/*************************************************************************/ /* light_storage.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef GLES3_ENABLED #include "light_storage.h" #include "config.h" #include "texture_storage.h" using namespace GLES3; LightStorage *LightStorage::singleton = nullptr; LightStorage *LightStorage::get_singleton() { return singleton; } LightStorage::LightStorage() { singleton = this; } LightStorage::~LightStorage() { singleton = nullptr; } /* Light API */ void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) { Light light; light.type = p_type; light.param[RS::LIGHT_PARAM_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5; light.param[RS::LIGHT_PARAM_RANGE] = 1.0; light.param[RS::LIGHT_PARAM_SIZE] = 0.0; light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0; light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45; light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6; light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8; light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_OPACITY] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02; light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0; light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0; light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05; light_owner.initialize_rid(p_light, light); } RID LightStorage::directional_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::directional_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_DIRECTIONAL); } RID LightStorage::omni_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::omni_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_OMNI); } RID LightStorage::spot_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::spot_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_SPOT); } void LightStorage::light_free(RID p_rid) { light_set_projector(p_rid, RID()); //clear projector // delete the texture Light *light = light_owner.get_or_null(p_rid); light->dependency.deleted_notify(p_rid); light_owner.free(p_rid); } void LightStorage::light_set_color(RID p_light, const Color &p_color) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->color = p_color; } void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX); if (light->param[p_param] == p_value) { return; } switch (p_param) { case RS::LIGHT_PARAM_RANGE: case RS::LIGHT_PARAM_SPOT_ANGLE: case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE: case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET: case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS: case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE: case RS::LIGHT_PARAM_SHADOW_BIAS: { light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } break; case RS::LIGHT_PARAM_SIZE: { if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) { //changing from no size to size and the opposite light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); } } break; default: { } } light->param[p_param] = p_value; } void LightStorage::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->shadow = p_enabled; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_projector(RID p_light, RID p_texture) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); if (light->projector == p_texture) { return; } if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) { texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } light->projector = p_texture; if (light->type != RS::LIGHT_DIRECTIONAL) { if (light->projector.is_valid()) { texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); } } void LightStorage::light_set_negative(RID p_light, bool p_enable) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->negative = p_enable; } void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->cull_mask = p_mask; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->distance_fade = p_enabled; light->distance_fade_begin = p_begin; light->distance_fade_shadow = p_shadow; light->distance_fade_length = p_length; } void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->reverse_cull = p_enabled; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->bake_mode = p_bake_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->omni_shadow_mode = p_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE); return light->omni_shadow_mode; } void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->directional_shadow_mode = p_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->directional_blend_splits = p_enable; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } bool LightStorage::light_directional_get_blend_splits(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, false); return light->directional_blend_splits; } void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND(!light); light->directional_sky_mode = p_mode; } RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY); return light->directional_sky_mode; } RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); return light->directional_shadow_mode; } RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_BAKE_DISABLED); return light->bake_mode; } uint64_t LightStorage::light_get_version(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, 0); return light->version; } AABB LightStorage::light_get_aabb(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_COND_V(!light, AABB()); switch (light->type) { case RS::LIGHT_SPOT: { float len = light->param[RS::LIGHT_PARAM_RANGE]; float size = Math::tan(Math::deg_to_rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); }; case RS::LIGHT_OMNI: { float r = light->param[RS::LIGHT_PARAM_RANGE]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); }; case RS::LIGHT_DIRECTIONAL: { return AABB(); }; } ERR_FAIL_V(AABB()); } /* PROBE API */ RID LightStorage::reflection_probe_allocate() { return RID(); } void LightStorage::reflection_probe_initialize(RID p_rid) { } void LightStorage::reflection_probe_free(RID p_rid) { } void LightStorage::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) { } void LightStorage::reflection_probe_set_intensity(RID p_probe, float p_intensity) { } void LightStorage::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) { } void LightStorage::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) { } void LightStorage::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) { } void LightStorage::reflection_probe_set_max_distance(RID p_probe, float p_distance) { } void LightStorage::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { } void LightStorage::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { } void LightStorage::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { } void LightStorage::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { } void LightStorage::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { } void LightStorage::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { } void LightStorage::reflection_probe_set_resolution(RID p_probe, int p_resolution) { } AABB LightStorage::reflection_probe_get_aabb(RID p_probe) const { return AABB(); } RS::ReflectionProbeUpdateMode LightStorage::reflection_probe_get_update_mode(RID p_probe) const { return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE; } uint32_t LightStorage::reflection_probe_get_cull_mask(RID p_probe) const { return 0; } Vector3 LightStorage::reflection_probe_get_extents(RID p_probe) const { return Vector3(); } Vector3 LightStorage::reflection_probe_get_origin_offset(RID p_probe) const { return Vector3(); } float LightStorage::reflection_probe_get_origin_max_distance(RID p_probe) const { return 0.0; } bool LightStorage::reflection_probe_renders_shadows(RID p_probe) const { return false; } void LightStorage::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) { } float LightStorage::reflection_probe_get_mesh_lod_threshold(RID p_probe) const { return 0.0; } /* LIGHTMAP CAPTURE */ RID LightStorage::lightmap_allocate() { return lightmap_owner.allocate_rid(); } void LightStorage::lightmap_initialize(RID p_rid) { lightmap_owner.initialize_rid(p_rid, Lightmap()); } void LightStorage::lightmap_free(RID p_rid) { Lightmap *lightmap = lightmap_owner.get_or_null(p_rid); lightmap->dependency.deleted_notify(p_rid); lightmap_owner.free(p_rid); } void LightStorage::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) { } void LightStorage::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) { } void LightStorage::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) { } void LightStorage::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { } void LightStorage::lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) { } PackedVector3Array LightStorage::lightmap_get_probe_capture_points(RID p_lightmap) const { return PackedVector3Array(); } PackedColorArray LightStorage::lightmap_get_probe_capture_sh(RID p_lightmap) const { return PackedColorArray(); } PackedInt32Array LightStorage::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { return PackedInt32Array(); } PackedInt32Array LightStorage::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { return PackedInt32Array(); } AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const { return AABB(); } void LightStorage::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) { } bool LightStorage::lightmap_is_interior(RID p_lightmap) const { return false; } void LightStorage::lightmap_set_probe_capture_update_speed(float p_speed) { } float LightStorage::lightmap_get_probe_capture_update_speed() const { return 0; } /* LIGHT SHADOW MAPPING */ /* RID LightStorage::canvas_light_occluder_create() { CanvasOccluder *co = memnew(CanvasOccluder); co->index_id = 0; co->vertex_id = 0; co->len = 0; return canvas_occluder_owner.make_rid(co); } void LightStorage::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector &p_lines) { CanvasOccluder *co = canvas_occluder_owner.get(p_occluder); ERR_FAIL_COND(!co); co->lines = p_lines; if (p_lines.size() != co->len) { if (co->index_id) { glDeleteBuffers(1, &co->index_id); } if (co->vertex_id) { glDeleteBuffers(1, &co->vertex_id); } co->index_id = 0; co->vertex_id = 0; co->len = 0; } if (p_lines.size()) { PoolVector geometry; PoolVector indices; int lc = p_lines.size(); geometry.resize(lc * 6); indices.resize(lc * 3); PoolVector::Write vw = geometry.write(); PoolVector::Write iw = indices.write(); PoolVector::Read lr = p_lines.read(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vw[i * 12 + 0] = lr[i * 2 + 0].x; vw[i * 12 + 1] = lr[i * 2 + 0].y; vw[i * 12 + 2] = POLY_HEIGHT; vw[i * 12 + 3] = lr[i * 2 + 1].x; vw[i * 12 + 4] = lr[i * 2 + 1].y; vw[i * 12 + 5] = POLY_HEIGHT; vw[i * 12 + 6] = lr[i * 2 + 1].x; vw[i * 12 + 7] = lr[i * 2 + 1].y; vw[i * 12 + 8] = -POLY_HEIGHT; vw[i * 12 + 9] = lr[i * 2 + 0].x; vw[i * 12 + 10] = lr[i * 2 + 0].y; vw[i * 12 + 11] = -POLY_HEIGHT; iw[i * 6 + 0] = i * 4 + 0; iw[i * 6 + 1] = i * 4 + 1; iw[i * 6 + 2] = i * 4 + 2; iw[i * 6 + 3] = i * 4 + 2; iw[i * 6 + 4] = i * 4 + 3; iw[i * 6 + 5] = i * 4 + 0; } //if same buffer len is being set, just use BufferSubData to avoid a pipeline flush if (!co->vertex_id) { glGenBuffers(1, &co->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr()); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (!co->index_id) { glGenBuffers(1, &co->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr()); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind co->len = lc; } } */ #endif // !GLES3_ENABLED