/* clang-format off */ #[modes] mode_default = #[specializations] MODE_3D = false USERDATA1_USED = false USERDATA2_USED = false USERDATA3_USED = false USERDATA4_USED = false USERDATA5_USED = false USERDATA6_USED = false #[vertex] #define SDF_MAX_LENGTH 16384.0 layout(std140) uniform GlobalShaderUniformData { //ubo:1 vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS]; }; // This needs to be outside clang-format so the ubo comment is in the right place #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:2 #MATERIAL_UNIFORMS }; #endif /* clang-format on */ #define MAX_ATTRACTORS 32 #define ATTRACTOR_TYPE_SPHERE uint(0) #define ATTRACTOR_TYPE_BOX uint(1) #define ATTRACTOR_TYPE_VECTOR_FIELD uint(2) struct Attractor { mat4 transform; vec4 extents; // Extents or radius. w-channel is padding. uint type; float strength; float attenuation; float directionality; }; #define MAX_COLLIDERS 32 #define COLLIDER_TYPE_SPHERE uint(0) #define COLLIDER_TYPE_BOX uint(1) #define COLLIDER_TYPE_SDF uint(2) #define COLLIDER_TYPE_HEIGHT_FIELD uint(3) #define COLLIDER_TYPE_2D_SDF uint(4) struct Collider { mat4 transform; vec4 extents; // Extents or radius. w-channel is padding. uint type; float scale; float pad0; float pad1; }; layout(std140) uniform FrameData { //ubo:0 bool emitting; uint cycle; float system_phase; float prev_system_phase; float explosiveness; float randomness; float time; float delta; float particle_size; float pad0; float pad1; float pad2; uint random_seed; uint attractor_count; uint collider_count; uint frame; mat4 emission_transform; Attractor attractors[MAX_ATTRACTORS]; Collider colliders[MAX_COLLIDERS]; }; #define PARTICLE_FLAG_ACTIVE uint(1) #define PARTICLE_FLAG_STARTED uint(2) #define PARTICLE_FLAG_TRAILED uint(4) #define PARTICLE_FRAME_MASK uint(0xFFFF) #define PARTICLE_FRAME_SHIFT uint(16) // ParticleData layout(location = 0) in highp vec4 color; layout(location = 1) in highp vec4 velocity_flags; layout(location = 2) in highp vec4 custom; layout(location = 3) in highp vec4 xform_1; layout(location = 4) in highp vec4 xform_2; #ifdef MODE_3D layout(location = 5) in highp vec4 xform_3; #endif #ifdef USERDATA1_USED layout(location = 6) in highp vec4 userdata1; #endif #ifdef USERDATA2_USED layout(location = 7) in highp vec4 userdata2; #endif #ifdef USERDATA3_USED layout(location = 8) in highp vec4 userdata3; #endif #ifdef USERDATA4_USED layout(location = 9) in highp vec4 userdata4; #endif #ifdef USERDATA5_USED layout(location = 10) in highp vec4 userdata5; #endif #ifdef USERDATA6_USED layout(location = 11) in highp vec4 userdata6; #endif out highp vec4 out_color; //tfb: out highp vec4 out_velocity_flags; //tfb: out highp vec4 out_custom; //tfb: out highp vec4 out_xform_1; //tfb: out highp vec4 out_xform_2; //tfb: #ifdef MODE_3D out highp vec4 out_xform_3; //tfb:MODE_3D #endif #ifdef USERDATA1_USED out highp vec4 out_userdata1; //tfb:USERDATA1_USED #endif #ifdef USERDATA2_USED out highp vec4 out_userdata2; //tfb:USERDATA2_USED #endif #ifdef USERDATA3_USED out highp vec4 out_userdata3; //tfb:USERDATA3_USED #endif #ifdef USERDATA4_USED out highp vec4 out_userdata4; //tfb:USERDATA4_USED #endif #ifdef USERDATA5_USED out highp vec4 out_userdata5; //tfb:USERDATA5_USED #endif #ifdef USERDATA6_USED out highp vec4 out_userdata6; //tfb:USERDATA6_USED #endif uniform sampler2D height_field_texture; //texunit:0 uniform float lifetime; uniform bool clear; uniform uint total_particles; uniform bool use_fractional_delta; uint hash(uint x) { x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b); x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b); x = (x >> uint(16)) ^ x; return x; } vec3 safe_normalize(vec3 direction) { const float EPSILON = 0.001; if (length(direction) < EPSILON) { return vec3(0.0); } return normalize(direction); } // Needed whenever 2D sdf texture is read from as it is packed in RGBA8. float vec4_to_float(vec4 p_vec) { return dot(p_vec, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) * 2.0 - 1.0; } #GLOBALS void main() { bool apply_forces = true; bool apply_velocity = true; float local_delta = delta; float mass = 1.0; bool restart = false; bool restart_position = false; bool restart_rotation_scale = false; bool restart_velocity = false; bool restart_color = false; bool restart_custom = false; mat4 xform = mat4(1.0); uint flags = 0u; if (clear) { out_color = vec4(1.0); out_custom = vec4(0.0); out_velocity_flags = vec4(0.0); } else { out_color = color; out_velocity_flags = velocity_flags; out_custom = custom; xform[0] = xform_1; xform[1] = xform_2; #ifdef MODE_3D xform[2] = xform_3; #endif xform = transpose(xform); flags = floatBitsToUint(velocity_flags.w); } //clear started flag if set flags &= ~PARTICLE_FLAG_STARTED; bool collided = false; vec3 collision_normal = vec3(0.0); float collision_depth = 0.0; vec3 attractor_force = vec3(0.0); #if !defined(DISABLE_VELOCITY) if (bool(flags & PARTICLE_FLAG_ACTIVE)) { xform[3].xyz += out_velocity_flags.xyz * local_delta; } #endif uint index = uint(gl_VertexID); if (emitting) { float restart_phase = float(index) / float(total_particles); if (randomness > 0.0) { uint seed = cycle; if (restart_phase >= system_phase) { seed -= uint(1); } seed *= uint(total_particles); seed += index; float random = float(hash(seed) % uint(65536)) / 65536.0; restart_phase += randomness * random * 1.0 / float(total_particles); } restart_phase *= (1.0 - explosiveness); if (system_phase > prev_system_phase) { // restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed if (restart_phase >= prev_system_phase && restart_phase < system_phase) { restart = true; if (use_fractional_delta) { local_delta = (system_phase - restart_phase) * lifetime; } } } else if (delta > 0.0) { if (restart_phase >= prev_system_phase) { restart = true; if (use_fractional_delta) { local_delta = (1.0 - restart_phase + system_phase) * lifetime; } } else if (restart_phase < system_phase) { restart = true; if (use_fractional_delta) { local_delta = (system_phase - restart_phase) * lifetime; } } } if (restart) { flags = emitting ? (PARTICLE_FLAG_ACTIVE | PARTICLE_FLAG_STARTED | (cycle << PARTICLE_FRAME_SHIFT)) : 0u; restart_position = true; restart_rotation_scale = true; restart_velocity = true; restart_color = true; restart_custom = true; } } bool particle_active = bool(flags & PARTICLE_FLAG_ACTIVE); uint particle_number = (flags >> PARTICLE_FRAME_SHIFT) * uint(total_particles) + index; if (restart && particle_active) { #CODE : START } if (particle_active) { for (uint i = 0u; i < attractor_count; i++) { vec3 dir; float amount; vec3 rel_vec = xform[3].xyz - attractors[i].transform[3].xyz; vec3 local_pos = rel_vec * mat3(attractors[i].transform); switch (attractors[i].type) { case ATTRACTOR_TYPE_SPHERE: { dir = safe_normalize(rel_vec); float d = length(local_pos) / attractors[i].extents.x; if (d > 1.0) { continue; } amount = max(0.0, 1.0 - d); } break; case ATTRACTOR_TYPE_BOX: { dir = safe_normalize(rel_vec); vec3 abs_pos = abs(local_pos / attractors[i].extents.xyz); float d = max(abs_pos.x, max(abs_pos.y, abs_pos.z)); if (d > 1.0) { continue; } amount = max(0.0, 1.0 - d); } break; case ATTRACTOR_TYPE_VECTOR_FIELD: { } break; } amount = pow(amount, attractors[i].attenuation); dir = safe_normalize(mix(dir, attractors[i].transform[2].xyz, attractors[i].directionality)); attractor_force -= amount * dir * attractors[i].strength; } float particle_size = particle_size; #ifdef USE_COLLISION_SCALE particle_size *= dot(vec3(length(xform[0].xyz), length(xform[1].xyz), length(xform[2].xyz)), vec3(0.33333333333)); #endif if (collider_count == 1u && colliders[0].type == COLLIDER_TYPE_2D_SDF) { //2D collision vec2 pos = xform[3].xy; vec4 to_sdf_x = colliders[0].transform[0]; vec4 to_sdf_y = colliders[0].transform[1]; vec2 sdf_pos = vec2(dot(vec4(pos, 0, 1), to_sdf_x), dot(vec4(pos, 0, 1), to_sdf_y)); vec4 sdf_to_screen = vec4(colliders[0].extents.xyz, colliders[0].scale); vec2 uv_pos = sdf_pos * sdf_to_screen.xy + sdf_to_screen.zw; if (all(greaterThan(uv_pos, vec2(0.0))) && all(lessThan(uv_pos, vec2(1.0)))) { vec2 pos2 = pos + vec2(0, particle_size); vec2 sdf_pos2 = vec2(dot(vec4(pos2, 0, 1), to_sdf_x), dot(vec4(pos2, 0, 1), to_sdf_y)); float sdf_particle_size = distance(sdf_pos, sdf_pos2); float d = vec4_to_float(texture(height_field_texture, uv_pos)) * SDF_MAX_LENGTH; d -= sdf_particle_size; if (d < 0.0) { const float EPSILON = 0.001; vec2 n = normalize(vec2( vec4_to_float(texture(height_field_texture, uv_pos + vec2(EPSILON, 0.0))) - vec4_to_float(texture(height_field_texture, uv_pos - vec2(EPSILON, 0.0))), vec4_to_float(texture(height_field_texture, uv_pos + vec2(0.0, EPSILON))) - vec4_to_float(texture(height_field_texture, uv_pos - vec2(0.0, EPSILON))))); collided = true; sdf_pos2 = sdf_pos + n * d; pos2 = vec2(dot(vec4(sdf_pos2, 0, 1), colliders[0].transform[2]), dot(vec4(sdf_pos2, 0, 1), colliders[0].transform[3])); n = pos - pos2; collision_normal = normalize(vec3(n, 0.0)); collision_depth = length(n); } } } else { for (uint i = 0u; i < collider_count; i++) { vec3 normal; float depth; bool col = false; vec3 rel_vec = xform[3].xyz - colliders[i].transform[3].xyz; vec3 local_pos = rel_vec * mat3(colliders[i].transform); switch (colliders[i].type) { case COLLIDER_TYPE_SPHERE: { float d = length(rel_vec) - (particle_size + colliders[i].extents.x); if (d < 0.0) { col = true; depth = -d; normal = normalize(rel_vec); } } break; case COLLIDER_TYPE_BOX: { vec3 abs_pos = abs(local_pos); vec3 sgn_pos = sign(local_pos); if (any(greaterThan(abs_pos, colliders[i].extents.xyz))) { //point outside box vec3 closest = min(abs_pos, colliders[i].extents.xyz); vec3 rel = abs_pos - closest; depth = length(rel) - particle_size; if (depth < 0.0) { col = true; normal = mat3(colliders[i].transform) * (normalize(rel) * sgn_pos); depth = -depth; } } else { //point inside box vec3 axis_len = colliders[i].extents.xyz - abs_pos; // there has to be a faster way to do this? if (all(lessThan(axis_len.xx, axis_len.yz))) { normal = vec3(1, 0, 0); } else if (all(lessThan(axis_len.yy, axis_len.xz))) { normal = vec3(0, 1, 0); } else { normal = vec3(0, 0, 1); } col = true; depth = dot(normal * axis_len, vec3(1)) + particle_size; normal = mat3(colliders[i].transform) * (normal * sgn_pos); } } break; case COLLIDER_TYPE_SDF: { } break; case COLLIDER_TYPE_HEIGHT_FIELD: { vec3 local_pos_bottom = local_pos; local_pos_bottom.y -= particle_size; if (any(greaterThan(abs(local_pos_bottom), colliders[i].extents.xyz))) { continue; } const float DELTA = 1.0 / 8192.0; vec3 uvw_pos = vec3(local_pos_bottom / colliders[i].extents.xyz) * 0.5 + 0.5; float y = 1.0 - texture(height_field_texture, uvw_pos.xz).r; if (y > uvw_pos.y) { //inside heightfield vec3 pos1 = (vec3(uvw_pos.x, y, uvw_pos.z) * 2.0 - 1.0) * colliders[i].extents.xyz; vec3 pos2 = (vec3(uvw_pos.x + DELTA, 1.0 - texture(height_field_texture, uvw_pos.xz + vec2(DELTA, 0)).r, uvw_pos.z) * 2.0 - 1.0) * colliders[i].extents.xyz; vec3 pos3 = (vec3(uvw_pos.x, 1.0 - texture(height_field_texture, uvw_pos.xz + vec2(0, DELTA)).r, uvw_pos.z + DELTA) * 2.0 - 1.0) * colliders[i].extents.xyz; normal = normalize(cross(pos1 - pos2, pos1 - pos3)); float local_y = (vec3(local_pos / colliders[i].extents.xyz) * 0.5 + 0.5).y; col = true; depth = dot(normal, pos1) - dot(normal, local_pos_bottom); } } break; } if (col) { if (!collided) { collided = true; collision_normal = normal; collision_depth = depth; } else { vec3 c = collision_normal * collision_depth; c += normal * max(0.0, depth - dot(normal, c)); collision_normal = normalize(c); collision_depth = length(c); } } } } } if (particle_active) { #CODE : PROCESS } flags &= ~PARTICLE_FLAG_ACTIVE; if (particle_active) { flags |= PARTICLE_FLAG_ACTIVE; } xform = transpose(xform); out_xform_1 = xform[0]; out_xform_2 = xform[1]; #ifdef MODE_3D out_xform_3 = xform[2]; #endif out_velocity_flags.w = uintBitsToFloat(flags); } /* clang-format off */ #[fragment] void main() { } /* clang-format on */