/* clang-format off */ [vertex] #define M_PI 3.14159265359 /* from VisualServer: ARRAY_VERTEX=0, ARRAY_NORMAL=1, ARRAY_TANGENT=2, ARRAY_COLOR=3, ARRAY_TEX_UV=4, ARRAY_TEX_UV2=5, ARRAY_BONES=6, ARRAY_WEIGHTS=7, ARRAY_INDEX=8, */ // hack to use uv if no uv present so it works with lightmap /* INPUT ATTRIBS */ layout(location = 0) in highp vec4 vertex_attrib; /* clang-format on */ layout(location = 1) in vec3 normal_attrib; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(ENABLE_COLOR_INTERP) layout(location = 3) in vec4 color_attrib; #endif #if defined(ENABLE_UV_INTERP) layout(location = 4) in vec2 uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) layout(location = 5) in vec2 uv2_attrib; #endif uniform float normal_mult; #ifdef USE_SKELETON layout(location = 6) in uvec4 bone_indices; // attrib:6 layout(location = 7) in vec4 bone_weights; // attrib:7 #endif #ifdef USE_INSTANCING layout(location = 8) in highp vec4 instance_xform0; layout(location = 9) in highp vec4 instance_xform1; layout(location = 10) in highp vec4 instance_xform2; layout(location = 11) in lowp vec4 instance_color; #if defined(ENABLE_INSTANCE_CUSTOM) layout(location = 12) in highp vec4 instance_custom_data; #endif #endif layout(std140) uniform SceneData { // ubo:0 highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; mediump vec4 ambient_light_color; mediump vec4 bg_color; mediump vec4 fog_color_enabled; mediump vec4 fog_sun_color_amount; mediump float ambient_energy; mediump float bg_energy; mediump float z_offset; mediump float z_slope_scale; highp float shadow_dual_paraboloid_render_zfar; highp float shadow_dual_paraboloid_render_side; highp vec2 viewport_size; highp vec2 screen_pixel_size; highp vec2 shadow_atlas_pixel_size; highp vec2 directional_shadow_pixel_size; highp float time; highp float z_far; mediump float reflection_multiplier; mediump float subsurface_scatter_width; mediump float ambient_occlusion_affect_light; mediump float ambient_occlusion_affect_ao_channel; mediump float opaque_prepass_threshold; bool fog_depth_enabled; highp float fog_depth_begin; highp float fog_depth_curve; bool fog_transmit_enabled; highp float fog_transmit_curve; bool fog_height_enabled; highp float fog_height_min; highp float fog_height_max; highp float fog_height_curve; }; uniform highp mat4 world_transform; #ifdef USE_LIGHT_DIRECTIONAL layout(std140) uniform DirectionalLightData { //ubo:3 highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump vec4 shadow_split_offsets; }; #endif #ifdef USE_VERTEX_LIGHTING //omni and spot struct LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix; }; layout(std140) uniform OmniLightData { //ubo:4 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { //ubo:5 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; #ifdef USE_FORWARD_LIGHTING uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; uniform int omni_light_count; uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; uniform int spot_light_count; #endif out vec4 diffuse_light_interp; out vec4 specular_light_interp; void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float roughness, inout vec3 diffuse, inout vec3 specular) { float dotNL = max(dot(N, L), 0.0); diffuse += dotNL * light_color / M_PI; if (roughness > 0.0) { vec3 H = normalize(V + L); float dotNH = max(dot(N, H), 0.0); float intensity = (roughness >= 1.0 ? 1.0 : pow(dotNH, (1.0 - roughness) * 256.0)); specular += light_color * intensity; } } void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w)); light_compute(normal, normalize(light_rel_vec), eye_vec, omni_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); } void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, float roughness, inout vec3 diffuse, inout vec3 specular) { vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; vec3 light_attenuation = vec3(pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w)); vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; float spot_cutoff = spot_lights[idx].light_params.y; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff); light_attenuation *= 1.0 - pow(max(spot_rim, 0.001), spot_lights[idx].light_params.x); light_compute(normal, normalize(light_rel_vec), eye_vec, spot_lights[idx].light_color_energy.rgb * light_attenuation, roughness, diffuse, specular); } #endif /* Varyings */ out highp vec3 vertex_interp; out vec3 normal_interp; #if defined(ENABLE_COLOR_INTERP) out vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) out vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) out vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) out vec3 tangent_interp; out vec3 binormal_interp; #endif #if defined(USE_MATERIAL) /* clang-format off */ layout(std140) uniform UniformData { // ubo:1 MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ #ifdef RENDER_DEPTH_DUAL_PARABOLOID out highp float dp_clip; #endif #define SKELETON_TEXTURE_WIDTH 256 #ifdef USE_SKELETON uniform highp sampler2D skeleton_texture; // texunit:-1 #endif out highp vec4 position_interp; // FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. // See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 //invariant gl_Position; void main() { highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0); mat4 world_matrix = world_transform; #ifdef USE_INSTANCING { highp mat4 m = mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 tangent = tangent_attrib.xyz; tangent *= normal_mult; float binormalf = tangent_attrib.a; #endif #if defined(ENABLE_COLOR_INTERP) color_interp = color_attrib; #if defined(USE_INSTANCING) color_interp *= instance_color; #endif #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #if defined(ENABLE_UV_INTERP) uv_interp = uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #if defined(USE_INSTANCING) && defined(ENABLE_INSTANCE_CUSTOM) vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif highp mat4 local_projection = projection_matrix; //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = world_matrix * vertex; #if defined(ENSURE_CORRECT_NORMALS) mat3 normal_matrix = mat3(transpose(inverse(world_matrix))); normal = normal_matrix * normal; #else normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); #endif #endif float roughness = 1.0; //defines that make writing custom shaders easier #define projection_matrix local_projection #define world_transform world_matrix #ifdef USE_SKELETON { //skeleton transform ivec4 bone_indicesi = ivec4(bone_indices); // cast to signed int ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 3); highp mat3x4 m; m = mat3x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) * bone_weights.x; tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 3); m += mat3x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) * bone_weights.y; tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 3); m += mat3x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) * bone_weights.z; tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 3); m += mat3x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 2), 0)) * bone_weights.w; mat4 bone_matrix = transpose(mat4(m[0], m[1], m[2], vec4(0.0, 0.0, 0.0, 1.0))); world_matrix = bone_matrix * world_matrix; } #endif mat4 modelview = camera_inverse_matrix * world_matrix; { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } // using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = modelview * vertex; #if defined(ENSURE_CORRECT_NORMALS) mat3 normal_matrix = mat3(transpose(inverse(modelview))); normal = normal_matrix * normal; #else normal = normalize((modelview * vec4(normal, 0.0)).xyz); #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = camera_inverse_matrix * vertex; normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_DEPTH #ifdef RENDER_DEPTH_DUAL_PARABOLOID vertex_interp.z *= shadow_dual_paraboloid_render_side; normal_interp.z *= shadow_dual_paraboloid_render_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges highp vec3 vtx = vertex_interp + normalize(vertex_interp) * z_offset; highp float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / shadow_dual_paraboloid_render_zfar); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #else float z_ofs = z_offset; z_ofs += (1.0 - abs(normal_interp.z)) * z_slope_scale; vertex_interp.z -= z_ofs; #endif //RENDER_DEPTH_DUAL_PARABOLOID #endif //RENDER_DEPTH gl_Position = projection_matrix * vec4(vertex_interp, 1.0); position_interp = gl_Position; #ifdef USE_VERTEX_LIGHTING diffuse_light_interp = vec4(0.0); specular_light_interp = vec4(0.0); #ifdef USE_FORWARD_LIGHTING for (int i = 0; i < omni_light_count; i++) { light_process_omni(omni_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); } for (int i = 0; i < spot_light_count; i++) { light_process_spot(spot_light_indices[i], vertex_interp, -normalize(vertex_interp), normal_interp, roughness, diffuse_light_interp.rgb, specular_light_interp.rgb); } #endif #ifdef USE_LIGHT_DIRECTIONAL vec3 directional_diffuse = vec3(0.0); vec3 directional_specular = vec3(0.0); light_compute(normal_interp, -light_direction_attenuation.xyz, -normalize(vertex_interp), light_color_energy.rgb, roughness, directional_diffuse, directional_specular); float diff_avg = dot(diffuse_light_interp.rgb, vec3(0.33333)); float diff_dir_avg = dot(directional_diffuse, vec3(0.33333)); if (diff_avg > 0.0) { diffuse_light_interp.a = diff_dir_avg / (diff_avg + diff_dir_avg); } else { diffuse_light_interp.a = 1.0; } diffuse_light_interp.rgb += directional_diffuse; float spec_avg = dot(specular_light_interp.rgb, vec3(0.33333)); float spec_dir_avg = dot(directional_specular, vec3(0.33333)); if (spec_avg > 0.0) { specular_light_interp.a = spec_dir_avg / (spec_avg + spec_dir_avg); } else { specular_light_interp.a = 1.0; } specular_light_interp.rgb += directional_specular; #endif //USE_LIGHT_DIRECTIONAL #endif // USE_VERTEX_LIGHTING } /* clang-format off */ [fragment] /* texture unit usage, N is max_texture_unity-N 1-skeleton 2-radiance 3-reflection_atlas 4-directional_shadow 5-shadow_atlas 6-decal_atlas 7-screen 8-depth 9-probe1 10-probe2 */ uniform highp mat4 world_transform; /* clang-format on */ #define M_PI 3.14159265359 /* Varyings */ #if defined(ENABLE_COLOR_INTERP) in vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) in vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) in vec2 uv2_interp; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) in vec3 tangent_interp; in vec3 binormal_interp; #endif in highp vec3 vertex_interp; in vec3 normal_interp; /* PBR CHANNELS */ #ifdef USE_RADIANCE_MAP layout(std140) uniform Radiance { // ubo:2 mat4 radiance_inverse_xform; float radiance_ambient_contribution; }; #define RADIANCE_MAX_LOD 5.0 #ifdef USE_RADIANCE_MAP_ARRAY uniform sampler2DArray radiance_map; // texunit:-2 vec3 textureDualParaboloid(sampler2DArray p_tex, vec3 p_vec, float p_roughness) { vec3 norm = normalize(p_vec); norm.xy /= 1.0 + abs(norm.z); norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); // we need to lie the derivatives (normg) and assume that DP side is always the same // to get proper texture filtering vec2 normg = norm.xy; if (norm.z > 0.0) { norm.y = 0.5 - norm.y + 0.5; } // thanks to OpenGL spec using floor(layer + 0.5) for texture arrays, // it's easy to have precision errors using fract() to interpolate layers // as such, using fixed point to ensure it works. float index = p_roughness * RADIANCE_MAX_LOD; int indexi = int(index * 256.0); vec3 base = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256)), dFdx(normg), dFdy(normg)).xyz; vec3 next = textureGrad(p_tex, vec3(norm.xy, float(indexi / 256 + 1)), dFdx(normg), dFdy(normg)).xyz; return mix(base, next, float(indexi % 256) / 256.0); } #else uniform sampler2D radiance_map; // texunit:-2 vec3 textureDualParaboloid(sampler2D p_tex, vec3 p_vec, float p_roughness) { vec3 norm = normalize(p_vec); norm.xy /= 1.0 + abs(norm.z); norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); if (norm.z > 0.0) { norm.y = 0.5 - norm.y + 0.5; } return textureLod(p_tex, norm.xy, p_roughness * RADIANCE_MAX_LOD).xyz; } #endif #endif /* Material Uniforms */ #if defined(USE_MATERIAL) /* clang-format off */ layout(std140) uniform UniformData { MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ layout(std140) uniform SceneData { highp mat4 projection_matrix; highp mat4 inv_projection_matrix; highp mat4 camera_inverse_matrix; highp mat4 camera_matrix; mediump vec4 ambient_light_color; mediump vec4 bg_color; mediump vec4 fog_color_enabled; mediump vec4 fog_sun_color_amount; mediump float ambient_energy; mediump float bg_energy; mediump float z_offset; mediump float z_slope_scale; highp float shadow_dual_paraboloid_render_zfar; highp float shadow_dual_paraboloid_render_side; highp vec2 viewport_size; highp vec2 screen_pixel_size; highp vec2 shadow_atlas_pixel_size; highp vec2 directional_shadow_pixel_size; highp float time; highp float z_far; mediump float reflection_multiplier; mediump float subsurface_scatter_width; mediump float ambient_occlusion_affect_light; mediump float ambient_occlusion_affect_ao_channel; mediump float opaque_prepass_threshold; bool fog_depth_enabled; highp float fog_depth_begin; highp float fog_depth_curve; bool fog_transmit_enabled; highp float fog_transmit_curve; bool fog_height_enabled; highp float fog_height_min; highp float fog_height_max; highp float fog_height_curve; }; //directional light data #ifdef USE_LIGHT_DIRECTIONAL layout(std140) uniform DirectionalLightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix1; highp mat4 shadow_matrix2; highp mat4 shadow_matrix3; highp mat4 shadow_matrix4; mediump vec4 shadow_split_offsets; }; uniform highp sampler2DShadow directional_shadow; // texunit:-4 #endif #ifdef USE_VERTEX_LIGHTING in vec4 diffuse_light_interp; in vec4 specular_light_interp; #endif // omni and spot struct LightData { highp vec4 light_pos_inv_radius; mediump vec4 light_direction_attenuation; mediump vec4 light_color_energy; mediump vec4 light_params; // cone attenuation, angle, specular, shadow enabled, mediump vec4 light_clamp; mediump vec4 shadow_color_contact; highp mat4 shadow_matrix; }; layout(std140) uniform OmniLightData { // ubo:4 LightData omni_lights[MAX_LIGHT_DATA_STRUCTS]; }; layout(std140) uniform SpotLightData { // ubo:5 LightData spot_lights[MAX_LIGHT_DATA_STRUCTS]; }; uniform highp sampler2DShadow shadow_atlas; // texunit:-5 struct ReflectionData { mediump vec4 box_extents; mediump vec4 box_offset; mediump vec4 params; // intensity, 0, interior , boxproject mediump vec4 ambient; // ambient color, energy mediump vec4 atlas_clamp; highp mat4 local_matrix; // up to here for spot and omni, rest is for directional // notes: for ambientblend, use distance to edge to blend between already existing global environment }; layout(std140) uniform ReflectionProbeData { //ubo:6 ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS]; }; uniform mediump sampler2D reflection_atlas; // texunit:-3 #ifdef USE_FORWARD_LIGHTING uniform int omni_light_indices[MAX_FORWARD_LIGHTS]; uniform int omni_light_count; uniform int spot_light_indices[MAX_FORWARD_LIGHTS]; uniform int spot_light_count; uniform int reflection_indices[MAX_FORWARD_LIGHTS]; uniform int reflection_count; #endif #if defined(SCREEN_TEXTURE_USED) uniform highp sampler2D screen_texture; // texunit:-7 #endif #ifdef USE_MULTIPLE_RENDER_TARGETS layout(location = 0) out vec4 diffuse_buffer; layout(location = 1) out vec4 specular_buffer; layout(location = 2) out vec4 normal_mr_buffer; #if defined(ENABLE_SSS) layout(location = 3) out float sss_buffer; #endif #else layout(location = 0) out vec4 frag_color; #endif in highp vec4 position_interp; uniform highp sampler2D depth_buffer; // texunit:-8 #ifdef USE_CONTACT_SHADOWS float contact_shadow_compute(vec3 pos, vec3 dir, float max_distance) { if (abs(dir.z) > 0.99) return 1.0; vec3 endpoint = pos + dir * max_distance; vec4 source = position_interp; vec4 dest = projection_matrix * vec4(endpoint, 1.0); vec2 from_screen = (source.xy / source.w) * 0.5 + 0.5; vec2 to_screen = (dest.xy / dest.w) * 0.5 + 0.5; vec2 screen_rel = to_screen - from_screen; if (length(screen_rel) < 0.00001) return 1.0; // too small, don't do anything /* float pixel_size; // approximate pixel size if (screen_rel.x > screen_rel.y) { pixel_size = abs((pos.x - endpoint.x) / (screen_rel.x / screen_pixel_size.x)); } else { pixel_size = abs((pos.y - endpoint.y) / (screen_rel.y / screen_pixel_size.y)); } */ vec4 bias = projection_matrix * vec4(pos + vec3(0.0, 0.0, max_distance * 0.5), 1.0); vec2 pixel_incr = normalize(screen_rel) * screen_pixel_size; float steps = length(screen_rel) / length(pixel_incr); steps = min(2000.0, steps); // put a limit to avoid freezing in some strange situation //steps = 10.0; vec4 incr = (dest - source) / steps; float ratio = 0.0; float ratio_incr = 1.0 / steps; while (steps > 0.0) { source += incr * 2.0; bias += incr * 2.0; vec3 uv_depth = (source.xyz / source.w) * 0.5 + 0.5; float depth = texture(depth_buffer, uv_depth.xy).r; if (depth < uv_depth.z) { if (depth > (bias.z / bias.w) * 0.5 + 0.5) { return min(pow(ratio, 4.0), 1.0); } else { return 1.0; } } ratio += ratio_incr; steps -= 1.0; } return 1.0; } #endif // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { float dielectric = (0.034 * 2.0) * specular; // energy conservation return mix(vec3(dielectric), albedo, metallic); // TODO: reference? } void light_compute(vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 albedo = diffuse_color; vec3 light = L; vec3 view = V; /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #else float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); if (metallic < 1.0) { #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { vec3 H = normalize(V + L); float cLdotH = max(0.0, dot(L, H)); float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness; float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV); float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; #if defined(TRANSMISSION_USED) diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; #endif #if defined(LIGHT_USE_RIM) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; #endif } if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_BLINN) vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float intensity = pow(cNdotH, (1.0 - roughness) * 256.0); specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = max(0.0, dot(R, V)); float intensity = pow(cRdotV, (1.0 - roughness) * 256.0); specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float cLdotH = max(dot(L, H), 0.0); #if defined(LIGHT_USE_ANISOTROPY) float aspect = sqrt(1.0 - anisotropy * 0.9); float rx = roughness / aspect; float ry = roughness * aspect; float ax = rx * rx; float ay = ry * ry; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); #else float alpha = roughness * roughness; float D = D_GGX(cNdotH, alpha); float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); #endif // F float F0 = 1.0; // FIXME float cLdotH5 = SchlickFresnel(cLdotH); float F = mix(cLdotH5, 1.0, F0); float specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #endif #if defined(LIGHT_USE_CLEARCOAT) if (clearcoat_gloss > 0.0) { #if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) vec3 H = normalize(V + L); #endif #if !defined(SPECULAR_SCHLICK_GGX) float cNdotH = max(dot(N, H), 0.0); float cLdotH = max(dot(L, H), 0.0); float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; } #endif } #endif //defined(USE_LIGHT_SHADER_CODE) } float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) { #ifdef SHADOW_MODE_PCF_13 float avg = textureProj(shadow, vec4(pos, depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0)); return avg * (1.0 / 13.0); #elif defined(SHADOW_MODE_PCF_5) float avg = textureProj(shadow, vec4(pos, depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(shadow, vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); return avg * (1.0 / 5.0); #else return textureProj(shadow, vec4(pos, depth, 1.0)); #endif } #ifdef RENDER_DEPTH_DUAL_PARABOLOID in highp float dp_clip; #endif #if 0 // need to save texture depth for this vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) { float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width; float d = scale * distance; /** * Armed with the thickness, we can now calculate the color by means of the * precalculated transmittance profile. * (It can be precomputed into a texture, for maximum performance): */ float dd = -d * d; vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); /** * Using the profile, we finally approximate the transmitted lighting from * the back of the object: */ return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0); } #endif void light_process_omni(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * omni_lights[idx].light_pos_inv_radius.w; float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w); vec3 light_attenuation = vec3(omni_attenuation); #if !defined(SHADOWS_DISABLED) if (omni_lights[idx].light_params.w > 0.5) { // there is a shadowmap highp vec3 splane = (omni_lights[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; float shadow_len = length(splane); splane = normalize(splane); vec4 clamp_rect = omni_lights[idx].light_clamp; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; /* if (clamp_rect.z < clamp_rect.w) { clamp_rect.x += clamp_rect.z; } else { clamp_rect.y += clamp_rect.w; } */ } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, clamp_rect); #ifdef USE_CONTACT_SHADOWS if (shadow > 0.01 && omni_lights[idx].shadow_color_contact.a > 0.0) { float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, omni_lights[idx].shadow_color_contact.a)); shadow = min(shadow, contact_shadow); } #endif light_attenuation *= mix(omni_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); } #endif //SHADOWS_DISABLED light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, omni_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, omni_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * omni_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent, vec3 albedo, vec3 transmission, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, float p_blob_intensity, inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * spot_lights[idx].light_pos_inv_radius.w; float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), spot_lights[idx].light_direction_attenuation.w); vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz; float spot_cutoff = spot_lights[idx].light_params.y; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, spot_lights[idx].light_params.x); vec3 light_attenuation = vec3(spot_attenuation); #if !defined(SHADOWS_DISABLED) if (spot_lights[idx].light_params.w > 0.5) { //there is a shadowmap highp vec4 splane = (spot_lights[idx].shadow_matrix * vec4(vertex, 1.0)); splane.xyz /= splane.w; float shadow = sample_shadow(shadow_atlas, shadow_atlas_pixel_size, splane.xy, splane.z, spot_lights[idx].light_clamp); #ifdef USE_CONTACT_SHADOWS if (shadow > 0.01 && spot_lights[idx].shadow_color_contact.a > 0.0) { float contact_shadow = contact_shadow_compute(vertex, normalize(light_rel_vec), min(light_length, spot_lights[idx].shadow_color_contact.a)); shadow = min(shadow, contact_shadow); } #endif light_attenuation *= mix(spot_lights[idx].shadow_color_contact.rgb, vec3(1.0), shadow); } #endif //SHADOWS_DISABLED light_compute(normal, normalize(light_rel_vec), eye_vec, binormal, tangent, spot_lights[idx].light_color_energy.rgb, light_attenuation, albedo, transmission, spot_lights[idx].light_params.z * p_blob_intensity, roughness, metallic, rim * spot_attenuation, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); } void reflection_process(int idx, vec3 vertex, vec3 normal, vec3 binormal, vec3 tangent, float roughness, float anisotropy, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { vec3 ref_vec = normalize(reflect(vertex, normal)); vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex, 1.0)).xyz; vec3 box_extents = reflections[idx].box_extents.xyz; if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); //make blend more rounded blend = mix(length(inner_pos), blend, blend); blend *= blend; blend = max(0.0, 1.0 - blend); if (reflections[idx].params.x > 0.0) { // compute reflection vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec, 0.0)).xyz; if (reflections[idx].params.w > 0.5) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos) / nrdir; vec3 rbmin = (-box_extents - local_pos) / nrdir; vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections[idx].box_offset.xyz; } vec4 clamp_rect = reflections[idx].atlas_clamp; vec3 norm = normalize(local_ref_vec); norm.xy /= 1.0 + abs(norm.z); norm.xy = norm.xy * vec2(0.5, 0.25) + vec2(0.5, 0.25); if (norm.z > 0.0) { norm.y = 0.5 - norm.y + 0.5; } vec2 atlas_uv = norm.xy * clamp_rect.zw + clamp_rect.xy; atlas_uv = clamp(atlas_uv, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); highp vec4 reflection; reflection.rgb = textureLod(reflection_atlas, atlas_uv, roughness * 5.0).rgb; if (reflections[idx].params.z < 0.5) { reflection.rgb = mix(skybox, reflection.rgb, blend); } reflection.rgb *= reflections[idx].params.x; reflection.a = blend; reflection.rgb *= reflection.a; reflection_accum += reflection; } #ifndef USE_LIGHTMAP if (reflections[idx].ambient.a > 0.0) { //compute ambient using skybox vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal, 0.0)).xyz; vec3 splane = normalize(local_amb_vec); vec4 clamp_rect = reflections[idx].atlas_clamp; splane.z *= -1.0; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; splane.y = -splane.y; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy; splane.xy = clamp(splane.xy, clamp_rect.xy, clamp_rect.xy + clamp_rect.zw); highp vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = textureLod(reflection_atlas, splane.xy, 5.0).rgb; ambient_out.rgb = mix(reflections[idx].ambient.rgb, ambient_out.rgb, reflections[idx].ambient.a); if (reflections[idx].params.z < 0.5) { ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } else { highp vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = reflections[idx].ambient.rgb; if (reflections[idx].params.z < 0.5) { ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } #endif } #ifdef USE_LIGHTMAP uniform mediump sampler2D lightmap; //texunit:-9 uniform mediump float lightmap_energy; #endif #ifdef USE_LIGHTMAP_CAPTURE uniform mediump vec4[12] lightmap_captures; uniform bool lightmap_capture_sky; #endif #ifdef USE_GI_PROBES uniform mediump sampler3D gi_probe1; //texunit:-9 uniform highp mat4 gi_probe_xform1; uniform highp vec3 gi_probe_bounds1; uniform highp vec3 gi_probe_cell_size1; uniform highp float gi_probe_multiplier1; uniform highp float gi_probe_bias1; uniform highp float gi_probe_normal_bias1; uniform bool gi_probe_blend_ambient1; uniform mediump sampler3D gi_probe2; //texunit:-10 uniform highp mat4 gi_probe_xform2; uniform highp vec3 gi_probe_bounds2; uniform highp vec3 gi_probe_cell_size2; uniform highp float gi_probe_multiplier2; uniform highp float gi_probe_bias2; uniform highp float gi_probe_normal_bias2; uniform bool gi_probe2_enabled; uniform bool gi_probe_blend_ambient2; vec3 voxel_cone_trace(mediump sampler3D probe, vec3 cell_size, vec3 pos, vec3 ambient, bool blend_ambient, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; //1.0; //dot(direction,mix(vec3(-1.0),vec3(1.0),greaterThan(direction,vec3(0.0))))*2.0; float alpha = 0.0; vec3 color = vec3(0.0); while (dist < max_distance && alpha < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec4 scolor = textureLod(probe, (pos + dist * direction) * cell_size, log2(diameter)); float a = (1.0 - alpha); color += scolor.rgb * a; alpha += a * scolor.a; dist += diameter * 0.5; } if (blend_ambient) { color.rgb = mix(ambient, color.rgb, min(1.0, alpha / 0.95)); } return color; } void gi_probe_compute(mediump sampler3D probe, mat4 probe_xform, vec3 bounds, vec3 cell_size, vec3 pos, vec3 ambient, vec3 environment, bool blend_ambient, float multiplier, mat3 normal_mtx, vec3 ref_vec, float roughness, float p_bias, float p_normal_bias, inout vec4 out_spec, inout vec4 out_diff) { vec3 probe_pos = (probe_xform * vec4(pos, 1.0)).xyz; vec3 ref_pos = (probe_xform * vec4(pos + ref_vec, 1.0)).xyz; ref_vec = normalize(ref_pos - probe_pos); probe_pos += (probe_xform * vec4(normal_mtx[2], 0.0)).xyz * p_normal_bias; /* out_diff.rgb = voxel_cone_trace(probe,cell_size,probe_pos,normalize((probe_xform * vec4(ref_vec,0.0)).xyz),0.0 ,100.0); out_diff.a = 1.0; return;*/ //out_diff = vec4(textureLod(probe,probe_pos*cell_size,3.0).rgb,1.0); //return; //this causes corrupted pixels, i have no idea why.. if (any(bvec2(any(lessThan(probe_pos, vec3(0.0))), any(greaterThan(probe_pos, bounds))))) { return; } vec3 blendv = abs(probe_pos / bounds * 2.0 - 1.0); float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); //float blend=1.0; float max_distance = length(bounds); //radiance #ifdef VCT_QUALITY_HIGH #define MAX_CONE_DIRS 6 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0, 0, 1), vec3(0.866025, 0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float cone_angle_tan = 0.577; float min_ref_tan = 0.0; #else #define MAX_CONE_DIRS 4 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.707107, 0, 0.707107), vec3(0, 0.707107, 0.707107), vec3(-0.707107, 0, 0.707107), vec3(0, -0.707107, 0.707107)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); float cone_angle_tan = 0.98269; max_distance *= 0.5; float min_ref_tan = 0.2; #endif vec3 light = vec3(0.0); for (int i = 0; i < MAX_CONE_DIRS; i++) { vec3 dir = normalize((probe_xform * vec4(pos + normal_mtx * cone_dirs[i], 1.0)).xyz - probe_pos); light += cone_weights[i] * voxel_cone_trace(probe, cell_size, probe_pos, ambient, blend_ambient, dir, cone_angle_tan, max_distance, p_bias); } light *= multiplier; out_diff += vec4(light * blend, blend); //irradiance vec3 irr_light = voxel_cone_trace(probe, cell_size, probe_pos, environment, blend_ambient, ref_vec, max(min_ref_tan, tan(roughness * 0.5 * M_PI)), max_distance, p_bias); irr_light *= multiplier; //irr_light=vec3(0.0); out_spec += vec4(irr_light * blend, blend); } void gi_probes_compute(vec3 pos, vec3 normal, float roughness, inout vec3 out_specular, inout vec3 out_ambient) { roughness = roughness * roughness; vec3 ref_vec = normalize(reflect(normalize(pos), normal)); //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0, 0, 1) : vec3(0, 1, 0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 diff_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); vec3 ambient = out_ambient; out_ambient = vec3(0.0); vec3 environment = out_specular; out_specular = vec3(0.0); gi_probe_compute(gi_probe1, gi_probe_xform1, gi_probe_bounds1, gi_probe_cell_size1, pos, ambient, environment, gi_probe_blend_ambient1, gi_probe_multiplier1, normal_mat, ref_vec, roughness, gi_probe_bias1, gi_probe_normal_bias1, spec_accum, diff_accum); if (gi_probe2_enabled) { gi_probe_compute(gi_probe2, gi_probe_xform2, gi_probe_bounds2, gi_probe_cell_size2, pos, ambient, environment, gi_probe_blend_ambient2, gi_probe_multiplier2, normal_mat, ref_vec, roughness, gi_probe_bias2, gi_probe_normal_bias2, spec_accum, diff_accum); } if (diff_accum.a > 0.0) { diff_accum.rgb /= diff_accum.a; } if (spec_accum.a > 0.0) { spec_accum.rgb /= spec_accum.a; } out_specular += spec_accum.rgb; out_ambient += diff_accum.rgb; } #endif void main() { #ifdef RENDER_DEPTH_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway highp vec3 vertex = vertex_interp; vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); #if defined(ENABLE_AO) float ao = 1.0; float ao_light_affect = 0.0; #endif float alpha = 1.0; #if defined(DO_SIDE_CHECK) float side = gl_FrontFacing ? 1.0 : -1.0; #else float side = 1.0; #endif #if defined(ALPHA_SCISSOR_USED) float alpha_scissor = 0.5; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY) vec3 binormal = normalize(binormal_interp) * side; vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_UV_INTERP) vec2 uv = uv_interp; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(ENABLE_COLOR_INTERP) vec4 color = color_interp; #endif #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.5); #endif float normaldepth = 1.0; #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif #if defined(ENABLE_SSS) float sss_strength = 0.0; #endif { /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ } #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif #if defined(ENABLE_NORMALMAP) normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; #endif #if defined(LIGHT_USE_ANISOTROPY) if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// LIGHTING ////////////////////////////// //apply energy conservation #ifdef USE_VERTEX_LIGHTING vec3 specular_light = specular_light_interp.rgb; vec3 diffuse_light = diffuse_light_interp.rgb; #else vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); #endif vec3 ambient_light; vec3 env_reflection_light = vec3(0.0, 0.0, 0.0); vec3 eye_vec = -normalize(vertex_interp); #ifdef USE_RADIANCE_MAP #ifdef AMBIENT_LIGHT_DISABLED ambient_light = vec3(0.0, 0.0, 0.0); #else { { //read radiance from dual paraboloid vec3 ref_vec = reflect(-eye_vec, normal); //2.0 * ndotv * normal - view; // reflect(v, n); ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); vec3 radiance = textureDualParaboloid(radiance_map, ref_vec, roughness) * bg_energy; env_reflection_light = radiance; } //no longer a cubemap //vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y); } #ifndef USE_LIGHTMAP { vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); vec3 env_ambient = textureDualParaboloid(radiance_map, ambient_dir, 1.0) * bg_energy; ambient_light = mix(ambient_light_color.rgb, env_ambient, radiance_ambient_contribution); //ambient_light=vec3(0.0,0.0,0.0); } #endif #endif //AMBIENT_LIGHT_DISABLED #else #ifdef AMBIENT_LIGHT_DISABLED ambient_light = vec3(0.0, 0.0, 0.0); #else ambient_light = ambient_light_color.rgb; #endif //AMBIENT_LIGHT_DISABLED #endif ambient_light *= ambient_energy; float specular_blob_intensity = 1.0; #if defined(SPECULAR_TOON) specular_blob_intensity *= specular * 2.0; #endif #if defined(USE_LIGHT_DIRECTIONAL) vec3 light_attenuation = vec3(1.0); float depth_z = -vertex.z; #ifdef LIGHT_DIRECTIONAL_SHADOW #if !defined(SHADOWS_DISABLED) #ifdef LIGHT_USE_PSSM4 if (depth_z < shadow_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) if (depth_z < shadow_split_offsets.y) { #else if (depth_z < shadow_split_offsets.x) { #endif //LIGHT_USE_PSSM4 vec3 pssm_coord; float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; vec3 pssm_coord2; bool use_blend = true; #endif #ifdef LIGHT_USE_PSSM4 if (depth_z < shadow_split_offsets.y) { if (depth_z < shadow_split_offsets.x) { highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = (shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); #endif } else { highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = (shadow_matrix3 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); #endif } } else { if (depth_z < shadow_split_offsets.z) { highp vec4 splane = (shadow_matrix3 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = (shadow_matrix4 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(shadow_split_offsets.y, shadow_split_offsets.z, depth_z); #endif } else { highp vec4 splane = (shadow_matrix4 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(shadow_split_offsets.z, shadow_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #endif //LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (depth_z < shadow_split_offsets.x) { highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = (shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, shadow_split_offsets.x, depth_z); #endif } else { highp vec4 splane = (shadow_matrix2 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(shadow_split_offsets.x, shadow_split_offsets.y, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { //regular orthogonal highp vec4 splane = (shadow_matrix1 * vec4(vertex, 1.0)); pssm_coord = splane.xyz / splane.w; } #endif //one one sample float shadow = sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord.xy, pssm_coord.z, light_clamp); #if defined(LIGHT_USE_PSSM_BLEND) if (use_blend) { shadow = mix(shadow, sample_shadow(directional_shadow, directional_shadow_pixel_size, pssm_coord2.xy, pssm_coord2.z, light_clamp), pssm_blend); } #endif #ifdef USE_CONTACT_SHADOWS if (shadow > 0.01 && shadow_color_contact.a > 0.0) { float contact_shadow = contact_shadow_compute(vertex, -light_direction_attenuation.xyz, shadow_color_contact.a); shadow = min(shadow, contact_shadow); } #endif light_attenuation = mix(mix(shadow_color_contact.rgb, vec3(1.0), shadow), vec3(1.0), pssm_fade); } #endif // !defined(SHADOWS_DISABLED) #endif //LIGHT_DIRECTIONAL_SHADOW #ifdef USE_VERTEX_LIGHTING diffuse_light *= mix(vec3(1.0), light_attenuation, diffuse_light_interp.a); specular_light *= mix(vec3(1.0), light_attenuation, specular_light_interp.a); #else light_compute(normal, -light_direction_attenuation.xyz, eye_vec, binormal, tangent, light_color_energy.rgb, light_attenuation, albedo, transmission, light_params.z * specular_blob_intensity, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); #endif #endif //#USE_LIGHT_DIRECTIONAL #ifdef USE_GI_PROBES gi_probes_compute(vertex, normal, roughness, env_reflection_light, ambient_light); #endif #ifdef USE_LIGHTMAP ambient_light = texture(lightmap, uv2).rgb * lightmap_energy; #endif #ifdef USE_LIGHTMAP_CAPTURE { vec3 cone_dirs[12] = vec3[]( vec3(0, 0, 1), vec3(0.866025, 0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5), vec3(0, 0, -1), vec3(0.866025, 0, -0.5), vec3(0.267617, 0.823639, -0.5), vec3(-0.700629, 0.509037, -0.5), vec3(-0.700629, -0.509037, -0.5), vec3(0.267617, -0.823639, -0.5)); vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; vec4 captured = vec4(0.0); float sum = 0.0; for (int i = 0; i < 12; i++) { float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect captured += lightmap_captures[i] * amount; sum += amount; } captured /= sum; if (lightmap_capture_sky) { ambient_light = mix(ambient_light, captured.rgb, captured.a); } else { ambient_light = captured.rgb; } } #endif #ifdef USE_FORWARD_LIGHTING highp vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); highp vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); for (int i = 0; i < reflection_count; i++) { reflection_process(reflection_indices[i], vertex, normal, binormal, tangent, roughness, anisotropy, ambient_light, env_reflection_light, reflection_accum, ambient_accum); } if (reflection_accum.a > 0.0) { specular_light += reflection_accum.rgb / reflection_accum.a; } else { specular_light += env_reflection_light; } #ifndef USE_LIGHTMAP if (ambient_accum.a > 0.0) { ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif #ifdef USE_VERTEX_LIGHTING diffuse_light *= albedo; #else for (int i = 0; i < omni_light_count; i++) { light_process_omni(omni_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light); } for (int i = 0; i < spot_light_count; i++) { light_process_spot(spot_light_indices[i], vertex, eye_vec, normal, binormal, tangent, albedo, transmission, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, specular_blob_intensity, diffuse_light, specular_light); } #endif //USE_VERTEX_LIGHTING #endif #ifdef RENDER_DEPTH //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else specular_light *= reflection_multiplier; ambient_light *= albedo; //ambient must be multiplied by albedo at the end #if defined(ENABLE_AO) ambient_light *= ao; ao_light_affect = mix(1.0, ao, ao_light_affect); specular_light *= ao_light_affect; diffuse_light *= ao_light_affect; #endif //energy conservation diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point ambient_light *= 1.0 - metallic; { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, eye_vec), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw; vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; #endif } if (fog_color_enabled.a > 0.5) { float fog_amount = 0.0; #ifdef USE_LIGHT_DIRECTIONAL vec3 fog_color = mix(fog_color_enabled.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex), -light_direction_attenuation.xyz), 0.0), 8.0)); #else vec3 fog_color = fog_color_enabled.rgb; #endif //apply fog if (fog_depth_enabled) { float fog_z = smoothstep(fog_depth_begin, z_far, length(vertex)); fog_amount = pow(fog_z, fog_depth_curve); if (fog_transmit_enabled) { vec3 total_light = emission + ambient_light + specular_light + diffuse_light; float transmit = pow(fog_z, fog_transmit_curve); fog_color = mix(max(total_light, fog_color), fog_color, transmit); } } if (fog_height_enabled) { float y = (camera_matrix * vec4(vertex, 1.0)).y; fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); } float rev_amount = 1.0 - fog_amount; emission = emission * rev_amount + fog_color * fog_amount; ambient_light *= rev_amount; specular_light *rev_amount; diffuse_light *= rev_amount; } #ifdef USE_MULTIPLE_RENDER_TARGETS #ifdef SHADELESS diffuse_buffer = vec4(albedo.rgb, 0.0); specular_buffer = vec4(0.0); #else //approximate ambient scale for SSAO, since we will lack full ambient float max_emission = max(emission.r, max(emission.g, emission.b)); float max_ambient = max(ambient_light.r, max(ambient_light.g, ambient_light.b)); float max_diffuse = max(diffuse_light.r, max(diffuse_light.g, diffuse_light.b)); float total_ambient = max_ambient + max_diffuse + max_emission; float ambient_scale = (total_ambient > 0.0) ? (max_ambient + ambient_occlusion_affect_light * max_diffuse) / total_ambient : 0.0; #if defined(ENABLE_AO) ambient_scale = mix(0.0, ambient_scale, ambient_occlusion_affect_ao_channel); #endif diffuse_buffer = vec4(emission + diffuse_light + ambient_light, ambient_scale); specular_buffer = vec4(specular_light, metallic); #endif //SHADELESS normal_mr_buffer = vec4(normalize(normal) * 0.5 + 0.5, roughness); #if defined(ENABLE_SSS) sss_buffer = sss_strength; #endif #else //USE_MULTIPLE_RENDER_TARGETS #ifdef SHADELESS frag_color = vec4(albedo, alpha); #else frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); #endif //SHADELESS #endif //USE_MULTIPLE_RENDER_TARGETS #endif //RENDER_DEPTH }