/* clang-format off */ #[modes] mode_quad = mode_ninepatch = #define USE_NINEPATCH mode_primitive = #define USE_PRIMITIVE mode_attributes = #define USE_ATTRIBUTES mode_instanced = #define USE_ATTRIBUTES \n#define USE_INSTANCING #[specializations] DISABLE_LIGHTING = false #[vertex] #ifdef USE_ATTRIBUTES layout(location = 0) in vec2 vertex_attrib; layout(location = 3) in vec4 color_attrib; layout(location = 4) in vec2 uv_attrib; layout(location = 10) in uvec4 bone_attrib; layout(location = 11) in vec4 weight_attrib; #ifdef USE_INSTANCING layout(location = 1) in highp vec4 instance_xform0; layout(location = 2) in highp vec4 instance_xform1; layout(location = 5) in highp uvec4 instance_color_custom_data; // Color packed into xy, custom_data packed into zw for compatibility with 3D #endif #endif // This needs to be outside clang-format so the ubo comment is in the right place #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:4 #MATERIAL_UNIFORMS }; #endif /* clang-format on */ #include "canvas_uniforms_inc.glsl" #include "stdlib_inc.glsl" uniform sampler2D transforms_texture; //texunit:-1 out vec2 uv_interp; out vec4 color_interp; out vec2 vertex_interp; flat out int draw_data_instance; #ifdef USE_NINEPATCH out vec2 pixel_size_interp; #endif #GLOBALS void main() { vec4 instance_custom = vec4(0.0); draw_data_instance = gl_InstanceID; #ifdef USE_PRIMITIVE //weird bug, //this works vec2 vertex; vec2 uv; vec4 color; if (gl_VertexID == 0) { vertex = draw_data[draw_data_instance].point_a; uv = draw_data[draw_data_instance].uv_a; color = vec4(unpackHalf2x16(draw_data[draw_data_instance].color_a_rg), unpackHalf2x16(draw_data[draw_data_instance].color_a_ba)); } else if (gl_VertexID == 1) { vertex = draw_data[draw_data_instance].point_b; uv = draw_data[draw_data_instance].uv_b; color = vec4(unpackHalf2x16(draw_data[draw_data_instance].color_b_rg), unpackHalf2x16(draw_data[draw_data_instance].color_b_ba)); } else { vertex = draw_data[draw_data_instance].point_c; uv = draw_data[draw_data_instance].uv_c; color = vec4(unpackHalf2x16(draw_data[draw_data_instance].color_c_rg), unpackHalf2x16(draw_data[draw_data_instance].color_c_ba)); } uvec4 bones = uvec4(0, 0, 0, 0); vec4 bone_weights = vec4(0.0); #elif defined(USE_ATTRIBUTES) #ifdef USE_INSTANCING draw_data_instance = 0; #endif vec2 vertex = vertex_attrib; vec4 color = color_attrib * draw_data[draw_data_instance].modulation; vec2 uv = uv_attrib; uvec4 bones = bone_attrib; vec4 bone_weights = weight_attrib; #ifdef USE_INSTANCING vec4 instance_color = vec4(unpackHalf2x16(instance_color_custom_data.x), unpackHalf2x16(instance_color_custom_data.y)); color *= instance_color; instance_custom = vec4(unpackHalf2x16(instance_color_custom_data.z), unpackHalf2x16(instance_color_custom_data.w)); #endif #else vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0)); vec2 vertex_base = vertex_base_arr[gl_VertexID]; vec2 uv = draw_data[draw_data_instance].src_rect.xy + abs(draw_data[draw_data_instance].src_rect.zw) * ((draw_data[draw_data_instance].flags & FLAGS_TRANSPOSE_RECT) != uint(0) ? vertex_base.yx : vertex_base.xy); vec4 color = draw_data[draw_data_instance].modulation; vec2 vertex = draw_data[draw_data_instance].dst_rect.xy + abs(draw_data[draw_data_instance].dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(draw_data[draw_data_instance].src_rect.zw, vec2(0.0, 0.0))); uvec4 bones = uvec4(0, 0, 0, 0); #endif mat4 model_matrix = mat4(vec4(draw_data[draw_data_instance].world_x, 0.0, 0.0), vec4(draw_data[draw_data_instance].world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data[draw_data_instance].world_ofs, 0.0, 1.0)); #ifdef USE_INSTANCING model_matrix = model_matrix * transpose(mat4(instance_xform0, instance_xform1, vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))); #endif // USE_INSTANCING #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE) if (bool(draw_data[draw_data_instance].flags & FLAGS_USING_PARTICLES)) { //scale by texture size vertex /= draw_data[draw_data_instance].color_texture_pixel_size; } #endif #ifdef USE_POINT_SIZE float point_size = 1.0; #endif { #CODE : VERTEX } #ifdef USE_NINEPATCH pixel_size_interp = abs(draw_data[draw_data_instance].dst_rect.zw) * vertex_base; #endif #if !defined(SKIP_TRANSFORM_USED) vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy; #endif color_interp = color; if (use_pixel_snap) { vertex = floor(vertex + 0.5); // precision issue on some hardware creates artifacts within texture // offset uv by a small amount to avoid uv += 1e-5; } #ifdef USE_ATTRIBUTES #if 0 if (bool(draw_data[draw_data_instance].flags & FLAGS_USE_SKELETON) && bone_weights != vec4(0.0)) { //must be a valid bone //skeleton transform ivec4 bone_indicesi = ivec4(bone_indices); uvec2 tex_ofs = bone_indicesi.x * 2; mat2x4 m; m = mat2x4( texelFetch(skeleton_buffer, tex_ofs + 0), texelFetch(skeleton_buffer, tex_ofs + 1)) * bone_weights.x; tex_ofs = bone_indicesi.y * 2; m += mat2x4( texelFetch(skeleton_buffer, tex_ofs + 0), texelFetch(skeleton_buffer, tex_ofs + 1)) * bone_weights.y; tex_ofs = bone_indicesi.z * 2; m += mat2x4( texelFetch(skeleton_buffer, tex_ofs + 0), texelFetch(skeleton_buffer, tex_ofs + 1)) * bone_weights.z; tex_ofs = bone_indicesi.w * 2; m += mat2x4( texelFetch(skeleton_buffer, tex_ofs + 0), texelFetch(skeleton_buffer, tex_ofs + 1)) * bone_weights.w; mat4 bone_matrix = skeleton_data.skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_data.skeleton_transform_inverse; //outvec = bone_matrix * outvec; } #endif #endif vertex = (canvas_transform * vec4(vertex, 0.0, 1.0)).xy; vertex_interp = vertex; uv_interp = uv; gl_Position = screen_transform * vec4(vertex, 0.0, 1.0); #ifdef USE_POINT_SIZE gl_PointSize = point_size; #endif } #[fragment] #include "canvas_uniforms_inc.glsl" #include "stdlib_inc.glsl" uniform sampler2D atlas_texture; //texunit:-2 uniform sampler2D shadow_atlas_texture; //texunit:-3 uniform sampler2D screen_texture; //texunit:-4 uniform sampler2D sdf_texture; //texunit:-5 uniform sampler2D normal_texture; //texunit:-6 uniform sampler2D specular_texture; //texunit:-7 uniform sampler2D color_texture; //texunit:0 in vec2 uv_interp; in vec4 color_interp; in vec2 vertex_interp; flat in int draw_data_instance; #ifdef USE_NINEPATCH in vec2 pixel_size_interp; #endif layout(location = 0) out vec4 frag_color; #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:4 #MATERIAL_UNIFORMS }; #endif vec2 screen_uv_to_sdf(vec2 p_uv) { return screen_to_sdf * p_uv; } float texture_sdf(vec2 p_sdf) { vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw; float d = texture(sdf_texture, uv).r; d *= SDF_MAX_LENGTH; return d * tex_to_sdf; } vec2 texture_sdf_normal(vec2 p_sdf) { vec2 uv = p_sdf * sdf_to_tex.xy + sdf_to_tex.zw; const float EPSILON = 0.001; return normalize(vec2( texture(sdf_texture, uv + vec2(EPSILON, 0.0)).r - texture(sdf_texture, uv - vec2(EPSILON, 0.0)).r, texture(sdf_texture, uv + vec2(0.0, EPSILON)).r - texture(sdf_texture, uv - vec2(0.0, EPSILON)).r)); } vec2 sdf_to_screen_uv(vec2 p_sdf) { return p_sdf * sdf_to_screen; } #GLOBALS #ifdef LIGHT_CODE_USED vec4 light_compute( vec3 light_vertex, vec3 light_position, vec3 normal, vec4 light_color, float light_energy, vec4 specular_shininess, inout vec4 shadow_modulate, vec2 screen_uv, vec2 uv, vec4 color, bool is_directional) { vec4 light = vec4(0.0); #CODE : LIGHT return light; } #endif #ifdef USE_NINEPATCH float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) { float tex_size = 1.0 / tex_pixel_size; if (pixel < margin_begin) { return pixel * tex_pixel_size; } else if (pixel >= draw_size - margin_end) { return (tex_size - (draw_size - pixel)) * tex_pixel_size; } else { if (!bool(draw_data[draw_data_instance].flags & FLAGS_NINEPACH_DRAW_CENTER)) { draw_center--; } // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum. if (np_repeat == 0) { // Stretch. // Convert to ratio. float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size; } else if (np_repeat == 1) { // Tile. // Convert to offset. float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ofs) * tex_pixel_size; } else if (np_repeat == 2) { // Tile Fit. // Calculate scale. float src_area = draw_size - margin_begin - margin_end; float dst_area = tex_size - margin_begin - margin_end; float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5)); // Convert to ratio. float ratio = (pixel - margin_begin) / src_area; ratio = mod(ratio * scale, 1.0); // Scale to source texture. return (margin_begin + ratio * dst_area) * tex_pixel_size; } else { // Shouldn't happen, but silences compiler warning. return 0.0; } } } #endif vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) { float cNdotL = max(0.0, dot(normal, light_vec)); if (specular_shininess_used) { //blinn vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough vec3 half_vec = normalize(view + light_vec); float cNdotV = max(dot(normal, view), 0.0); float cNdotH = max(dot(normal, half_vec), 0.0); float cVdotH = max(dot(view, half_vec), 0.0); float cLdotH = max(dot(light_vec, half_vec), 0.0); float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL; } else { return light_color * base_color * cNdotL; } } //float distance = length(shadow_pos); vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv #ifdef LIGHT_CODE_USED , vec3 shadow_modulate #endif ) { float shadow; uint shadow_mode = light_data[light_base].flags & LIGHT_FLAGS_FILTER_MASK; if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) { shadow = textureProjLod(shadow_atlas_texture, shadow_uv, 0.0).x; } else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) { vec4 shadow_pixel_size = vec4(light_data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0); shadow = 0.0; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 2.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 2.0, 0.0).x; shadow /= 5.0; } else { //PCF13 vec4 shadow_pixel_size = vec4(light_data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0); shadow = 0.0; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 6.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 5.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 4.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 3.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size * 2.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv - shadow_pixel_size, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 2.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 3.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 4.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 5.0, 0.0).x; shadow += textureProjLod(shadow_atlas_texture, shadow_uv + shadow_pixel_size * 6.0, 0.0).x; shadow /= 13.0; } vec4 shadow_color = unpackUnorm4x8(light_data[light_base].shadow_color); #ifdef LIGHT_CODE_USED shadow_color.rgb *= shadow_modulate; #endif shadow_color.a *= light_color.a; //respect light alpha return mix(light_color, shadow_color, shadow); } void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) { uint blend_mode = light_data[light_base].flags & LIGHT_FLAGS_BLEND_MASK; switch (blend_mode) { case LIGHT_FLAGS_BLEND_MODE_ADD: { color.rgb += light_color.rgb * light_color.a; } break; case LIGHT_FLAGS_BLEND_MODE_SUB: { color.rgb -= light_color.rgb * light_color.a; } break; case LIGHT_FLAGS_BLEND_MODE_MIX: { color.rgb = mix(color.rgb, light_color.rgb, light_color.a); } break; } } float msdf_median(float r, float g, float b, float a) { return min(max(min(r, g), min(max(r, g), b)), a); } void main() { vec4 color = color_interp; vec2 uv = uv_interp; vec2 vertex = vertex_interp; #if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE) #ifdef USE_NINEPATCH int draw_center = 2; uv = vec2( map_ninepatch_axis(pixel_size_interp.x, abs(draw_data[draw_data_instance].dst_rect.z), draw_data[draw_data_instance].color_texture_pixel_size.x, draw_data[draw_data_instance].ninepatch_margins.x, draw_data[draw_data_instance].ninepatch_margins.z, int(draw_data[draw_data_instance].flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center), map_ninepatch_axis(pixel_size_interp.y, abs(draw_data[draw_data_instance].dst_rect.w), draw_data[draw_data_instance].color_texture_pixel_size.y, draw_data[draw_data_instance].ninepatch_margins.y, draw_data[draw_data_instance].ninepatch_margins.w, int(draw_data[draw_data_instance].flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center)); if (draw_center == 0) { color.a = 0.0; } uv = uv * draw_data[draw_data_instance].src_rect.zw + draw_data[draw_data_instance].src_rect.xy; //apply region if needed #endif if (bool(draw_data[draw_data_instance].flags & FLAGS_CLIP_RECT_UV)) { uv = clamp(uv, draw_data[draw_data_instance].src_rect.xy, draw_data[draw_data_instance].src_rect.xy + abs(draw_data[draw_data_instance].src_rect.zw)); } #endif #ifndef USE_PRIMITIVE if (bool(draw_data[draw_data_instance].flags & FLAGS_USE_MSDF)) { float px_range = draw_data[draw_data_instance].ninepatch_margins.x; float outline_thickness = draw_data[draw_data_instance].ninepatch_margins.y; //float reserved1 = draw_data[draw_data_instance].ninepatch_margins.z; //float reserved2 = draw_data[draw_data_instance].ninepatch_margins.w; vec4 msdf_sample = texture(color_texture, uv); vec2 msdf_size = vec2(textureSize(color_texture, 0)); vec2 dest_size = vec2(1.0) / fwidth(uv); float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0); float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5; if (outline_thickness > 0.0) { float cr = clamp(outline_thickness, 0.0, px_range / 2.0) / px_range; float a = clamp((d + cr) * px_size, 0.0, 1.0); color.a = a * color.a; } else { float a = clamp(d * px_size + 0.5, 0.0, 1.0); color.a = a * color.a; } } else { #else { #endif color *= texture(color_texture, uv); } uint light_count = (draw_data[draw_data_instance].flags >> FLAGS_LIGHT_COUNT_SHIFT) & uint(0xF); //max 16 lights bool using_light = light_count > uint(0) || directional_light_count > uint(0); vec3 normal; #if defined(NORMAL_USED) bool normal_used = true; #else bool normal_used = false; #endif if (normal_used || (using_light && bool(draw_data[draw_data_instance].flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) { normal.xy = texture(normal_texture, uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); normal.z = sqrt(1.0 - dot(normal.xy, normal.xy)); normal_used = true; } else { normal = vec3(0.0, 0.0, 1.0); } vec4 specular_shininess; #if defined(SPECULAR_SHININESS_USED) bool specular_shininess_used = true; #else bool specular_shininess_used = false; #endif if (specular_shininess_used || (using_light && normal_used && bool(draw_data[draw_data_instance].flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) { specular_shininess = texture(specular_texture, uv); specular_shininess *= unpackUnorm4x8(draw_data[draw_data_instance].specular_shininess); specular_shininess_used = true; } else { specular_shininess = vec4(1.0); } #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #else vec2 screen_uv = vec2(0.0); #endif vec3 light_vertex = vec3(vertex, 0.0); vec2 shadow_vertex = vertex; { float normal_map_depth = 1.0; #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.0, 0.0, 1.0); normal_used = true; #endif #CODE : FRAGMENT #if defined(NORMAL_MAP_USED) normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth); #endif } if (normal_used) { //convert by item transform normal.xy = mat2(normalize(draw_data[draw_data_instance].world_x), normalize(draw_data[draw_data_instance].world_y)) * normal.xy; //convert by canvas transform normal = normalize((canvas_normal_transform * vec4(normal, 0.0)).xyz); } vec3 base_color = color.rgb; if (bool(draw_data[draw_data_instance].flags & FLAGS_USING_LIGHT_MASK)) { color = vec4(0.0); //invisible by default due to using light mask } #ifdef MODE_LIGHT_ONLY color = vec4(0.0); #else color *= canvas_modulation; #endif #if !defined(DISABLE_LIGHTING) && !defined(MODE_UNSHADED) for (uint i = uint(0); i < directional_light_count; i++) { uint light_base = i; vec2 direction = light_data[light_base].position; vec4 light_color = light_data[light_base].color; #ifdef LIGHT_CODE_USED vec4 shadow_modulate = vec4(1.0); light_color = light_compute(light_vertex, vec3(direction, light_data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, true); #else if (normal_used) { vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_data[light_base].height)); light_color.rgb = light_normal_compute(light_vec, normal, base_color, light_color.rgb, specular_shininess, specular_shininess_used); } #endif if (bool(light_data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) { vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_data[light_base].shadow_matrix[0], light_data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec4 shadow_uv = vec4(shadow_pos.x, light_data[light_base].shadow_y_ofs, shadow_pos.y * light_data[light_base].shadow_zfar_inv, 1.0); light_color = light_shadow_compute(light_base, light_color, shadow_uv #ifdef LIGHT_CODE_USED , shadow_modulate.rgb #endif ); } light_blend_compute(light_base, light_color, color.rgb); } // Positional Lights for (uint i = uint(0); i < MAX_LIGHTS_PER_ITEM; i++) { if (i >= light_count) { break; } uint light_base; if (i < uint(8)) { if (i < uint(4)) { light_base = draw_data[draw_data_instance].lights.x; } else { light_base = draw_data[draw_data_instance].lights.y; } } else { if (i < uint(12)) { light_base = draw_data[draw_data_instance].lights.z; } else { light_base = draw_data[draw_data_instance].lights.w; } } light_base >>= (i & uint(3)) * uint(8); light_base &= uint(0xFF); vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_data[light_base].texture_matrix[0], light_data[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec2 tex_uv_atlas = tex_uv * light_data[light_base].atlas_rect.zw + light_data[light_base].atlas_rect.xy; vec4 light_color = textureLod(atlas_texture, tex_uv_atlas, 0.0); vec4 light_base_color = light_data[light_base].color; #ifdef LIGHT_CODE_USED vec4 shadow_modulate = vec4(1.0); vec3 light_position = vec3(light_data[light_base].position, light_data[light_base].height); light_color.rgb *= light_base_color.rgb; light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, color, false); #else light_color.rgb *= light_base_color.rgb * light_base_color.a; if (normal_used) { vec3 light_pos = vec3(light_data[light_base].position, light_data[light_base].height); vec3 pos = light_vertex; vec3 light_vec = normalize(light_pos - pos); float cNdotL = max(0.0, dot(normal, light_vec)); light_color.rgb = light_normal_compute(light_vec, normal, base_color, light_color.rgb, specular_shininess, specular_shininess_used); } #endif if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) { //if outside the light texture, light color is zero light_color.a = 0.0; } if (bool(light_data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) { vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_data[light_base].shadow_matrix[0], light_data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations. vec2 pos_norm = normalize(shadow_pos); vec2 pos_abs = abs(pos_norm); vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y); vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot? float tex_ofs; float distance; if (pos_rot.y > 0.0) { if (pos_rot.x > 0.0) { tex_ofs = pos_box.y * 0.125 + 0.125; distance = shadow_pos.x; } else { tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125); distance = shadow_pos.y; } } else { if (pos_rot.x < 0.0) { tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125); distance = -shadow_pos.x; } else { tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125); distance = -shadow_pos.y; } } distance *= light_data[light_base].shadow_zfar_inv; //float distance = length(shadow_pos); vec4 shadow_uv = vec4(tex_ofs, light_data[light_base].shadow_y_ofs, distance, 1.0); light_color = light_shadow_compute(light_base, light_color, shadow_uv #ifdef LIGHT_CODE_USED , shadow_modulate.rgb #endif ); } light_blend_compute(light_base, light_color, color.rgb); } #endif // UNSHADED frag_color = color; }