = { p_create_info->pAttachments[i].flags, /* flags */ p_create_info->pAttachments[i].format, /* format */ p_create_info->pAttachments[i].samples, /* samples */ p_create_info->pAttachments[i].loadOp, /* loadOp */ p_create_info->pAttachments[i].storeOp, /* storeOp */ p_create_info->pAttachments[i].stencilLoadOp, /* stencilLoadOp */ p_create_info->pAttachments[i].stencilStoreOp, /* stencilStoreOp */ p_create_info->pAttachments[i].initialLayout, /* initialLayout */ p_create_info->pAttachments[i].finalLayout /* finalLayout */ }; attachments.push_back(att); } Vector subpasses; for (uint32_t i = 0; i < p_create_info->subpassCount; i++) { // Here we need to do more, again it's just stripping out type and next // but we have VkAttachmentReference2 to convert to VkAttachmentReference. // Also viewmask is not supported but we don't use it outside of multiview. Vector input_attachments = _convert_VkAttachmentReference2(p_create_info->pSubpasses[i].inputAttachmentCount, p_create_info->pSubpasses[i].pInputAttachments); Vector color_attachments = _convert_VkAttachmentReference2(p_create_info->pSubpasses[i].colorAttachmentCount, p_create_info->pSubpasses[i].pColorAttachments); Vector resolve_attachments = _convert_VkAttachmentReference2(p_create_info->pSubpasses[i].colorAttachmentCount, p_create_info->pSubpasses[i].pResolveAttachments); Vector depth_attachments = _convert_VkAttachmentReference2(p_create_info->pSubpasses[i].colorAttachmentCount, p_create_info->pSubpasses[i].pDepthStencilAttachment); VkSubpassDescription subpass = { p_create_info->pSubpasses[i].flags, /* flags */ p_create_info->pSubpasses[i].pipelineBindPoint, /* pipelineBindPoint */ p_create_info->pSubpasses[i].inputAttachmentCount, /* inputAttachmentCount */ input_attachments.size() == 0 ? nullptr : input_attachments.ptr(), /* pInputAttachments */ p_create_info->pSubpasses[i].colorAttachmentCount, /* colorAttachmentCount */ color_attachments.size() == 0 ? nullptr : color_attachments.ptr(), /* pColorAttachments */ resolve_attachments.size() == 0 ? nullptr : resolve_attachments.ptr(), /* pResolveAttachments */ depth_attachments.size() == 0 ? nullptr : depth_attachments.ptr(), /* pDepthStencilAttachment */ p_create_info->pSubpasses[i].preserveAttachmentCount, /* preserveAttachmentCount */ p_create_info->pSubpasses[i].pPreserveAttachments /* pPreserveAttachments */ }; subpasses.push_back(subpass); } Vector dependencies; for (uint32_t i = 0; i < p_create_info->dependencyCount; i++) { // We lose viewOffset here but again I don't believe we use this anywhere. VkSubpassDependency dep = { p_create_info->pDependencies[i].srcSubpass, /* srcSubpass */ p_create_info->pDependencies[i].dstSubpass, /* dstSubpass */ p_create_info->pDependencies[i].srcStageMask, /* srcStageMask */ p_create_info->pDependencies[i].dstStageMask, /* dstStageMask */ p_create_info->pDependencies[i].srcAccessMask, /* srcAccessMask */ p_create_info->pDependencies[i].dstAccessMask, /* dstAccessMask */ p_create_info->pDependencies[i].dependencyFlags, /* dependencyFlags */ }; dependencies.push_back(dep); } // CorrelatedViewMask is not supported in vkCreateRenderPass but we // currently only use this for multiview. // We'll need to look into this. VkRenderPassCreateInfo create_info = { VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, /* sType */ next, /* pNext*/ p_create_info->flags, /* flags */ (uint32_t)attachments.size(), /* attachmentCount */ attachments.ptr(), /* pAttachments */ (uint32_t)subpasses.size(), /* subpassCount */ subpasses.ptr(), /* pSubpasses */ (uint32_t)dependencies.size(), /* */ dependencies.ptr(), /* */ }; return vkCreateRenderPass(device, &create_info, p_allocator, p_render_pass); } } VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_messenger_callback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData, void *pUserData) { // This error needs to be ignored because the AMD allocator will mix up memory types on IGP processors. if (strstr(pCallbackData->pMessage, "Mapping an image with layout") != nullptr && strstr(pCallbackData->pMessage, "can result in undefined behavior if this memory is used by the device") != nullptr) { return VK_FALSE; } // This needs to be ignored because Validator is wrong here. if (strstr(pCallbackData->pMessage, "Invalid SPIR-V binary version 1.3") != nullptr) { return VK_FALSE; } // This needs to be ignored because Validator is wrong here. if (strstr(pCallbackData->pMessage, "Shader requires flag") != nullptr) { return VK_FALSE; } // This needs to be ignored because Validator is wrong here. if (strstr(pCallbackData->pMessage, "SPIR-V module not valid: Pointer operand") != nullptr && strstr(pCallbackData->pMessage, "must be a memory object") != nullptr) { return VK_FALSE; } if (pCallbackData->pMessageIdName && strstr(pCallbackData->pMessageIdName, "UNASSIGNED-CoreValidation-DrawState-ClearCmdBeforeDraw") != nullptr) { return VK_FALSE; } String type_string; switch (messageType) { case (VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT): type_string = "GENERAL"; break; case (VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT): type_string = "VALIDATION"; break; case (VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT): type_string = "PERFORMANCE"; break; case (VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT): type_string = "VALIDATION|PERFORMANCE"; break; } String objects_string; if (pCallbackData->objectCount > 0) { objects_string = "\n\tObjects - " + String::num_int64(pCallbackData->objectCount); for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) { objects_string += "\n\t\tObject[" + String::num_int64(object) + "]" + " - " + string_VkObjectType(pCallbackData->pObjects[object].objectType) + ", Handle " + String::num_int64(pCallbackData->pObjects[object].objectHandle); if (nullptr != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) { objects_string += ", Name \"" + String(pCallbackData->pObjects[object].pObjectName) + "\""; } } } String labels_string; if (pCallbackData->cmdBufLabelCount > 0) { labels_string = "\n\tCommand Buffer Labels - " + String::num_int64(pCallbackData->cmdBufLabelCount); for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) { labels_string += "\n\t\tLabel[" + String::num_int64(cmd_buf_label) + "]" + " - " + pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName + "{ "; for (int color_idx = 0; color_idx < 4; ++color_idx) { labels_string += String::num(pCallbackData->pCmdBufLabels[cmd_buf_label].color[color_idx]); if (color_idx < 3) { labels_string += ", "; } } labels_string += " }"; } } String error_message(type_string + " - Message Id Number: " + String::num_int64(pCallbackData->messageIdNumber) + " | Message Id Name: " + pCallbackData->pMessageIdName + "\n\t" + pCallbackData->pMessage + objects_string + labels_string); // Convert VK severity to our own log macros. switch (messageSeverity) { case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: print_verbose(error_message); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: print_line(error_message); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: WARN_PRINT(error_message); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: ERR_PRINT(error_message); CRASH_COND_MSG(Engine::get_singleton()->is_abort_on_gpu_errors_enabled(), "Crashing, because abort on GPU errors is enabled."); break; case VK_DEBUG_UTILS_MESSAGE_SEVERITY_FLAG_BITS_MAX_ENUM_EXT: break; // Shouldn't happen, only handling to make compilers happy. } return VK_FALSE; } VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_report_callback( VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char *pLayerPrefix, const char *pMessage, void *pUserData) { String debugMessage = String("Vulkan Debug Report: object - ") + String::num_int64(object) + "\n" + pMessage; switch (flags) { case VK_DEBUG_REPORT_DEBUG_BIT_EXT: case VK_DEBUG_REPORT_INFORMATION_BIT_EXT: print_line(debugMessage); break; case VK_DEBUG_REPORT_WARNING_BIT_EXT: case VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT: WARN_PRINT(debugMessage); break; case VK_DEBUG_REPORT_ERROR_BIT_EXT: ERR_PRINT(debugMessage); break; } return VK_FALSE; } VkBool32 VulkanContext::_check_layers(uint32_t check_count, const char *const *check_names, uint32_t layer_count, VkLayerProperties *layers) { for (uint32_t i = 0; i < check_count; i++) { VkBool32 found = 0; for (uint32_t j = 0; j < layer_count; j++) { if (!strcmp(check_names[i], layers[j].layerName)) { found = 1; break; } } if (!found) { WARN_PRINT("Can't find layer: " + String(check_names[i])); return 0; } } return 1; } Error VulkanContext::_get_preferred_validation_layers(uint32_t *count, const char *const **names) { static const LocalVector> instance_validation_layers_alt{ // Preferred set of validation layers. { "VK_LAYER_KHRONOS_validation" }, // Alternative (deprecated, removed in SDK 1.1.126.0) set of validation layers. { "VK_LAYER_LUNARG_standard_validation" }, // Alternative (deprecated, removed in SDK 1.1.121.1) set of validation layers. { "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation", "VK_LAYER_GOOGLE_unique_objects" } }; // Clear out-arguments. *count = 0; if (names != nullptr) { *names = nullptr; } VkResult err; uint32_t instance_layer_count; err = vkEnumerateInstanceLayerProperties(&instance_layer_count, nullptr); if (err) { ERR_FAIL_V(ERR_CANT_CREATE); } if (instance_layer_count < 1) { return OK; } VkLayerProperties *instance_layers = (VkLayerProperties *)malloc(sizeof(VkLayerProperties) * instance_layer_count); err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers); if (err) { free(instance_layers); ERR_FAIL_V(ERR_CANT_CREATE); } for (uint32_t i = 0; i < instance_validation_layers_alt.size(); i++) { if (_check_layers(instance_validation_layers_alt[i].size(), instance_validation_layers_alt[i].ptr(), instance_layer_count, instance_layers)) { *count = instance_validation_layers_alt[i].size(); if (names != nullptr) { *names = instance_validation_layers_alt[i].ptr(); } break; } } free(instance_layers); return OK; } typedef VkResult(VKAPI_PTR *_vkEnumerateInstanceVersion)(uint32_t *); Error VulkanContext::_obtain_vulkan_version() { // https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VkApplicationInfo.html#_description // For Vulkan 1.0 vkEnumerateInstanceVersion is not available, including not in the loader we compile against on Android. _vkEnumerateInstanceVersion func = (_vkEnumerateInstanceVersion)vkGetInstanceProcAddr(nullptr, "vkEnumerateInstanceVersion"); if (func != nullptr) { uint32_t api_version; VkResult res = func(&api_version); if (res == VK_SUCCESS) { vulkan_major = VK_API_VERSION_MAJOR(api_version); vulkan_minor = VK_API_VERSION_MINOR(api_version); vulkan_patch = VK_API_VERSION_PATCH(api_version); } else { // According to the documentation this shouldn't fail with anything except a memory allocation error // in which case we're in deep trouble anyway. ERR_FAIL_V(ERR_CANT_CREATE); } } else { print_line("vkEnumerateInstanceVersion not available, assuming Vulkan 1.0."); } // We don't go above 1.2. if ((vulkan_major > 1) || (vulkan_major == 1 && vulkan_minor > 2)) { vulkan_major = 1; vulkan_minor = 2; vulkan_patch = 0; } return OK; } Error VulkanContext::_initialize_extensions() { uint32_t instance_extension_count = 0; enabled_extension_count = 0; enabled_debug_utils = false; enabled_debug_report = false; // Look for instance extensions. VkBool32 surfaceExtFound = 0; VkBool32 platformSurfaceExtFound = 0; memset(extension_names, 0, sizeof(extension_names)); // Only enable debug utils in verbose mode or DEV_ENABLED. // End users would get spammed with messages of varying verbosity due to the // mess that thirdparty layers/extensions and drivers seem to leave in their // wake, making the Windows registry a bottomless pit of broken layer JSON. #ifdef DEV_ENABLED bool want_debug_utils = true; #else bool want_debug_utils = OS::get_singleton()->is_stdout_verbose(); #endif VkResult err = vkEnumerateInstanceExtensionProperties(nullptr, &instance_extension_count, nullptr); ERR_FAIL_COND_V(err != VK_SUCCESS && err != VK_INCOMPLETE, ERR_CANT_CREATE); if (instance_extension_count > 0) { VkExtensionProperties *instance_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * instance_extension_count); err = vkEnumerateInstanceExtensionProperties(nullptr, &instance_extension_count, instance_extensions); if (err != VK_SUCCESS && err != VK_INCOMPLETE) { free(instance_extensions); ERR_FAIL_V(ERR_CANT_CREATE); } for (uint32_t i = 0; i < instance_extension_count; i++) { if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { surfaceExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME; } if (!strcmp(_get_platform_surface_extension(), instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; extension_names[enabled_extension_count++] = _get_platform_surface_extension(); } if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (_use_validation_layers()) { extension_names[enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; enabled_debug_report = true; } } if (!strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (want_debug_utils) { extension_names[enabled_extension_count++] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME; enabled_debug_utils = true; } } if (!strcmp(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, instance_extensions[i].extensionName)) { extension_names[enabled_extension_count++] = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; } if (enabled_extension_count >= MAX_EXTENSIONS) { free(instance_extensions); ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG"); } } free(instance_extensions); } ERR_FAIL_COND_V_MSG(!surfaceExtFound, ERR_CANT_CREATE, "No surface extension found, is a driver installed?"); ERR_FAIL_COND_V_MSG(!platformSurfaceExtFound, ERR_CANT_CREATE, "No platform surface extension found, is a driver installed?"); return OK; } uint32_t VulkanContext::SubgroupCapabilities::supported_stages_flags_rd() const { uint32_t flags = 0; if (supportedStages & VK_SHADER_STAGE_VERTEX_BIT) { flags += RenderingDevice::ShaderStage::SHADER_STAGE_VERTEX_BIT; } if (supportedStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { flags += RenderingDevice::ShaderStage::SHADER_STAGE_TESSELATION_CONTROL_BIT; } if (supportedStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { flags += RenderingDevice::ShaderStage::SHADER_STAGE_TESSELATION_EVALUATION_BIT; } // if (supportedStages & VK_SHADER_STAGE_GEOMETRY_BIT) { // flags += RenderingDevice::ShaderStage::SHADER_STAGE_GEOMETRY_BIT; // } if (supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT) { flags += RenderingDevice::ShaderStage::SHADER_STAGE_FRAGMENT_BIT; } if (supportedStages & VK_SHADER_STAGE_COMPUTE_BIT) { flags += RenderingDevice::ShaderStage::SHADER_STAGE_COMPUTE_BIT; } return flags; } String VulkanContext::SubgroupCapabilities::supported_stages_desc() const { String res; if (supportedStages & VK_SHADER_STAGE_VERTEX_BIT) { res += ", STAGE_VERTEX"; } if (supportedStages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) { res += ", STAGE_TESSELLATION_CONTROL"; } if (supportedStages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) { res += ", STAGE_TESSELLATION_EVALUATION"; } if (supportedStages & VK_SHADER_STAGE_GEOMETRY_BIT) { res += ", STAGE_GEOMETRY"; } if (supportedStages & VK_SHADER_STAGE_FRAGMENT_BIT) { res += ", STAGE_FRAGMENT"; } if (supportedStages & VK_SHADER_STAGE_COMPUTE_BIT) { res += ", STAGE_COMPUTE"; } // These are not defined on Android GRMBL. if (supportedStages & 0x00000100 /* VK_SHADER_STAGE_RAYGEN_BIT_KHR */) { res += ", STAGE_RAYGEN_KHR"; } if (supportedStages & 0x00000200 /* VK_SHADER_STAGE_ANY_HIT_BIT_KHR */) { res += ", STAGE_ANY_HIT_KHR"; } if (supportedStages & 0x00000400 /* VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR */) { res += ", STAGE_CLOSEST_HIT_KHR"; } if (supportedStages & 0x00000800 /* VK_SHADER_STAGE_MISS_BIT_KHR */) { res += ", STAGE_MISS_KHR"; } if (supportedStages & 0x00001000 /* VK_SHADER_STAGE_INTERSECTION_BIT_KHR */) { res += ", STAGE_INTERSECTION_KHR"; } if (supportedStages & 0x00002000 /* VK_SHADER_STAGE_CALLABLE_BIT_KHR */) { res += ", STAGE_CALLABLE_KHR"; } if (supportedStages & 0x00000040 /* VK_SHADER_STAGE_TASK_BIT_NV */) { res += ", STAGE_TASK_NV"; } if (supportedStages & 0x00000080 /* VK_SHADER_STAGE_MESH_BIT_NV */) { res += ", STAGE_MESH_NV"; } return res.substr(2); // Remove first ", ". } uint32_t VulkanContext::SubgroupCapabilities::supported_operations_flags_rd() const { uint32_t flags = 0; if (supportedOperations & VK_SUBGROUP_FEATURE_BASIC_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_BASIC_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_VOTE_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_VOTE_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_ARITHMETIC_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_BALLOT_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_BALLOT_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_SHUFFLE_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_SHUFFLE_RELATIVE_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_CLUSTERED_BIT; } if (supportedOperations & VK_SUBGROUP_FEATURE_QUAD_BIT) { flags += RenderingDevice::SubgroupOperations::SUBGROUP_QUAD_BIT; } return flags; } String VulkanContext::SubgroupCapabilities::supported_operations_desc() const { String res; if (supportedOperations & VK_SUBGROUP_FEATURE_BASIC_BIT) { res += ", FEATURE_BASIC"; } if (supportedOperations & VK_SUBGROUP_FEATURE_VOTE_BIT) { res += ", FEATURE_VOTE"; } if (supportedOperations & VK_SUBGROUP_FEATURE_ARITHMETIC_BIT) { res += ", FEATURE_ARITHMETIC"; } if (supportedOperations & VK_SUBGROUP_FEATURE_BALLOT_BIT) { res += ", FEATURE_BALLOT"; } if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_BIT) { res += ", FEATURE_SHUFFLE"; } if (supportedOperations & VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT) { res += ", FEATURE_SHUFFLE_RELATIVE"; } if (supportedOperations & VK_SUBGROUP_FEATURE_CLUSTERED_BIT) { res += ", FEATURE_CLUSTERED"; } if (supportedOperations & VK_SUBGROUP_FEATURE_QUAD_BIT) { res += ", FEATURE_QUAD"; } if (supportedOperations & VK_SUBGROUP_FEATURE_PARTITIONED_BIT_NV) { res += ", FEATURE_PARTITIONED_NV"; } return res.substr(2); // Remove first ", ". } Error VulkanContext::_check_capabilities() { // https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_KHR_multiview.html // https://www.khronos.org/blog/vulkan-subgroup-tutorial // For Vulkan 1.0 vkGetPhysicalDeviceProperties2 is not available, including not in the loader we compile against on Android. // So we check if the functions are accessible by getting their function pointers and skipping if not // (note that the desktop loader does a better job here but the android loader doesn't.) // Assume not supported until proven otherwise. vrs_capabilities.pipeline_vrs_supported = false; vrs_capabilities.primitive_vrs_supported = false; vrs_capabilities.attachment_vrs_supported = false; multiview_capabilities.is_supported = false; multiview_capabilities.geometry_shader_is_supported = false; multiview_capabilities.tessellation_shader_is_supported = false; multiview_capabilities.max_view_count = 0; multiview_capabilities.max_instance_count = 0; subgroup_capabilities.size = 0; subgroup_capabilities.supportedStages = 0; subgroup_capabilities.supportedOperations = 0; subgroup_capabilities.quadOperationsInAllStages = false; shader_capabilities.shader_float16_is_supported = false; shader_capabilities.shader_int8_is_supported = false; storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = false; storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = false; storage_buffer_capabilities.storage_push_constant_16_is_supported = false; storage_buffer_capabilities.storage_input_output_16 = false; // Check for extended features. PFN_vkGetPhysicalDeviceFeatures2 vkGetPhysicalDeviceFeatures2_func = (PFN_vkGetPhysicalDeviceFeatures2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceFeatures2"); if (vkGetPhysicalDeviceFeatures2_func == nullptr) { // In Vulkan 1.0 might be accessible under its original extension name. vkGetPhysicalDeviceFeatures2_func = (PFN_vkGetPhysicalDeviceFeatures2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceFeatures2KHR"); } if (vkGetPhysicalDeviceFeatures2_func != nullptr) { // Check our extended features. VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features = { /*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR, /*pNext*/ nullptr, /*pipelineFragmentShadingRate*/ false, /*primitiveFragmentShadingRate*/ false, /*attachmentFragmentShadingRate*/ false, }; VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = { /*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR, /*pNext*/ &vrs_features, /*shaderFloat16*/ false, /*shaderInt8*/ false, }; VkPhysicalDevice16BitStorageFeaturesKHR storage_feature = { /*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR, /*pNext*/ &shader_features, /*storageBuffer16BitAccess*/ false, /*uniformAndStorageBuffer16BitAccess*/ false, /*storagePushConstant16*/ false, /*storageInputOutput16*/ false, }; VkPhysicalDeviceMultiviewFeatures multiview_features = { /*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES, /*pNext*/ &storage_feature, /*multiview*/ false, /*multiviewGeometryShader*/ false, /*multiviewTessellationShader*/ false, }; VkPhysicalDeviceFeatures2 device_features; device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; device_features.pNext = &multiview_features; vkGetPhysicalDeviceFeatures2_func(gpu, &device_features); vrs_capabilities.pipeline_vrs_supported = vrs_features.pipelineFragmentShadingRate; vrs_capabilities.primitive_vrs_supported = vrs_features.primitiveFragmentShadingRate; vrs_capabilities.attachment_vrs_supported = vrs_features.attachmentFragmentShadingRate; multiview_capabilities.is_supported = multiview_features.multiview; multiview_capabilities.geometry_shader_is_supported = multiview_features.multiviewGeometryShader; multiview_capabilities.tessellation_shader_is_supported = multiview_features.multiviewTessellationShader; shader_capabilities.shader_float16_is_supported = shader_features.shaderFloat16; shader_capabilities.shader_int8_is_supported = shader_features.shaderInt8; storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported = storage_feature.storageBuffer16BitAccess; storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported = storage_feature.uniformAndStorageBuffer16BitAccess; storage_buffer_capabilities.storage_push_constant_16_is_supported = storage_feature.storagePushConstant16; storage_buffer_capabilities.storage_input_output_16 = storage_feature.storageInputOutput16; } // Check extended properties. PFN_vkGetPhysicalDeviceProperties2 device_properties_func = (PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceProperties2"); if (device_properties_func == nullptr) { // In Vulkan 1.0 might be accessible under its original extension name. device_properties_func = (PFN_vkGetPhysicalDeviceProperties2)vkGetInstanceProcAddr(inst, "vkGetPhysicalDeviceProperties2KHR"); } if (device_properties_func != nullptr) { VkPhysicalDeviceFragmentShadingRatePropertiesKHR vrsProperties{}; VkPhysicalDeviceMultiviewProperties multiviewProperties{}; VkPhysicalDeviceSubgroupProperties subgroupProperties{}; VkPhysicalDeviceProperties2 physicalDeviceProperties{}; void *nextptr = nullptr; if (!(vulkan_major == 1 && vulkan_minor == 0)) { subgroupProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES; subgroupProperties.pNext = nextptr; nextptr = &subgroupProperties; } if (multiview_capabilities.is_supported) { multiviewProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES; multiviewProperties.pNext = nextptr; nextptr = &multiviewProperties; } if (vrs_capabilities.attachment_vrs_supported) { vrsProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR; vrsProperties.pNext = nextptr; nextptr = &vrsProperties; } physicalDeviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; physicalDeviceProperties.pNext = nextptr; device_properties_func(gpu, &physicalDeviceProperties); subgroup_capabilities.size = subgroupProperties.subgroupSize; subgroup_capabilities.supportedStages = subgroupProperties.supportedStages; subgroup_capabilities.supportedOperations = subgroupProperties.supportedOperations; // Note: quadOperationsInAllStages will be true if: // - supportedStages has VK_SHADER_STAGE_ALL_GRAPHICS + VK_SHADER_STAGE_COMPUTE_BIT. // - supportedOperations has VK_SUBGROUP_FEATURE_QUAD_BIT. subgroup_capabilities.quadOperationsInAllStages = subgroupProperties.quadOperationsInAllStages; if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) { print_verbose("- Vulkan Variable Rate Shading supported:"); if (vrs_capabilities.pipeline_vrs_supported) { print_verbose(" Pipeline fragment shading rate"); } if (vrs_capabilities.primitive_vrs_supported) { print_verbose(" Primitive fragment shading rate"); } if (vrs_capabilities.attachment_vrs_supported) { // TODO expose these somehow to the end user. vrs_capabilities.min_texel_size.x = vrsProperties.minFragmentShadingRateAttachmentTexelSize.width; vrs_capabilities.min_texel_size.y = vrsProperties.minFragmentShadingRateAttachmentTexelSize.height; vrs_capabilities.max_texel_size.x = vrsProperties.maxFragmentShadingRateAttachmentTexelSize.width; vrs_capabilities.max_texel_size.y = vrsProperties.maxFragmentShadingRateAttachmentTexelSize.height; print_verbose(String(" Attachment fragment shading rate") + String(", min texel size: (") + itos(vrs_capabilities.min_texel_size.x) + String(", ") + itos(vrs_capabilities.min_texel_size.y) + String(")") + String(", max texel size: (") + itos(vrs_capabilities.max_texel_size.x) + String(", ") + itos(vrs_capabilities.max_texel_size.y) + String(")")); } } else { print_verbose("- Vulkan Variable Rate Shading not supported"); } if (multiview_capabilities.is_supported) { multiview_capabilities.max_view_count = multiviewProperties.maxMultiviewViewCount; multiview_capabilities.max_instance_count = multiviewProperties.maxMultiviewInstanceIndex; print_verbose("- Vulkan multiview supported:"); print_verbose(" max view count: " + itos(multiview_capabilities.max_view_count)); print_verbose(" max instances: " + itos(multiview_capabilities.max_instance_count)); } else { print_verbose("- Vulkan multiview not supported"); } print_verbose("- Vulkan subgroup:"); print_verbose(" size: " + itos(subgroup_capabilities.size)); print_verbose(" stages: " + subgroup_capabilities.supported_stages_desc()); print_verbose(" supported ops: " + subgroup_capabilities.supported_operations_desc()); if (subgroup_capabilities.quadOperationsInAllStages) { print_verbose(" quad operations in all stages"); } } else { print_verbose("- Couldn't call vkGetPhysicalDeviceProperties2"); } return OK; } Error VulkanContext::_create_instance() { // Obtain Vulkan version. _obtain_vulkan_version(); // Initialize extensions. { Error err = _initialize_extensions(); if (err != OK) { return err; } } CharString cs = ProjectSettings::get_singleton()->get("application/config/name").operator String().utf8(); const VkApplicationInfo app = { /*sType*/ VK_STRUCTURE_TYPE_APPLICATION_INFO, /*pNext*/ nullptr, /*pApplicationName*/ cs.get_data(), /*applicationVersion*/ 0, /*pEngineName*/ VERSION_NAME, /*engineVersion*/ VK_MAKE_VERSION(VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH), /*apiVersion*/ VK_MAKE_VERSION(vulkan_major, vulkan_minor, 0) }; VkInstanceCreateInfo inst_info{}; inst_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; inst_info.pApplicationInfo = &app; inst_info.enabledExtensionCount = enabled_extension_count; inst_info.ppEnabledExtensionNames = (const char *const *)extension_names; if (_use_validation_layers()) { _get_preferred_validation_layers(&inst_info.enabledLayerCount, &inst_info.ppEnabledLayerNames); } /* * This is info for a temp callback to use during CreateInstance. * After the instance is created, we use the instance-based * function to register the final callback. */ VkDebugUtilsMessengerCreateInfoEXT dbg_messenger_create_info; VkDebugReportCallbackCreateInfoEXT dbg_report_callback_create_info{}; if (enabled_debug_utils) { // VK_EXT_debug_utils style. dbg_messenger_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; dbg_messenger_create_info.pNext = nullptr; dbg_messenger_create_info.flags = 0; dbg_messenger_create_info.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; dbg_messenger_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; dbg_messenger_create_info.pfnUserCallback = _debug_messenger_callback; dbg_messenger_create_info.pUserData = this; inst_info.pNext = &dbg_messenger_create_info; } else if (enabled_debug_report) { dbg_report_callback_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT; dbg_report_callback_create_info.flags = VK_DEBUG_REPORT_INFORMATION_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT | VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_DEBUG_BIT_EXT; dbg_report_callback_create_info.pfnCallback = _debug_report_callback; dbg_report_callback_create_info.pUserData = this; inst_info.pNext = &dbg_report_callback_create_info; } VkResult err; if (vulkan_hooks) { if (!vulkan_hooks->create_vulkan_instance(&inst_info, &inst)) { return ERR_CANT_CREATE; } } else { err = vkCreateInstance(&inst_info, nullptr, &inst); ERR_FAIL_COND_V_MSG(err == VK_ERROR_INCOMPATIBLE_DRIVER, ERR_CANT_CREATE, "Cannot find a compatible Vulkan installable client driver (ICD).\n\n" "vkCreateInstance Failure"); ERR_FAIL_COND_V_MSG(err == VK_ERROR_EXTENSION_NOT_PRESENT, ERR_CANT_CREATE, "Cannot find a specified extension library.\n" "Make sure your layers path is set appropriately.\n" "vkCreateInstance Failure"); ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE, "vkCreateInstance failed.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) installed?\n" "Please look at the Getting Started guide for additional information.\n" "vkCreateInstance Failure"); } inst_initialized = true; #ifdef USE_VOLK volkLoadInstance(inst); #endif if (enabled_debug_utils) { // Setup VK_EXT_debug_utils function pointers always (we use them for debug labels and names). CreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugUtilsMessengerEXT"); DestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugUtilsMessengerEXT"); SubmitDebugUtilsMessageEXT = (PFN_vkSubmitDebugUtilsMessageEXT)vkGetInstanceProcAddr(inst, "vkSubmitDebugUtilsMessageEXT"); CmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdBeginDebugUtilsLabelEXT"); CmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdEndDebugUtilsLabelEXT"); CmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdInsertDebugUtilsLabelEXT"); SetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(inst, "vkSetDebugUtilsObjectNameEXT"); if (nullptr == CreateDebugUtilsMessengerEXT || nullptr == DestroyDebugUtilsMessengerEXT || nullptr == SubmitDebugUtilsMessageEXT || nullptr == CmdBeginDebugUtilsLabelEXT || nullptr == CmdEndDebugUtilsLabelEXT || nullptr == CmdInsertDebugUtilsLabelEXT || nullptr == SetDebugUtilsObjectNameEXT) { ERR_FAIL_V_MSG(ERR_CANT_CREATE, "GetProcAddr: Failed to init VK_EXT_debug_utils\n" "GetProcAddr: Failure"); } err = CreateDebugUtilsMessengerEXT(inst, &dbg_messenger_create_info, nullptr, &dbg_messenger); switch (err) { case VK_SUCCESS: break; case VK_ERROR_OUT_OF_HOST_MEMORY: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugUtilsMessengerEXT: out of host memory\n" "CreateDebugUtilsMessengerEXT Failure"); break; default: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugUtilsMessengerEXT: unknown failure\n" "CreateDebugUtilsMessengerEXT Failure"); ERR_FAIL_V(ERR_CANT_CREATE); break; } } else if (enabled_debug_report) { CreateDebugReportCallbackEXT = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugReportCallbackEXT"); DebugReportMessageEXT = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr(inst, "vkDebugReportMessageEXT"); DestroyDebugReportCallbackEXT = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugReportCallbackEXT"); if (nullptr == CreateDebugReportCallbackEXT || nullptr == DebugReportMessageEXT || nullptr == DestroyDebugReportCallbackEXT) { ERR_FAIL_V_MSG(ERR_CANT_CREATE, "GetProcAddr: Failed to init VK_EXT_debug_report\n" "GetProcAddr: Failure"); } err = CreateDebugReportCallbackEXT(inst, &dbg_report_callback_create_info, nullptr, &dbg_debug_report); switch (err) { case VK_SUCCESS: break; case VK_ERROR_OUT_OF_HOST_MEMORY: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugReportCallbackEXT: out of host memory\n" "CreateDebugReportCallbackEXT Failure"); break; default: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugReportCallbackEXT: unknown failure\n" "CreateDebugReportCallbackEXT Failure"); ERR_FAIL_V(ERR_CANT_CREATE); break; } } return OK; } Error VulkanContext::_create_physical_device(VkSurfaceKHR p_surface) { // Make initial call to query gpu_count, then second call for gpu info. uint32_t gpu_count = 0; VkResult err = vkEnumeratePhysicalDevices(inst, &gpu_count, nullptr); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); ERR_FAIL_COND_V_MSG(gpu_count == 0, ERR_CANT_CREATE, "vkEnumeratePhysicalDevices reported zero accessible devices.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) installed?\n" "vkEnumeratePhysicalDevices Failure"); VkPhysicalDevice *physical_devices = (VkPhysicalDevice *)malloc(sizeof(VkPhysicalDevice) * gpu_count); err = vkEnumeratePhysicalDevices(inst, &gpu_count, physical_devices); if (err) { free(physical_devices); ERR_FAIL_V(ERR_CANT_CREATE); } static const struct { uint32_t id; const char *name; } vendor_names[] = { { 0x1002, "AMD" }, { 0x1010, "ImgTec" }, { 0x106B, "Apple" }, { 0x10DE, "NVIDIA" }, { 0x13B5, "ARM" }, { 0x5143, "Qualcomm" }, { 0x8086, "Intel" }, { 0, nullptr }, }; int32_t device_index = -1; if (vulkan_hooks) { if (!vulkan_hooks->get_physical_device(&gpu)) { return ERR_CANT_CREATE; } // Not really needed but nice to print the correct entry. for (uint32_t i = 0; i < gpu_count; ++i) { if (physical_devices[i] == gpu) { device_index = i; break; } } } else { // TODO: At least on Linux Laptops integrated GPUs fail with Vulkan in many instances. // The device should really be a preference, but for now choosing a discrete GPU over the // integrated one is better than the default. int type_selected = -1; print_verbose("Vulkan devices:"); for (uint32_t i = 0; i < gpu_count; ++i) { VkPhysicalDeviceProperties props; vkGetPhysicalDeviceProperties(physical_devices[i], &props); bool present_supported = false; uint32_t device_queue_family_count = 0; vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &device_queue_family_count, nullptr); VkQueueFamilyProperties *device_queue_props = (VkQueueFamilyProperties *)malloc(device_queue_family_count * sizeof(VkQueueFamilyProperties)); vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &device_queue_family_count, device_queue_props); for (uint32_t j = 0; j < device_queue_family_count; j++) { VkBool32 supports; vkGetPhysicalDeviceSurfaceSupportKHR(physical_devices[i], j, p_surface, &supports); if (supports && ((device_queue_props[j].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0)) { present_supported = true; } else { continue; } } String name = props.deviceName; String vendor = "Unknown"; String dev_type; switch (props.deviceType) { case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: { dev_type = "Discrete"; } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: { dev_type = "Integrated"; } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: { dev_type = "Virtual"; } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_CPU: { dev_type = "CPU"; } break; default: { dev_type = "Other"; } break; } uint32_t vendor_idx = 0; while (vendor_names[vendor_idx].name != nullptr) { if (props.vendorID == vendor_names[vendor_idx].id) { vendor = vendor_names[vendor_idx].name; break; } vendor_idx++; } free(device_queue_props); print_verbose(" #" + itos(i) + ": " + vendor + " " + name + " - " + (present_supported ? "Supported" : "Unsupported") + ", " + dev_type); if (present_supported) { // Select first supported device of preferred type: Discrete > Integrated > Virtual > CPU > Other. switch (props.deviceType) { case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: { if (type_selected < 4) { type_selected = 4; device_index = i; } } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: { if (type_selected < 3) { type_selected = 3; device_index = i; } } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: { if (type_selected < 2) { type_selected = 2; device_index = i; } } break; case VkPhysicalDeviceType::VK_PHYSICAL_DEVICE_TYPE_CPU: { if (type_selected < 1) { type_selected = 1; device_index = i; } } break; default: { if (type_selected < 0) { type_selected = 0; device_index = i; } } break; } } } int32_t user_device_index = Engine::get_singleton()->get_gpu_index(); // Force user selected GPU. if (user_device_index >= 0 && user_device_index < (int32_t)gpu_count) { device_index = user_device_index; } ERR_FAIL_COND_V_MSG(device_index == -1, ERR_CANT_CREATE, "None of Vulkan devices supports both graphics and present queues."); gpu = physical_devices[device_index]; } free(physical_devices); // Look for device extensions. uint32_t device_extension_count = 0; VkBool32 swapchainExtFound = 0; enabled_extension_count = 0; memset(extension_names, 0, sizeof(extension_names)); // Get identifier properties. vkGetPhysicalDeviceProperties(gpu, &gpu_props); device_name = gpu_props.deviceName; device_type = gpu_props.deviceType; pipeline_cache_id = String::hex_encode_buffer(gpu_props.pipelineCacheUUID, VK_UUID_SIZE); pipeline_cache_id += "-driver-" + itos(gpu_props.driverVersion); { device_vendor = "Unknown"; uint32_t vendor_idx = 0; while (vendor_names[vendor_idx].name != nullptr) { if (gpu_props.vendorID == vendor_names[vendor_idx].id) { device_vendor = vendor_names[vendor_idx].name; break; } vendor_idx++; } } print_line( "Vulkan API " + itos(vulkan_major) + "." + itos(vulkan_minor) + "." + itos(vulkan_patch) + " - " + "Using Vulkan Device #" + itos(device_index) + ": " + device_vendor + " - " + device_name); device_api_version = gpu_props.apiVersion; err = vkEnumerateDeviceExtensionProperties(gpu, nullptr, &device_extension_count, nullptr); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (device_extension_count > 0) { VkExtensionProperties *device_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * device_extension_count); err = vkEnumerateDeviceExtensionProperties(gpu, nullptr, &device_extension_count, device_extensions); if (err) { free(device_extensions); ERR_FAIL_V(ERR_CANT_CREATE); } for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) { swapchainExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME; } if (!strcmp(VK_KHR_MULTIVIEW_EXTENSION_NAME, device_extensions[i].extensionName)) { // If multiview is supported, enable it. extension_names[enabled_extension_count++] = VK_KHR_MULTIVIEW_EXTENSION_NAME; } if (!strcmp(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME, device_extensions[i].extensionName)) { // if shading rate image is supported, enable it extension_names[enabled_extension_count++] = VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME; } if (!strcmp(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, device_extensions[i].extensionName)) { has_renderpass2_ext = true; extension_names[enabled_extension_count++] = VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME; } if (enabled_extension_count >= MAX_EXTENSIONS) { free(device_extensions); ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG"); } } if (VK_KHR_incremental_present_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. VK_KHR_incremental_present_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, device_extensions[i].extensionName)) { extension_names[enabled_extension_count++] = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME; VK_KHR_incremental_present_enabled = true; } if (enabled_extension_count >= MAX_EXTENSIONS) { free(device_extensions); ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG"); } } } if (VK_GOOGLE_display_timing_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. VK_GOOGLE_display_timing_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME, device_extensions[i].extensionName)) { extension_names[enabled_extension_count++] = VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME; VK_GOOGLE_display_timing_enabled = true; } if (enabled_extension_count >= MAX_EXTENSIONS) { free(device_extensions); ERR_FAIL_V_MSG(ERR_BUG, "Enabled extension count reaches MAX_EXTENSIONS, BUG"); } } } free(device_extensions); } ERR_FAIL_COND_V_MSG(!swapchainExtFound, ERR_CANT_CREATE, "vkEnumerateDeviceExtensionProperties failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME " extension.\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?\n" "vkCreateInstance Failure"); // Call with nullptr data to get count. vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, nullptr); ERR_FAIL_COND_V(queue_family_count == 0, ERR_CANT_CREATE); queue_props = (VkQueueFamilyProperties *)malloc(queue_family_count * sizeof(VkQueueFamilyProperties)); vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, queue_props); // Query fine-grained feature support for this device. // If app has specific feature requirements it should check supported // features based on this query vkGetPhysicalDeviceFeatures(gpu, &physical_device_features); physical_device_features.robustBufferAccess = false; // Turn off robust buffer access, which can hamper performance on some hardware. #define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \ { \ fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \ ERR_FAIL_COND_V_MSG(fp##entrypoint == nullptr, ERR_CANT_CREATE, \ "vkGetInstanceProcAddr failed to find vk" #entrypoint); \ } GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceSupportKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceCapabilitiesKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceFormatsKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfacePresentModesKHR); GET_INSTANCE_PROC_ADDR(inst, GetSwapchainImagesKHR); // Gets capability info for current Vulkan driver. { Error res = _check_capabilities(); if (res != OK) { return res; } } device_initialized = true; return OK; } Error VulkanContext::_create_device() { VkResult err; float queue_priorities[1] = { 0.0 }; VkDeviceQueueCreateInfo queues[2]; queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[0].pNext = nullptr; queues[0].queueFamilyIndex = graphics_queue_family_index; queues[0].queueCount = 1; queues[0].pQueuePriorities = queue_priorities; queues[0].flags = 0; // Before we retrieved what is supported, here we tell Vulkan we want to enable these features using the same structs. void *nextptr = nullptr; VkPhysicalDeviceShaderFloat16Int8FeaturesKHR shader_features = { /*sType*/ VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES_KHR, /*pNext*/ nextptr, /*shaderFloat16*/ shader_capabilities.shader_float16_is_supported, /*shaderInt8*/ shader_capabilities.shader_int8_is_supported, }; nextptr = &shader_features; VkPhysicalDeviceFragmentShadingRateFeaturesKHR vrs_features; if (vrs_capabilities.pipeline_vrs_supported || vrs_capabilities.primitive_vrs_supported || vrs_capabilities.attachment_vrs_supported) { // Insert into our chain to enable these features if they are available. vrs_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR; vrs_features.pNext = nextptr; vrs_features.pipelineFragmentShadingRate = vrs_capabilities.pipeline_vrs_supported; vrs_features.primitiveFragmentShadingRate = vrs_capabilities.primitive_vrs_supported; vrs_features.attachmentFragmentShadingRate = vrs_capabilities.attachment_vrs_supported; nextptr = &vrs_features; } VkPhysicalDeviceVulkan11Features vulkan11features; VkPhysicalDevice16BitStorageFeaturesKHR storage_feature; VkPhysicalDeviceMultiviewFeatures multiview_features; if (vulkan_major > 1 || vulkan_minor >= 2) { // In Vulkan 1.2 and newer we use a newer struct to enable various features. vulkan11features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES; vulkan11features.pNext = nextptr; vulkan11features.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported; vulkan11features.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported; vulkan11features.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported; vulkan11features.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16; vulkan11features.multiview = multiview_capabilities.is_supported; vulkan11features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported; vulkan11features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported; vulkan11features.variablePointersStorageBuffer = 0; vulkan11features.variablePointers = 0; vulkan11features.protectedMemory = 0; vulkan11features.samplerYcbcrConversion = 0; vulkan11features.shaderDrawParameters = 0; nextptr = &vulkan11features; } else { // On Vulkan 1.0 and 1.1 we use our older structs to initialise these features. storage_feature.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR; storage_feature.pNext = nextptr; storage_feature.storageBuffer16BitAccess = storage_buffer_capabilities.storage_buffer_16_bit_access_is_supported; storage_feature.uniformAndStorageBuffer16BitAccess = storage_buffer_capabilities.uniform_and_storage_buffer_16_bit_access_is_supported; storage_feature.storagePushConstant16 = storage_buffer_capabilities.storage_push_constant_16_is_supported; storage_feature.storageInputOutput16 = storage_buffer_capabilities.storage_input_output_16; nextptr = &storage_feature; if (vulkan_major == 1 && vulkan_minor == 1) { multiview_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES; multiview_features.pNext = nextptr; multiview_features.multiview = multiview_capabilities.is_supported; multiview_features.multiviewGeometryShader = multiview_capabilities.geometry_shader_is_supported; multiview_features.multiviewTessellationShader = multiview_capabilities.tessellation_shader_is_supported; nextptr = &multiview_features; } } VkDeviceCreateInfo sdevice = { /*sType*/ VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, /*pNext*/ nextptr, /*flags*/ 0, /*queueCreateInfoCount*/ 1, /*pQueueCreateInfos*/ queues, /*enabledLayerCount*/ 0, /*ppEnabledLayerNames*/ nullptr, /*enabledExtensionCount*/ enabled_extension_count, /*ppEnabledExtensionNames*/ (const char *const *)extension_names, /*pEnabledFeatures*/ &physical_device_features, // If specific features are required, pass them in here. }; if (separate_present_queue) { queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[1].pNext = nullptr; queues[1].queueFamilyIndex = present_queue_family_index; queues[1].queueCount = 1; queues[1].pQueuePriorities = queue_priorities; queues[1].flags = 0; sdevice.queueCreateInfoCount = 2; } if (vulkan_hooks) { if (!vulkan_hooks->create_vulkan_device(&sdevice, &device)) { return ERR_CANT_CREATE; } } else { err = vkCreateDevice(gpu, &sdevice, nullptr, &device); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } return OK; } Error VulkanContext::_initialize_queues(VkSurfaceKHR p_surface) { // Iterate over each queue to learn whether it supports presenting: VkBool32 *supportsPresent = (VkBool32 *)malloc(queue_family_count * sizeof(VkBool32)); for (uint32_t i = 0; i < queue_family_count; i++) { fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i, p_surface, &supportsPresent[i]); } // Search for a graphics and a present queue in the array of queue // families, try to find one that supports both. uint32_t graphicsQueueFamilyIndex = UINT32_MAX; uint32_t presentQueueFamilyIndex = UINT32_MAX; for (uint32_t i = 0; i < queue_family_count; i++) { if ((queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) { if (graphicsQueueFamilyIndex == UINT32_MAX) { graphicsQueueFamilyIndex = i; } if (supportsPresent[i] == VK_TRUE) { graphicsQueueFamilyIndex = i; presentQueueFamilyIndex = i; break; } } } if (presentQueueFamilyIndex == UINT32_MAX) { // If didn't find a queue that supports both graphics and present, then // find a separate present queue. for (uint32_t i = 0; i < queue_family_count; ++i) { if (supportsPresent[i] == VK_TRUE) { presentQueueFamilyIndex = i; break; } } } free(supportsPresent); // Generate error if could not find both a graphics and a present queue. ERR_FAIL_COND_V_MSG(graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX, ERR_CANT_CREATE, "Could not find both graphics and present queues\n"); graphics_queue_family_index = graphicsQueueFamilyIndex; present_queue_family_index = presentQueueFamilyIndex; separate_present_queue = (graphics_queue_family_index != present_queue_family_index); _create_device(); static PFN_vkGetDeviceProcAddr g_gdpa = nullptr; #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ if (!g_gdpa) \ g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(inst, "vkGetDeviceProcAddr"); \ fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \ ERR_FAIL_COND_V_MSG(fp##entrypoint == nullptr, ERR_CANT_CREATE, \ "vkGetDeviceProcAddr failed to find vk" #entrypoint); \ } GET_DEVICE_PROC_ADDR(device, CreateSwapchainKHR); GET_DEVICE_PROC_ADDR(device, DestroySwapchainKHR); GET_DEVICE_PROC_ADDR(device, GetSwapchainImagesKHR); GET_DEVICE_PROC_ADDR(device, AcquireNextImageKHR); GET_DEVICE_PROC_ADDR(device, QueuePresentKHR); if (VK_GOOGLE_display_timing_enabled) { GET_DEVICE_PROC_ADDR(device, GetRefreshCycleDurationGOOGLE); GET_DEVICE_PROC_ADDR(device, GetPastPresentationTimingGOOGLE); } vkGetDeviceQueue(device, graphics_queue_family_index, 0, &graphics_queue); if (!separate_present_queue) { present_queue = graphics_queue; } else { vkGetDeviceQueue(device, present_queue_family_index, 0, &present_queue); } // Get the list of VkFormat's that are supported: uint32_t formatCount; VkResult err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, p_surface, &formatCount, nullptr); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR)); err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, p_surface, &formatCount, surfFormats); if (err) { free(surfFormats); ERR_FAIL_V(ERR_CANT_CREATE); } // If the format list includes just one entry of VK_FORMAT_UNDEFINED, // the surface has no preferred format. Otherwise, at least one // supported format will be returned. if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) { format = VK_FORMAT_B8G8R8A8_UNORM; color_space = surfFormats[0].colorSpace; } else { // These should be ordered with the ones we want to use on top and fallback modes further down // we want a 32bit RGBA unsigned normalised buffer or similar. const VkFormat allowed_formats[] = { VK_FORMAT_B8G8R8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM }; uint32_t allowed_formats_count = sizeof(allowed_formats) / sizeof(VkFormat); if (formatCount < 1) { free(surfFormats); ERR_FAIL_V_MSG(ERR_CANT_CREATE, "formatCount less than 1"); } // Find the first format that we support. format = VK_FORMAT_UNDEFINED; for (uint32_t af = 0; af < allowed_formats_count && format == VK_FORMAT_UNDEFINED; af++) { for (uint32_t sf = 0; sf < formatCount && format == VK_FORMAT_UNDEFINED; sf++) { if (surfFormats[sf].format == allowed_formats[af]) { format = surfFormats[sf].format; color_space = surfFormats[sf].colorSpace; } } } if (format == VK_FORMAT_UNDEFINED) { free(surfFormats); ERR_FAIL_V_MSG(ERR_CANT_CREATE, "No usable surface format found."); } } free(surfFormats); Error serr = _create_semaphores(); if (serr) { return serr; } queues_initialized = true; return OK; } Error VulkanContext::_create_semaphores() { VkResult err; // Create semaphores to synchronize acquiring presentable buffers before // rendering and waiting for drawing to be complete before presenting. VkSemaphoreCreateInfo semaphoreCreateInfo = { /*sType*/ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ 0, }; // Create fences that we can use to throttle if we get too far // ahead of the image presents. VkFenceCreateInfo fence_ci = { /*sType*/ VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ VK_FENCE_CREATE_SIGNALED_BIT }; for (uint32_t i = 0; i < FRAME_LAG; i++) { err = vkCreateFence(device, &fence_ci, nullptr, &fences[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &draw_complete_semaphores[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (separate_present_queue) { err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &image_ownership_semaphores[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } frame_index = 0; // Get Memory information and properties. vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties); return OK; } bool VulkanContext::_use_validation_layers() { return Engine::get_singleton()->is_validation_layers_enabled(); } VkExtent2D VulkanContext::_compute_swapchain_extent(const VkSurfaceCapabilitiesKHR &p_surf_capabilities, int *p_window_width, int *p_window_height) const { // Width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF. if (p_surf_capabilities.currentExtent.width == 0xFFFFFFFF) { // If the surface size is undefined, the size is set to the size // of the images requested, which must fit within the minimum and // maximum values. VkExtent2D extent = {}; extent.width = CLAMP((uint32_t)(*p_window_width), p_surf_capabilities.minImageExtent.width, p_surf_capabilities.maxImageExtent.width); extent.height = CLAMP((uint32_t)(*p_window_height), p_surf_capabilities.minImageExtent.height, p_surf_capabilities.maxImageExtent.height); return extent; } else { // If the surface size is defined, the swap chain size must match. *p_window_width = p_surf_capabilities.currentExtent.width; *p_window_height = p_surf_capabilities.currentExtent.height; return p_surf_capabilities.currentExtent; } } Error VulkanContext::_window_create(DisplayServer::WindowID p_window_id, DisplayServer::VSyncMode p_vsync_mode, VkSurfaceKHR p_surface, int p_width, int p_height) { ERR_FAIL_COND_V(windows.has(p_window_id), ERR_INVALID_PARAMETER); if (!device_initialized) { Error err = _create_physical_device(p_surface); ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE); } if (!queues_initialized) { // We use a single GPU, but we need a surface to initialize the // queues, so this process must be deferred until a surface // is created. Error err = _initialize_queues(p_surface); ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE); } Window window; window.surface = p_surface; window.width = p_width; window.height = p_height; window.vsync_mode = p_vsync_mode; Error err = _update_swap_chain(&window); ERR_FAIL_COND_V(err != OK, ERR_CANT_CREATE); VkSemaphoreCreateInfo semaphoreCreateInfo = { /*sType*/ VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ 0, }; for (uint32_t i = 0; i < FRAME_LAG; i++) { VkResult vkerr = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &window.image_acquired_semaphores[i]); ERR_FAIL_COND_V(vkerr, ERR_CANT_CREATE); } windows[p_window_id] = window; return OK; } void VulkanContext::window_resize(DisplayServer::WindowID p_window, int p_width, int p_height) { ERR_FAIL_COND(!windows.has(p_window)); windows[p_window].width = p_width; windows[p_window].height = p_height; _update_swap_chain(&windows[p_window]); } int VulkanContext::window_get_width(DisplayServer::WindowID p_window) { ERR_FAIL_COND_V(!windows.has(p_window), -1); return windows[p_window].width; } int VulkanContext::window_get_height(DisplayServer::WindowID p_window) { ERR_FAIL_COND_V(!windows.has(p_window), -1); return windows[p_window].height; } bool VulkanContext::window_is_valid_swapchain(DisplayServer::WindowID p_window) { ERR_FAIL_COND_V(!windows.has(p_window), false); Window *w = &windows[p_window]; return w->swapchain_image_resources != VK_NULL_HANDLE; } VkRenderPass VulkanContext::window_get_render_pass(DisplayServer::WindowID p_window) { ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE); Window *w = &windows[p_window]; // Vulkan use of currentbuffer. return w->render_pass; } VkFramebuffer VulkanContext::window_get_framebuffer(DisplayServer::WindowID p_window) { ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE); ERR_FAIL_COND_V(!buffers_prepared, VK_NULL_HANDLE); Window *w = &windows[p_window]; // Vulkan use of currentbuffer. if (w->swapchain_image_resources != VK_NULL_HANDLE) { return w->swapchain_image_resources[w->current_buffer].framebuffer; } else { return VK_NULL_HANDLE; } } void VulkanContext::window_destroy(DisplayServer::WindowID p_window_id) { ERR_FAIL_COND(!windows.has(p_window_id)); _clean_up_swap_chain(&windows[p_window_id]); for (uint32_t i = 0; i < FRAME_LAG; i++) { vkDestroySemaphore(device, windows[p_window_id].image_acquired_semaphores[i], nullptr); } vkDestroySurfaceKHR(inst, windows[p_window_id].surface, nullptr); windows.erase(p_window_id); } Error VulkanContext::_clean_up_swap_chain(Window *window) { if (!window->swapchain) { return OK; } vkDeviceWaitIdle(device); // This destroys images associated it seems. fpDestroySwapchainKHR(device, window->swapchain, nullptr); window->swapchain = VK_NULL_HANDLE; vkDestroyRenderPass(device, window->render_pass, nullptr); if (window->swapchain_image_resources) { for (uint32_t i = 0; i < swapchainImageCount; i++) { vkDestroyImageView(device, window->swapchain_image_resources[i].view, nullptr); vkDestroyFramebuffer(device, window->swapchain_image_resources[i].framebuffer, nullptr); } free(window->swapchain_image_resources); window->swapchain_image_resources = nullptr; } if (separate_present_queue) { vkDestroyCommandPool(device, window->present_cmd_pool, nullptr); } return OK; } Error VulkanContext::_update_swap_chain(Window *window) { VkResult err; if (window->swapchain) { _clean_up_swap_chain(window); } // Check the surface capabilities and formats. VkSurfaceCapabilitiesKHR surfCapabilities; err = fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, window->surface, &surfCapabilities); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); uint32_t presentModeCount; err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, nullptr); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR)); ERR_FAIL_COND_V(!presentModes, ERR_CANT_CREATE); err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, presentModes); if (err) { free(presentModes); ERR_FAIL_V(ERR_CANT_CREATE); } VkExtent2D swapchainExtent = _compute_swapchain_extent(surfCapabilities, &window->width, &window->height); if (window->width == 0 || window->height == 0) { free(presentModes); // Likely window minimized, no swapchain created. return OK; } // The FIFO present mode is guaranteed by the spec to be supported // and to have no tearing. It's a great default present mode to use. // There are times when you may wish to use another present mode. The // following code shows how to select them, and the comments provide some // reasons you may wish to use them. // // It should be noted that Vulkan 1.0 doesn't provide a method for // synchronizing rendering with the presentation engine's display. There // is a method provided for throttling rendering with the display, but // there are some presentation engines for which this method will not work. // If an application doesn't throttle its rendering, and if it renders much // faster than the refresh rate of the display, this can waste power on // mobile devices. That is because power is being spent rendering images // that may never be seen. // VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about // tearing, or have some way of synchronizing their rendering with the // display. // VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that // generally render a new presentable image every refresh cycle, but are // occasionally early. In this case, the application wants the new image // to be displayed instead of the previously-queued-for-presentation image // that has not yet been displayed. // VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally // render a new presentable image every refresh cycle, but are occasionally // late. In this case (perhaps because of stuttering/latency concerns), // the application wants the late image to be immediately displayed, even // though that may mean some tearing. VkPresentModeKHR requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR; switch (window->vsync_mode) { case DisplayServer::VSYNC_MAILBOX: requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_MAILBOX_KHR; break; case DisplayServer::VSYNC_ADAPTIVE: requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_RELAXED_KHR; break; case DisplayServer::VSYNC_ENABLED: requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_FIFO_KHR; break; case DisplayServer::VSYNC_DISABLED: requested_present_mode = VkPresentModeKHR::VK_PRESENT_MODE_IMMEDIATE_KHR; break; } // Check if the requested mode is available. bool present_mode_available = false; for (uint32_t i = 0; i < presentModeCount; i++) { if (presentModes[i] == requested_present_mode) { present_mode_available = true; } } // Set the windows present mode if it is available, otherwise FIFO is used (guaranteed supported). if (present_mode_available) { window->presentMode = requested_present_mode; } else { String present_mode_string; switch (window->vsync_mode) { case DisplayServer::VSYNC_MAILBOX: present_mode_string = "Mailbox"; break; case DisplayServer::VSYNC_ADAPTIVE: present_mode_string = "Adaptive"; break; case DisplayServer::VSYNC_ENABLED: present_mode_string = "Enabled"; break; case DisplayServer::VSYNC_DISABLED: present_mode_string = "Disabled"; break; } WARN_PRINT(vformat("The requested V-Sync mode %s is not available. Falling back to V-Sync mode Enabled.", present_mode_string)); window->vsync_mode = DisplayServer::VSYNC_ENABLED; // Set to default. } print_verbose("Using present mode: " + String(string_VkPresentModeKHR(window->presentMode))); free(presentModes); // Determine the number of VkImages to use in the swap chain. // Application desires to acquire 3 images at a time for triple // buffering. uint32_t desiredNumOfSwapchainImages = 3; if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) { desiredNumOfSwapchainImages = surfCapabilities.minImageCount; } // If maxImageCount is 0, we can ask for as many images as we want; // otherwise we're limited to maxImageCount. if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) { // Application must settle for fewer images than desired. desiredNumOfSwapchainImages = surfCapabilities.maxImageCount; } VkSurfaceTransformFlagsKHR preTransform; if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { preTransform = surfCapabilities.currentTransform; } VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; if (OS::get_singleton()->is_layered_allowed() || !(surfCapabilities.supportedCompositeAlpha & compositeAlpha)) { // Find a supported composite alpha mode - one of these is guaranteed to be set. VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = { VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, }; for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) { if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) { compositeAlpha = compositeAlphaFlags[i]; break; } } } VkSwapchainCreateInfoKHR swapchain_ci = { /*sType*/ VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, /*pNext*/ nullptr, /*flags*/ 0, /*surface*/ window->surface, /*minImageCount*/ desiredNumOfSwapchainImages, /*imageFormat*/ format, /*imageColorSpace*/ color_space, /*imageExtent*/ { /*width*/ swapchainExtent.width, /*height*/ swapchainExtent.height, }, /*imageArrayLayers*/ 1, /*imageUsage*/ VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, /*imageSharingMode*/ VK_SHARING_MODE_EXCLUSIVE, /*queueFamilyIndexCount*/ 0, /*pQueueFamilyIndices*/ nullptr, /*preTransform*/ (VkSurfaceTransformFlagBitsKHR)preTransform, /*compositeAlpha*/ compositeAlpha, /*presentMode*/ window->presentMode, /*clipped*/ true, /*oldSwapchain*/ VK_NULL_HANDLE, }; err = fpCreateSwapchainKHR(device, &swapchain_ci, nullptr, &window->swapchain); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); uint32_t sp_image_count; err = fpGetSwapchainImagesKHR(device, window->swapchain, &sp_image_count, nullptr); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (swapchainImageCount == 0) { // Assign here for the first time. swapchainImageCount = sp_image_count; } else { ERR_FAIL_COND_V(swapchainImageCount != sp_image_count, ERR_BUG); } VkImage *swapchainImages = (VkImage *)malloc(swapchainImageCount * sizeof(VkImage)); ERR_FAIL_COND_V(!swapchainImages, ERR_CANT_CREATE); err = fpGetSwapchainImagesKHR(device, window->swapchain, &swapchainImageCount, swapchainImages); if (err) { free(swapchainImages); ERR_FAIL_V(ERR_CANT_CREATE); } window->swapchain_image_resources = (SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * swapchainImageCount); if (!window->swapchain_image_resources) { free(swapchainImages); ERR_FAIL_V(ERR_CANT_CREATE); } for (uint32_t i = 0; i < swapchainImageCount; i++) { VkImageViewCreateInfo color_image_view = { /*sType*/ VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ 0, /*image*/ swapchainImages[i], /*viewType*/ VK_IMAGE_VIEW_TYPE_2D, /*format*/ format, /*components*/ { /*r*/ VK_COMPONENT_SWIZZLE_R, /*g*/ VK_COMPONENT_SWIZZLE_G, /*b*/ VK_COMPONENT_SWIZZLE_B, /*a*/ VK_COMPONENT_SWIZZLE_A, }, /*subresourceRange*/ { /*aspectMask*/ VK_IMAGE_ASPECT_COLOR_BIT, /*baseMipLevel*/ 0, /*levelCount*/ 1, /*baseArrayLayer*/ 0, /*layerCount*/ 1 }, }; window->swapchain_image_resources[i].image = swapchainImages[i]; color_image_view.image = window->swapchain_image_resources[i].image; err = vkCreateImageView(device, &color_image_view, nullptr, &window->swapchain_image_resources[i].view); if (err) { free(swapchainImages); ERR_FAIL_V(ERR_CANT_CREATE); } } free(swapchainImages); /******** FRAMEBUFFER ************/ { const VkAttachmentDescription2KHR attachment = { /*sType*/ VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2_KHR, /*pNext*/ nullptr, /*flags*/ 0, /*format*/ format, /*samples*/ VK_SAMPLE_COUNT_1_BIT, /*loadOp*/ VK_ATTACHMENT_LOAD_OP_CLEAR, /*storeOp*/ VK_ATTACHMENT_STORE_OP_STORE, /*stencilLoadOp*/ VK_ATTACHMENT_LOAD_OP_DONT_CARE, /*stencilStoreOp*/ VK_ATTACHMENT_STORE_OP_DONT_CARE, /*initialLayout*/ VK_IMAGE_LAYOUT_UNDEFINED, /*finalLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, }; const VkAttachmentReference2KHR color_reference = { /*sType*/ VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2_KHR, /*pNext*/ nullptr, /*attachment*/ 0, /*layout*/ VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, /*aspectMask*/ 0, }; const VkSubpassDescription2KHR subpass = { /*sType*/ VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2_KHR, /*pNext*/ nullptr, /*flags*/ 0, /*pipelineBindPoint*/ VK_PIPELINE_BIND_POINT_GRAPHICS, /*viewMask*/ 0, /*inputAttachmentCount*/ 0, /*pInputAttachments*/ nullptr, /*colorAttachmentCount*/ 1, /*pColorAttachments*/ &color_reference, /*pResolveAttachments*/ nullptr, /*pDepthStencilAttachment*/ nullptr, /*preserveAttachmentCount*/ 0, /*pPreserveAttachments*/ nullptr, }; const VkRenderPassCreateInfo2KHR rp_info = { /*sType*/ VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2_KHR, /*pNext*/ nullptr, /*flags*/ 0, /*attachmentCount*/ 1, /*pAttachments*/ &attachment, /*subpassCount*/ 1, /*pSubpasses*/ &subpass, /*dependencyCount*/ 0, /*pDependencies*/ nullptr, /*correlatedViewMaskCount*/ 0, /*pCorrelatedViewMasks*/ nullptr, }; err = vkCreateRenderPass2KHR(device, &rp_info, nullptr, &window->render_pass); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); for (uint32_t i = 0; i < swapchainImageCount; i++) { const VkFramebufferCreateInfo fb_info = { /*sType*/ VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ 0, /*renderPass*/ window->render_pass, /*attachmentCount*/ 1, /*pAttachments*/ &window->swapchain_image_resources[i].view, /*width*/ (uint32_t)window->width, /*height*/ (uint32_t)window->height, /*layers*/ 1, }; err = vkCreateFramebuffer(device, &fb_info, nullptr, &window->swapchain_image_resources[i].framebuffer); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } /******** SEPARATE PRESENT QUEUE ************/ if (separate_present_queue) { const VkCommandPoolCreateInfo present_cmd_pool_info = { /*sType*/ VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, /*pNext*/ nullptr, /*flags*/ 0, /*queueFamilyIndex*/ present_queue_family_index, }; err = vkCreateCommandPool(device, &present_cmd_pool_info, nullptr, &window->present_cmd_pool); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); const VkCommandBufferAllocateInfo present_cmd_info = { /*sType*/ VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, /*pNext*/ nullptr, /*commandPool*/ window->present_cmd_pool, /*level*/ VK_COMMAND_BUFFER_LEVEL_PRIMARY, /*commandBufferCount*/ 1, }; for (uint32_t i = 0; i < swapchainImageCount; i++) { err = vkAllocateCommandBuffers(device, &present_cmd_info, &window->swapchain_image_resources[i].graphics_to_present_cmd); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); const VkCommandBufferBeginInfo cmd_buf_info = { /*sType*/ VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, /*pNext*/ nullptr, /*flags*/ VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, /*pInheritanceInfo*/ nullptr, }; err = vkBeginCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkImageMemoryBarrier image_ownership_barrier = { /*sType*/ VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, /*pNext*/ nullptr, /*srcAccessMask*/ 0, /*dstAccessMask*/ VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, /*oldLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, /*newLayout*/ VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, /*srcQueueFamilyIndex*/ graphics_queue_family_index, /*dstQueueFamilyIndex*/ present_queue_family_index, /*image*/ window->swapchain_image_resources[i].image, /*subresourceRange*/ { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } }; vkCmdPipelineBarrier(window->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, nullptr, 0, nullptr, 1, &image_ownership_barrier); err = vkEndCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } // Reset current buffer. window->current_buffer = 0; return OK; } Error VulkanContext::initialize() { #ifdef USE_VOLK if (volkInitialize() != VK_SUCCESS) { return FAILED; } #endif Error err = _create_instance(); if (err != OK) { return err; } return OK; } void VulkanContext::set_setup_buffer(VkCommandBuffer p_command_buffer) { command_buffer_queue.write[0] = p_command_buffer; } void VulkanContext::append_command_buffer(VkCommandBuffer p_command_buffer) { if (command_buffer_queue.size() <= command_buffer_count) { command_buffer_queue.resize(command_buffer_count + 1); } command_buffer_queue.write[command_buffer_count] = p_command_buffer; command_buffer_count++; } void VulkanContext::flush(bool p_flush_setup, bool p_flush_pending) { // Ensure everything else pending is executed. vkDeviceWaitIdle(device); // Flush the pending setup buffer. bool setup_flushable = p_flush_setup && command_buffer_queue[0]; bool pending_flushable = p_flush_pending && command_buffer_count > 1; if (setup_flushable) { // Use a fence to wait for everything done. VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = nullptr; submit_info.pWaitDstStageMask = nullptr; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = nullptr; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = command_buffer_queue.ptr(); submit_info.signalSemaphoreCount = pending_flushable ? 1 : 0; submit_info.pSignalSemaphores = pending_flushable ? &draw_complete_semaphores[frame_index] : nullptr; VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE); command_buffer_queue.write[0] = nullptr; ERR_FAIL_COND(err); } if (pending_flushable) { // Use a fence to wait for everything to finish. VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = nullptr; VkPipelineStageFlags wait_stage_mask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; submit_info.pWaitDstStageMask = setup_flushable ? &wait_stage_mask : nullptr; submit_info.waitSemaphoreCount = setup_flushable ? 1 : 0; submit_info.pWaitSemaphores = setup_flushable ? &draw_complete_semaphores[frame_index] : nullptr; submit_info.commandBufferCount = command_buffer_count - 1; submit_info.pCommandBuffers = command_buffer_queue.ptr() + 1; submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = nullptr; VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, VK_NULL_HANDLE); command_buffer_count = 1; ERR_FAIL_COND(err); } vkDeviceWaitIdle(device); } Error VulkanContext::prepare_buffers() { if (!queues_initialized) { return OK; } VkResult err; // Ensure no more than FRAME_LAG renderings are outstanding. vkWaitForFences(device, 1, &fences[frame_index], VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &fences[frame_index]); for (KeyValue &E : windows) { Window *w = &E.value; w->semaphore_acquired = false; if (w->swapchain == VK_NULL_HANDLE) { continue; } do { // Get the index of the next available swapchain image. err = fpAcquireNextImageKHR(device, w->swapchain, UINT64_MAX, w->image_acquired_semaphores[frame_index], VK_NULL_HANDLE, &w->current_buffer); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // Swapchain is out of date (e.g. the window was resized) and // must be recreated. print_verbose("Vulkan: Early out of date swapchain, recreating."); // resize_notify(); _update_swap_chain(w); } else if (err == VK_SUBOPTIMAL_KHR) { // Swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. print_verbose("Vulkan: Early suboptimal swapchain."); break; } else if (err != VK_SUCCESS) { ERR_BREAK_MSG(err != VK_SUCCESS, "Vulkan: Did not create swapchain successfully."); } else { w->semaphore_acquired = true; } } while (err != VK_SUCCESS); } buffers_prepared = true; return OK; } Error VulkanContext::swap_buffers() { if (!queues_initialized) { return OK; } // print_line("swapbuffers?"); VkResult err; #if 0 if (VK_GOOGLE_display_timing_enabled) { // Look at what happened to previous presents, and make appropriate // adjustments in timing. DemoUpdateTargetIPD(demo); // Note: a real application would position its geometry to that it's in // the correct location for when the next image is presented. It might // also wait, so that there's less latency between any input and when // the next image is rendered/presented. This demo program is so // simple that it doesn't do either of those. } #endif // Wait for the image acquired semaphore to be signalled to ensure // that the image won't be rendered to until the presentation // engine has fully released ownership to the application, and it is // okay to render to the image. const VkCommandBuffer *commands_ptr = nullptr; uint32_t commands_to_submit = 0; if (command_buffer_queue[0] == nullptr) { // No setup command, but commands to submit, submit from the first and skip command. if (command_buffer_count > 1) { commands_ptr = command_buffer_queue.ptr() + 1; commands_to_submit = command_buffer_count - 1; } } else { commands_ptr = command_buffer_queue.ptr(); commands_to_submit = command_buffer_count; } VkSemaphore *semaphores_to_acquire = (VkSemaphore *)alloca(windows.size() * sizeof(VkSemaphore)); VkPipelineStageFlags *pipe_stage_flags = (VkPipelineStageFlags *)alloca(windows.size() * sizeof(VkPipelineStageFlags)); uint32_t semaphores_to_acquire_count = 0; for (KeyValue &E : windows) { Window *w = &E.value; if (w->semaphore_acquired) { semaphores_to_acquire[semaphores_to_acquire_count] = w->image_acquired_semaphores[frame_index]; pipe_stage_flags[semaphores_to_acquire_count] = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; semaphores_to_acquire_count++; } } VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = nullptr; submit_info.waitSemaphoreCount = semaphores_to_acquire_count; submit_info.pWaitSemaphores = semaphores_to_acquire; submit_info.pWaitDstStageMask = pipe_stage_flags; submit_info.commandBufferCount = commands_to_submit; submit_info.pCommandBuffers = commands_ptr; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &draw_complete_semaphores[frame_index]; err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); command_buffer_queue.write[0] = nullptr; command_buffer_count = 1; if (separate_present_queue) { // If we are using separate queues, change image ownership to the // present queue before presenting, waiting for the draw complete // semaphore and signalling the ownership released semaphore when finished. VkFence nullFence = VK_NULL_HANDLE; pipe_stage_flags[0] = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &draw_complete_semaphores[frame_index]; submit_info.commandBufferCount = 0; VkCommandBuffer *cmdbufptr = (VkCommandBuffer *)alloca(sizeof(VkCommandBuffer *) * windows.size()); submit_info.pCommandBuffers = cmdbufptr; for (KeyValue &E : windows) { Window *w = &E.value; if (w->swapchain == VK_NULL_HANDLE) { continue; } cmdbufptr[submit_info.commandBufferCount] = w->swapchain_image_resources[w->current_buffer].graphics_to_present_cmd; submit_info.commandBufferCount++; } submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &image_ownership_semaphores[frame_index]; err = vkQueueSubmit(present_queue, 1, &submit_info, nullFence); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } // If we are using separate queues, we have to wait for image ownership, // otherwise wait for draw complete. VkPresentInfoKHR present = { /*sType*/ VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, /*pNext*/ nullptr, /*waitSemaphoreCount*/ 1, /*pWaitSemaphores*/ (separate_present_queue) ? &image_ownership_semaphores[frame_index] : &draw_complete_semaphores[frame_index], /*swapchainCount*/ 0, /*pSwapchain*/ nullptr, /*pImageIndices*/ nullptr, /*pResults*/ nullptr, }; VkSwapchainKHR *pSwapchains = (VkSwapchainKHR *)alloca(sizeof(VkSwapchainKHR *) * windows.size()); uint32_t *pImageIndices = (uint32_t *)alloca(sizeof(uint32_t *) * windows.size()); present.pSwapchains = pSwapchains; present.pImageIndices = pImageIndices; for (KeyValue &E : windows) { Window *w = &E.value; if (w->swapchain == VK_NULL_HANDLE) { continue; } pSwapchains[present.swapchainCount] = w->swapchain; pImageIndices[present.swapchainCount] = w->current_buffer; present.swapchainCount++; } #if 0 if (VK_KHR_incremental_present_enabled) { // If using VK_KHR_incremental_present, we provide a hint of the region // that contains changed content relative to the previously-presented // image. The implementation can use this hint in order to save // work/power (by only copying the region in the hint). The // implementation is free to ignore the hint though, and so we must // ensure that the entire image has the correctly-drawn content. uint32_t eighthOfWidth = width / 8; uint32_t eighthOfHeight = height / 8; VkRectLayerKHR rect = { /*offset.x*/ eighthOfWidth, /*offset.y*/ eighthOfHeight, /*extent.width*/ eighthOfWidth * 6, /*extent.height*/ eighthOfHeight * 6, /*layer*/ 0, }; VkPresentRegionKHR region = { /*rectangleCount*/ 1, /*pRectangles*/ &rect, }; VkPresentRegionsKHR regions = { /*sType*/ VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR, /*pNext*/ present.pNext, /*swapchainCount*/ present.swapchainCount, /*pRegions*/ ®ion, }; present.pNext = ®ions; } #endif #if 0 if (VK_GOOGLE_display_timing_enabled) { VkPresentTimeGOOGLE ptime; if (prev_desired_present_time == 0) { // This must be the first present for this swapchain. // // We don't know where we are relative to the presentation engine's // display's refresh cycle. We also don't know how long rendering // takes. Let's make a grossly-simplified assumption that the // desiredPresentTime should be half way between now and // now+target_IPD. We will adjust over time. uint64_t curtime = getTimeInNanoseconds(); if (curtime == 0) { // Since we didn't find out the current time, don't give a // desiredPresentTime. ptime.desiredPresentTime = 0; } else { ptime.desiredPresentTime = curtime + (target_IPD >> 1); } } else { ptime.desiredPresentTime = (prev_desired_present_time + target_IPD); } ptime.presentID = next_present_id++; prev_desired_present_time = ptime.desiredPresentTime; VkPresentTimesInfoGOOGLE present_time = { /*sType*/ VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE, /*pNext*/ present.pNext, /*swapchainCount*/ present.swapchainCount, /*pTimes*/ &ptime, }; if (VK_GOOGLE_display_timing_enabled) { present.pNext = &present_time; } } #endif // print_line("current buffer: " + itos(current_buffer)); err = fpQueuePresentKHR(present_queue, &present); frame_index += 1; frame_index %= FRAME_LAG; if (err == VK_ERROR_OUT_OF_DATE_KHR) { // Swapchain is out of date (e.g. the window was resized) and // must be recreated. print_verbose("Vulkan: Swapchain is out of date, recreating."); resize_notify(); } else if (err == VK_SUBOPTIMAL_KHR) { // Swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. print_verbose("Vulkan: Swapchain is suboptimal."); } else { ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } buffers_prepared = false; return OK; } void VulkanContext::resize_notify() { } VkDevice VulkanContext::get_device() { return device; } VkPhysicalDevice VulkanContext::get_physical_device() { return gpu; } int VulkanContext::get_swapchain_image_count() const { return swapchainImageCount; } VkQueue VulkanContext::get_graphics_queue() const { return graphics_queue; } uint32_t VulkanContext::get_graphics_queue_family_index() const { return graphics_queue_family_index; } VkFormat VulkanContext::get_screen_format() const { return format; } VkPhysicalDeviceLimits VulkanContext::get_device_limits() const { return gpu_props.limits; } RID VulkanContext::local_device_create() { LocalDevice ld; { // Create device. VkResult err; float queue_priorities[1] = { 0.0 }; VkDeviceQueueCreateInfo queues[2]; queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[0].pNext = nullptr; queues[0].queueFamilyIndex = graphics_queue_family_index; queues[0].queueCount = 1; queues[0].pQueuePriorities = queue_priorities; queues[0].flags = 0; VkDeviceCreateInfo sdevice = { /*sType =*/VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, /*pNext */ nullptr, /*flags */ 0, /*queueCreateInfoCount */ 1, /*pQueueCreateInfos */ queues, /*enabledLayerCount */ 0, /*ppEnabledLayerNames */ nullptr, /*enabledExtensionCount */ enabled_extension_count, /*ppEnabledExtensionNames */ (const char *const *)extension_names, /*pEnabledFeatures */ &physical_device_features, // If specific features are required, pass them in here. }; err = vkCreateDevice(gpu, &sdevice, nullptr, &ld.device); ERR_FAIL_COND_V(err, RID()); } { // Create graphics queue. vkGetDeviceQueue(ld.device, graphics_queue_family_index, 0, &ld.queue); } return local_device_owner.make_rid(ld); } VkDevice VulkanContext::local_device_get_vk_device(RID p_local_device) { LocalDevice *ld = local_device_owner.get_or_null(p_local_device); return ld->device; } void VulkanContext::local_device_push_command_buffers(RID p_local_device, const VkCommandBuffer *p_buffers, int p_count) { LocalDevice *ld = local_device_owner.get_or_null(p_local_device); ERR_FAIL_COND(ld->waiting); VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = nullptr; submit_info.pWaitDstStageMask = nullptr; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = nullptr; submit_info.commandBufferCount = p_count; submit_info.pCommandBuffers = p_buffers; submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = nullptr; VkResult err = vkQueueSubmit(ld->queue, 1, &submit_info, VK_NULL_HANDLE); if (err == VK_ERROR_OUT_OF_HOST_MEMORY) { print_line("Vulkan: Out of host memory!"); } if (err == VK_ERROR_OUT_OF_DEVICE_MEMORY) { print_line("Vulkan: Out of device memory!"); } if (err == VK_ERROR_DEVICE_LOST) { print_line("Vulkan: Device lost!"); } ERR_FAIL_COND(err); ld->waiting = true; } void VulkanContext::local_device_sync(RID p_local_device) { LocalDevice *ld = local_device_owner.get_or_null(p_local_device); ERR_FAIL_COND(!ld->waiting); vkDeviceWaitIdle(ld->device); ld->waiting = false; } void VulkanContext::local_device_free(RID p_local_device) { LocalDevice *ld = local_device_owner.get_or_null(p_local_device); vkDestroyDevice(ld->device, nullptr); local_device_owner.free(p_local_device); } void VulkanContext::command_begin_label(VkCommandBuffer p_command_buffer, String p_label_name, const Color p_color) { if (!enabled_debug_utils) { return; } CharString cs = p_label_name.utf8(); VkDebugUtilsLabelEXT label; label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT; label.pNext = nullptr; label.pLabelName = cs.get_data(); label.color[0] = p_color[0]; label.color[1] = p_color[1]; label.color[2] = p_color[2]; label.color[3] = p_color[3]; CmdBeginDebugUtilsLabelEXT(p_command_buffer, &label); } void VulkanContext::command_insert_label(VkCommandBuffer p_command_buffer, String p_label_name, const Color p_color) { if (!enabled_debug_utils) { return; } CharString cs = p_label_name.utf8(); VkDebugUtilsLabelEXT label; label.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT; label.pNext = nullptr; label.pLabelName = cs.get_data(); label.color[0] = p_color[0]; label.color[1] = p_color[1]; label.color[2] = p_color[2]; label.color[3] = p_color[3]; CmdInsertDebugUtilsLabelEXT(p_command_buffer, &label); } void VulkanContext::command_end_label(VkCommandBuffer p_command_buffer) { if (!enabled_debug_utils) { return; } CmdEndDebugUtilsLabelEXT(p_command_buffer); } void VulkanContext::set_object_name(VkObjectType p_object_type, uint64_t p_object_handle, String p_object_name) { if (!enabled_debug_utils) { return; } CharString obj_data = p_object_name.utf8(); VkDebugUtilsObjectNameInfoEXT name_info; name_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT; name_info.pNext = nullptr; name_info.objectType = p_object_type; name_info.objectHandle = p_object_handle; name_info.pObjectName = obj_data.get_data(); SetDebugUtilsObjectNameEXT(device, &name_info); } String VulkanContext::get_device_vendor_name() const { return device_vendor; } String VulkanContext::get_device_name() const { return device_name; } RenderingDevice::DeviceType VulkanContext::get_device_type() const { return RenderingDevice::DeviceType(device_type); } String VulkanContext::get_device_api_version() const { return vformat("%d.%d.%d", vulkan_major, vulkan_minor, vulkan_patch); } String VulkanContext::get_device_pipeline_cache_uuid() const { return pipeline_cache_id; } DisplayServer::VSyncMode VulkanContext::get_vsync_mode(DisplayServer::WindowID p_window) const { ERR_FAIL_COND_V_MSG(!windows.has(p_window), DisplayServer::VSYNC_ENABLED, "Could not get V-Sync mode for window with WindowID " + itos(p_window) + " because it does not exist."); return windows[p_window].vsync_mode; } void VulkanContext::set_vsync_mode(DisplayServer::WindowID p_window, DisplayServer::VSyncMode p_mode) { ERR_FAIL_COND_MSG(!windows.has(p_window), "Could not set V-Sync mode for window with WindowID " + itos(p_window) + " because it does not exist."); windows[p_window].vsync_mode = p_mode; _update_swap_chain(&windows[p_window]); } VulkanContext::VulkanContext() { command_buffer_queue.resize(1); // First one is always the setup command. command_buffer_queue.write[0] = nullptr; } VulkanContext::~VulkanContext() { if (queue_props) { free(queue_props); } if (device_initialized) { for (uint32_t i = 0; i < FRAME_LAG; i++) { vkDestroyFence(device, fences[i], nullptr); vkDestroySemaphore(device, draw_complete_semaphores[i], nullptr); if (separate_present_queue) { vkDestroySemaphore(device, image_ownership_semaphores[i], nullptr); } } if (inst_initialized && enabled_debug_utils) { DestroyDebugUtilsMessengerEXT(inst, dbg_messenger, nullptr); } if (inst_initialized && dbg_debug_report != VK_NULL_HANDLE) { DestroyDebugReportCallbackEXT(inst, dbg_debug_report, nullptr); } vkDestroyDevice(device, nullptr); } if (inst_initialized) { vkDestroyInstance(inst, nullptr); } }