/*************************************************************************/ /* rasterizer_storage_gles3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_storage_gles3.h" #ifdef GLES3_ENABLED #include "core/config/project_settings.h" #include "core/math/transform_3d.h" // #include "rasterizer_canvas_gles3.h" #include "rasterizer_scene_gles3.h" #include "servers/rendering/shader_language.h" void RasterizerStorageGLES3::base_update_dependency(RID p_base, DependencyTracker *p_instance) { if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_base)) { GLES3::Mesh *mesh = GLES3::MeshStorage::get_singleton()->get_mesh(p_base); p_instance->update_dependency(&mesh->dependency); } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_base)) { GLES3::MultiMesh *multimesh = GLES3::MeshStorage::get_singleton()->get_multimesh(p_base); p_instance->update_dependency(&multimesh->dependency); if (multimesh->mesh.is_valid()) { base_update_dependency(multimesh->mesh, p_instance); } } else if (GLES3::LightStorage::get_singleton()->owns_light(p_base)) { GLES3::Light *l = GLES3::LightStorage::get_singleton()->get_light(p_base); p_instance->update_dependency(&l->dependency); } } /* VOXEL GI API */ RID RasterizerStorageGLES3::voxel_gi_allocate() { return RID(); } void RasterizerStorageGLES3::voxel_gi_initialize(RID p_rid) { } void RasterizerStorageGLES3::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector &p_octree_cells, const Vector &p_data_cells, const Vector &p_distance_field, const Vector &p_level_counts) { } AABB RasterizerStorageGLES3::voxel_gi_get_bounds(RID p_voxel_gi) const { return AABB(); } Vector3i RasterizerStorageGLES3::voxel_gi_get_octree_size(RID p_voxel_gi) const { return Vector3i(); } Vector RasterizerStorageGLES3::voxel_gi_get_octree_cells(RID p_voxel_gi) const { return Vector(); } Vector RasterizerStorageGLES3::voxel_gi_get_data_cells(RID p_voxel_gi) const { return Vector(); } Vector RasterizerStorageGLES3::voxel_gi_get_distance_field(RID p_voxel_gi) const { return Vector(); } Vector RasterizerStorageGLES3::voxel_gi_get_level_counts(RID p_voxel_gi) const { return Vector(); } Transform3D RasterizerStorageGLES3::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const { return Transform3D(); } void RasterizerStorageGLES3::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_dynamic_range(RID p_voxel_gi) const { return 0; } void RasterizerStorageGLES3::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_propagation(RID p_voxel_gi) const { return 0; } void RasterizerStorageGLES3::voxel_gi_set_energy(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_energy(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_bias(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_bias(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_range) { } float RasterizerStorageGLES3::voxel_gi_get_normal_bias(RID p_voxel_gi) const { return 0.0; } void RasterizerStorageGLES3::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) { } bool RasterizerStorageGLES3::voxel_gi_is_interior(RID p_voxel_gi) const { return false; } void RasterizerStorageGLES3::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) { } bool RasterizerStorageGLES3::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const { return false; } void RasterizerStorageGLES3::voxel_gi_set_anisotropy_strength(RID p_voxel_gi, float p_strength) { } float RasterizerStorageGLES3::voxel_gi_get_anisotropy_strength(RID p_voxel_gi) const { return 0; } uint32_t RasterizerStorageGLES3::voxel_gi_get_version(RID p_voxel_gi) { return 0; } /* OCCLUDER */ void RasterizerStorageGLES3::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) { } /* FOG */ RID RasterizerStorageGLES3::fog_volume_allocate() { return RID(); } void RasterizerStorageGLES3::fog_volume_initialize(RID p_rid) { } void RasterizerStorageGLES3::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) { } void RasterizerStorageGLES3::fog_volume_set_extents(RID p_fog_volume, const Vector3 &p_extents) { } void RasterizerStorageGLES3::fog_volume_set_material(RID p_fog_volume, RID p_material) { } AABB RasterizerStorageGLES3::fog_volume_get_aabb(RID p_fog_volume) const { return AABB(); } RS::FogVolumeShape RasterizerStorageGLES3::fog_volume_get_shape(RID p_fog_volume) const { return RS::FOG_VOLUME_SHAPE_BOX; } /* VISIBILITY NOTIFIER */ RID RasterizerStorageGLES3::visibility_notifier_allocate() { return RID(); } void RasterizerStorageGLES3::visibility_notifier_initialize(RID p_notifier) { } void RasterizerStorageGLES3::visibility_notifier_set_aabb(RID p_notifier, const AABB &p_aabb) { } void RasterizerStorageGLES3::visibility_notifier_set_callbacks(RID p_notifier, const Callable &p_enter_callbable, const Callable &p_exit_callable) { } AABB RasterizerStorageGLES3::visibility_notifier_get_aabb(RID p_notifier) const { return AABB(); } void RasterizerStorageGLES3::visibility_notifier_call(RID p_notifier, bool p_enter, bool p_deferred) { } /* CANVAS SHADOW */ RID RasterizerStorageGLES3::canvas_light_shadow_buffer_create(int p_width) { CanvasLightShadow *cls = memnew(CanvasLightShadow); if (p_width > config->max_texture_size) { p_width = config->max_texture_size; } cls->size = p_width; cls->height = 16; glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &cls->fbo); glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo); glGenRenderbuffers(1, &cls->depth); glBindRenderbuffer(GL_RENDERBUFFER, cls->depth); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, cls->size, cls->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->depth); glGenTextures(1, &cls->distance); glBindTexture(GL_TEXTURE_2D, cls->distance); if (config->use_rgba_2d_shadows) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, cls->size, cls->height, 0, GL_RED, GL_FLOAT, nullptr); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->distance, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("errnum: %x\n",status); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { memdelete(cls); ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID()); } return canvas_light_shadow_owner.make_rid(cls); } /* LIGHT SHADOW MAPPING */ /* RID RasterizerStorageGLES3::canvas_light_occluder_create() { CanvasOccluder *co = memnew(CanvasOccluder); co->index_id = 0; co->vertex_id = 0; co->len = 0; return canvas_occluder_owner.make_rid(co); } void RasterizerStorageGLES3::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector &p_lines) { CanvasOccluder *co = canvas_occluder_owner.get(p_occluder); ERR_FAIL_COND(!co); co->lines = p_lines; if (p_lines.size() != co->len) { if (co->index_id) { glDeleteBuffers(1, &co->index_id); } if (co->vertex_id) { glDeleteBuffers(1, &co->vertex_id); } co->index_id = 0; co->vertex_id = 0; co->len = 0; } if (p_lines.size()) { PoolVector geometry; PoolVector indices; int lc = p_lines.size(); geometry.resize(lc * 6); indices.resize(lc * 3); PoolVector::Write vw = geometry.write(); PoolVector::Write iw = indices.write(); PoolVector::Read lr = p_lines.read(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vw[i * 12 + 0] = lr[i * 2 + 0].x; vw[i * 12 + 1] = lr[i * 2 + 0].y; vw[i * 12 + 2] = POLY_HEIGHT; vw[i * 12 + 3] = lr[i * 2 + 1].x; vw[i * 12 + 4] = lr[i * 2 + 1].y; vw[i * 12 + 5] = POLY_HEIGHT; vw[i * 12 + 6] = lr[i * 2 + 1].x; vw[i * 12 + 7] = lr[i * 2 + 1].y; vw[i * 12 + 8] = -POLY_HEIGHT; vw[i * 12 + 9] = lr[i * 2 + 0].x; vw[i * 12 + 10] = lr[i * 2 + 0].y; vw[i * 12 + 11] = -POLY_HEIGHT; iw[i * 6 + 0] = i * 4 + 0; iw[i * 6 + 1] = i * 4 + 1; iw[i * 6 + 2] = i * 4 + 2; iw[i * 6 + 3] = i * 4 + 2; iw[i * 6 + 4] = i * 4 + 3; iw[i * 6 + 5] = i * 4 + 0; } //if same buffer len is being set, just use BufferSubData to avoid a pipeline flush if (!co->vertex_id) { glGenBuffers(1, &co->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr()); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (!co->index_id) { glGenBuffers(1, &co->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_DYNAMIC_DRAW); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr()); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind co->len = lc; } } */ RS::InstanceType RasterizerStorageGLES3::get_base_type(RID p_rid) const { if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_rid)) { return RS::INSTANCE_MESH; } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_rid)) { return RS::INSTANCE_MULTIMESH; } else if (GLES3::LightStorage::get_singleton()->owns_light(p_rid)) { return RS::INSTANCE_LIGHT; } return RS::INSTANCE_NONE; } bool RasterizerStorageGLES3::free(RID p_rid) { if (GLES3::TextureStorage::get_singleton()->owns_render_target(p_rid)) { GLES3::TextureStorage::get_singleton()->render_target_free(p_rid); return true; } else if (GLES3::TextureStorage::get_singleton()->owns_texture(p_rid)) { GLES3::TextureStorage::get_singleton()->texture_free(p_rid); return true; } else if (GLES3::TextureStorage::get_singleton()->owns_canvas_texture(p_rid)) { GLES3::TextureStorage::get_singleton()->canvas_texture_free(p_rid); return true; } else if (GLES3::MaterialStorage::get_singleton()->owns_shader(p_rid)) { GLES3::MaterialStorage::get_singleton()->shader_free(p_rid); return true; } else if (GLES3::MaterialStorage::get_singleton()->owns_material(p_rid)) { GLES3::MaterialStorage::get_singleton()->material_free(p_rid); return true; } else if (GLES3::MeshStorage::get_singleton()->owns_mesh(p_rid)) { GLES3::MeshStorage::get_singleton()->mesh_free(p_rid); return true; } else if (GLES3::MeshStorage::get_singleton()->owns_multimesh(p_rid)) { GLES3::MeshStorage::get_singleton()->multimesh_free(p_rid); return true; } else if (GLES3::MeshStorage::get_singleton()->owns_mesh_instance(p_rid)) { GLES3::MeshStorage::get_singleton()->mesh_instance_free(p_rid); return true; } else if (GLES3::LightStorage::get_singleton()->owns_light(p_rid)) { GLES3::LightStorage::get_singleton()->light_free(p_rid); return true; } else { return false; } /* else if (reflection_probe_owner.owns(p_rid)) { // delete the texture ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid); reflection_probe->instance_remove_deps(); reflection_probe_owner.free(p_rid); memdelete(reflection_probe); return true; } else if (lightmap_capture_data_owner.owns(p_rid)) { // delete the texture LightmapCapture *lightmap_capture = lightmap_capture_data_owner.get_or_null(p_rid); lightmap_capture->instance_remove_deps(); lightmap_capture_data_owner.free(p_rid); memdelete(lightmap_capture); return true; } else if (canvas_occluder_owner.owns(p_rid)) { CanvasOccluder *co = canvas_occluder_owner.get_or_null(p_rid); if (co->index_id) { glDeleteBuffers(1, &co->index_id); } if (co->vertex_id) { glDeleteBuffers(1, &co->vertex_id); } canvas_occluder_owner.free(p_rid); memdelete(co); return true; } else if (canvas_light_shadow_owner.owns(p_rid)) { CanvasLightShadow *cls = canvas_light_shadow_owner.get_or_null(p_rid); glDeleteFramebuffers(1, &cls->fbo); glDeleteRenderbuffers(1, &cls->depth); glDeleteTextures(1, &cls->distance); canvas_light_shadow_owner.free(p_rid); memdelete(cls); return true; */ } bool RasterizerStorageGLES3::has_os_feature(const String &p_feature) const { if (!config) { return false; } if (p_feature == "rgtc") { return config->rgtc_supported; } if (p_feature == "s3tc") { return config->s3tc_supported; } if (p_feature == "bptc") { return config->bptc_supported; } if (p_feature == "etc" || p_feature == "etc2") { return config->etc2_supported; } return false; } //////////////////////////////////////////// void RasterizerStorageGLES3::set_debug_generate_wireframes(bool p_generate) { } //void RasterizerStorageGLES3::render_info_begin_capture() { // info.snap = info.render; //} //void RasterizerStorageGLES3::render_info_end_capture() { // info.snap.object_count = info.render.object_count - info.snap.object_count; // info.snap.draw_call_count = info.render.draw_call_count - info.snap.draw_call_count; // info.snap.material_switch_count = info.render.material_switch_count - info.snap.material_switch_count; // info.snap.surface_switch_count = info.render.surface_switch_count - info.snap.surface_switch_count; // info.snap.shader_rebind_count = info.render.shader_rebind_count - info.snap.shader_rebind_count; // info.snap.vertices_count = info.render.vertices_count - info.snap.vertices_count; // info.snap._2d_item_count = info.render._2d_item_count - info.snap._2d_item_count; // info.snap._2d_draw_call_count = info.render._2d_draw_call_count - info.snap._2d_draw_call_count; //} //int RasterizerStorageGLES3::get_captured_render_info(RS::RenderInfo p_info) { // switch (p_info) { // case RS::INFO_OBJECTS_IN_FRAME: { // return info.snap.object_count; // } break; // case RS::INFO_VERTICES_IN_FRAME: { // return info.snap.vertices_count; // } break; // case RS::INFO_MATERIAL_CHANGES_IN_FRAME: { // return info.snap.material_switch_count; // } break; // case RS::INFO_SHADER_CHANGES_IN_FRAME: { // return info.snap.shader_rebind_count; // } break; // case RS::INFO_SURFACE_CHANGES_IN_FRAME: { // return info.snap.surface_switch_count; // } break; // case RS::INFO_DRAW_CALLS_IN_FRAME: { // return info.snap.draw_call_count; // } break; // /* // case RS::INFO_2D_ITEMS_IN_FRAME: { // return info.snap._2d_item_count; // } break; // case RS::INFO_2D_DRAW_CALLS_IN_FRAME: { // return info.snap._2d_draw_call_count; // } break; // */ // default: { // return get_render_info(p_info); // } // } //} //int RasterizerStorageGLES3::get_render_info(RS::RenderInfo p_info) { // switch (p_info) { // case RS::INFO_OBJECTS_IN_FRAME: // return info.render_final.object_count; // case RS::INFO_VERTICES_IN_FRAME: // return info.render_final.vertices_count; // case RS::INFO_MATERIAL_CHANGES_IN_FRAME: // return info.render_final.material_switch_count; // case RS::INFO_SHADER_CHANGES_IN_FRAME: // return info.render_final.shader_rebind_count; // case RS::INFO_SURFACE_CHANGES_IN_FRAME: // return info.render_final.surface_switch_count; // case RS::INFO_DRAW_CALLS_IN_FRAME: // return info.render_final.draw_call_count; // /* // case RS::INFO_2D_ITEMS_IN_FRAME: // return info.render_final._2d_item_count; // case RS::INFO_2D_DRAW_CALLS_IN_FRAME: // return info.render_final._2d_draw_call_count; //*/ // case RS::INFO_USAGE_VIDEO_MEM_TOTAL: // return 0; //no idea // case RS::INFO_VIDEO_MEM_USED: // return info.vertex_mem + info.texture_mem; // case RS::INFO_TEXTURE_MEM_USED: // return info.texture_mem; // case RS::INFO_VERTEX_MEM_USED: // return info.vertex_mem; // default: // return 0; //no idea either // } //} String RasterizerStorageGLES3::get_video_adapter_name() const { return (const char *)glGetString(GL_RENDERER); } String RasterizerStorageGLES3::get_video_adapter_vendor() const { return (const char *)glGetString(GL_VENDOR); } RenderingDevice::DeviceType RasterizerStorageGLES3::get_video_adapter_type() const { return RenderingDevice::DeviceType::DEVICE_TYPE_OTHER; } String RasterizerStorageGLES3::get_video_adapter_api_version() const { return (const char *)glGetString(GL_VERSION); } void RasterizerStorageGLES3::initialize() { config = GLES3::Config::get_singleton(); // skeleton buffer { resources.skeleton_transform_buffer_size = 0; glGenBuffers(1, &resources.skeleton_transform_buffer); } // radical inverse vdc cache texture // used for cubemap filtering glGenTextures(1, &resources.radical_inverse_vdc_cache_tex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, resources.radical_inverse_vdc_cache_tex); /* uint8_t radical_inverse[512]; for (uint32_t i = 0; i < 512; i++) { uint32_t bits = i; bits = (bits << 16) | (bits >> 16); bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1); bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2); bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4); bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); float value = float(bits) * 2.3283064365386963e-10; radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255)); } //glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, 512, 1, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, radical_inverse); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling */ glBindTexture(GL_TEXTURE_2D, 0); { glGenFramebuffers(1, &resources.mipmap_blur_fbo); glGenTextures(1, &resources.mipmap_blur_color); } #ifdef GLES_OVER_GL glEnable(GL_PROGRAM_POINT_SIZE); #endif } void RasterizerStorageGLES3::finalize() { } void RasterizerStorageGLES3::update_memory_info() { } uint64_t RasterizerStorageGLES3::get_rendering_info(RS::RenderingInfo p_info) { return 0; } void RasterizerStorageGLES3::update_dirty_resources() { GLES3::MaterialStorage::get_singleton()->_update_global_variables(); GLES3::MaterialStorage::get_singleton()->_update_queued_materials(); //GLES3::MeshStorage::get_singleton()->_update_dirty_skeletons(); GLES3::MeshStorage::get_singleton()->_update_dirty_multimeshes(); } RasterizerStorageGLES3::RasterizerStorageGLES3() { initialize(); } RasterizerStorageGLES3::~RasterizerStorageGLES3() { } #endif // GLES3_ENABLED