/*************************************************************************/ /* rasterizer_scene_gles3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_gles3.h" #include "core/math/math_funcs.h" #include "core/os/os.h" #include "core/project_settings.h" #include "rasterizer_canvas_gles3.h" #include "servers/visual/visual_server_raster.h" #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif static const GLenum _cube_side_enum[6] = { GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, }; static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) { p_array[0] = p_mtx.basis.elements[0][0]; p_array[1] = p_mtx.basis.elements[1][0]; p_array[2] = p_mtx.basis.elements[2][0]; p_array[3] = 0; p_array[4] = p_mtx.basis.elements[0][1]; p_array[5] = p_mtx.basis.elements[1][1]; p_array[6] = p_mtx.basis.elements[2][1]; p_array[7] = 0; p_array[8] = p_mtx.basis.elements[0][2]; p_array[9] = p_mtx.basis.elements[1][2]; p_array[10] = p_mtx.basis.elements[2][2]; p_array[11] = 0; p_array[12] = p_mtx.origin.x; p_array[13] = p_mtx.origin.y; p_array[14] = p_mtx.origin.z; p_array[15] = 1; } static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { p_array[i * 4 + j] = p_mtx.matrix[i][j]; } } } /* SHADOW ATLAS API */ RID RasterizerSceneGLES3::shadow_atlas_create() { ShadowAtlas *shadow_atlas = memnew(ShadowAtlas); shadow_atlas->fbo = 0; shadow_atlas->depth = 0; shadow_atlas->size = 0; shadow_atlas->smallest_subdiv = 0; for (int i = 0; i < 4; i++) { shadow_atlas->size_order[i] = i; } return shadow_atlas_owner.make_rid(shadow_atlas); } void RasterizerSceneGLES3::shadow_atlas_set_size(RID p_atlas, int p_size) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size) return; // erasing atlas if (shadow_atlas->fbo) { glDeleteTextures(1, &shadow_atlas->depth); glDeleteFramebuffers(1, &shadow_atlas->fbo); shadow_atlas->depth = 0; shadow_atlas->fbo = 0; } for (int i = 0; i < 4; i++) { //clear subdivisions shadow_atlas->quadrants[i].shadows.resize(0); shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision); } //erase shadow atlas reference from lights for (Map::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) { LightInstance *li = light_instance_owner.getornull(E->key()); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } //clear owners shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; if (shadow_atlas->size) { glGenFramebuffers(1, &shadow_atlas->fbo); glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); // Create a texture for storing the depth glActiveTexture(GL_TEXTURE0); glGenTextures(1, &shadow_atlas->depth); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0); glViewport(0, 0, shadow_atlas->size, shadow_atlas->size); glClearDepth(0.0f); glClear(GL_DEPTH_BUFFER_BIT); glBindFramebuffer(GL_FRAMEBUFFER, 0); } } void RasterizerSceneGLES3::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); //obtain the number that will be x*x if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) return; //erase all data from quadrant for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } shadow_atlas->quadrants[p_quadrant].shadows.resize(0); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; //cache the smallest subdiv (for faster allocation in light update) shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } //resort the size orders, simple bublesort for 4 elements.. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool RasterizerSceneGLES3::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } //look for an empty space int sc = shadow_atlas->quadrants[qidx].shadows.size(); ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw(); int found_free_idx = -1; //found a free one int found_used_idx = -1; //found existing one, must steal it uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion) for (int j = 0; j < sc; j++) { if (!sarr[j].owner.is_valid()) { found_free_idx = j; break; } LightInstance *sli = light_instance_owner.getornull(sarr[j].owner); ERR_CONTINUE(!sli); if (sli->last_scene_pass != scene_pass) { //was just allocated, don't kill it so soon, wait a bit.. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) continue; if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_free_idx == -1 && found_used_idx == -1) continue; //nothing found if (found_free_idx == -1 && found_used_idx != -1) { found_free_idx = found_used_idx; } r_quadrant = qidx; r_shadow = found_free_idx; return true; } return false; } bool RasterizerSceneGLES3::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas); ERR_FAIL_COND_V(!shadow_atlas, false); LightInstance *li = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; //best size found int best_subdiv = -1; //subdiv for the best size //find the quadrants this fits into, and the best possible size it can fit into for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) continue; //unused int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) break; //too large valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); //see if it already exists if (shadow_atlas->shadow_owners.has(p_light_intance)) { //it does! uint32_t key = shadow_atlas->shadow_owners[p_light_intance]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; //already existing, see if it should redraw or it's just OK return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.get(sh->owner); sli->shadow_atlases.erase(p_atlas); } //erase previous shadow_atlas->quadrants[q].shadows.write[s].version = 0; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no better place for this shadow found, keep current //already existing, see if it should redraw or it's just OK shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version; return should_redraw; } int new_quadrant, new_shadow; //find a better place if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) { //found a better place! ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; if (sh->owner.is_valid()) { //is taken, but is invalid, erasing it shadow_atlas->shadow_owners.erase(sh->owner); LightInstance *sli = light_instance_owner.get(sh->owner); sli->shadow_atlases.erase(p_atlas); } sh->owner = p_light_intance; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); //make new key uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT; key |= new_shadow; //update it in map shadow_atlas->shadow_owners[p_light_intance] = key; //make it dirty, as it should redraw anyway return true; } //no place to allocate this light, apologies return false; } void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } int RasterizerSceneGLES3::get_directional_light_shadow_size(RID p_light_intance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); int shadow_size; if (directional_shadow.light_count == 1) { shadow_size = directional_shadow.size; } else { shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway } LightInstance *light_instance = light_instance_owner.getornull(p_light_intance); ERR_FAIL_COND_V(!light_instance, 0); switch (light_instance->light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size /= 2; break; } return shadow_size; } ////////////////////////////////////////////////////// RID RasterizerSceneGLES3::reflection_atlas_create() { ReflectionAtlas *reflection_atlas = memnew(ReflectionAtlas); reflection_atlas->subdiv = 0; reflection_atlas->color = 0; reflection_atlas->size = 0; for (int i = 0; i < 6; i++) { reflection_atlas->fbo[i] = 0; } return reflection_atlas_owner.make_rid(reflection_atlas); } void RasterizerSceneGLES3::reflection_atlas_set_size(RID p_ref_atlas, int p_size) { ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND(!reflection_atlas); int size = next_power_of_2(p_size); if (size == reflection_atlas->size) return; if (reflection_atlas->size) { for (int i = 0; i < 6; i++) { glDeleteFramebuffers(1, &reflection_atlas->fbo[i]); reflection_atlas->fbo[i] = 0; } glDeleteTextures(1, &reflection_atlas->color); reflection_atlas->color = 0; } reflection_atlas->size = size; for (int i = 0; i < reflection_atlas->reflections.size(); i++) { //erase probes reference to this if (reflection_atlas->reflections[i].owner.is_valid()) { ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner); reflection_atlas->reflections.write[i].owner = RID(); ERR_CONTINUE(!reflection_probe_instance); reflection_probe_instance->reflection_atlas_index = -1; reflection_probe_instance->atlas = RID(); reflection_probe_instance->render_step = -1; } } if (reflection_atlas->size) { bool use_float = true; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; // Create a texture for storing the color glActiveTexture(GL_TEXTURE0); glGenTextures(1, &reflection_atlas->color); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); int mmsize = reflection_atlas->size; glTexStorage2DCustom(GL_TEXTURE_2D, 6, internal_format, mmsize, mmsize, format, type); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5); for (int i = 0; i < 6; i++) { glGenFramebuffers(1, &reflection_atlas->fbo[i]); glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, reflection_atlas->color, i); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); glDisable(GL_SCISSOR_TEST); glViewport(0, 0, mmsize, mmsize); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); //it needs to be cleared, to avoid generating garbage mmsize >>= 1; } } } void RasterizerSceneGLES3::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) { ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas); ERR_FAIL_COND(!reflection_atlas); int subdiv = next_power_of_2(p_subdiv); if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); if (reflection_atlas->subdiv == subdiv) return; if (subdiv) { for (int i = 0; i < reflection_atlas->reflections.size(); i++) { //erase probes reference to this if (reflection_atlas->reflections[i].owner.is_valid()) { ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner); reflection_atlas->reflections.write[i].owner = RID(); ERR_CONTINUE(!reflection_probe_instance); reflection_probe_instance->reflection_atlas_index = -1; reflection_probe_instance->atlas = RID(); reflection_probe_instance->render_step = -1; } } } reflection_atlas->subdiv = subdiv; reflection_atlas->reflections.resize(subdiv * subdiv); } //////////////////////////////////////////////////// RID RasterizerSceneGLES3::reflection_probe_instance_create(RID p_probe) { RasterizerStorageGLES3::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!probe, RID()); ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance); rpi->probe_ptr = probe; rpi->self = reflection_probe_instance_owner.make_rid(rpi); rpi->probe = p_probe; rpi->reflection_atlas_index = -1; rpi->render_step = -1; rpi->last_pass = 0; return rpi->self; } void RasterizerSceneGLES3::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); rpi->transform = p_transform; } void RasterizerSceneGLES3::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND(!rpi); if (rpi->reflection_atlas_index == -1) return; ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND(!reflection_atlas); ERR_FAIL_INDEX(rpi->reflection_atlas_index, reflection_atlas->reflections.size()); ERR_FAIL_COND(reflection_atlas->reflections[rpi->reflection_atlas_index].owner != rpi->self); reflection_atlas->reflections.write[rpi->reflection_atlas_index].owner = RID(); rpi->reflection_atlas_index = -1; rpi->atlas = RID(); rpi->render_step = -1; } bool RasterizerSceneGLES3::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->reflection_atlas_index == -1 || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS; } bool RasterizerSceneGLES3::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); return rpi->reflection_atlas_index != -1; } bool RasterizerSceneGLES3::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, false); rpi->render_step = 0; if (rpi->reflection_atlas_index != -1) { return true; //got one already } ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas); ERR_FAIL_COND_V(!reflection_atlas, false); if (reflection_atlas->size == 0 || reflection_atlas->subdiv == 0) { return false; } int best_free = -1; int best_used = -1; uint64_t best_used_frame = 0; for (int i = 0; i < reflection_atlas->reflections.size(); i++) { if (reflection_atlas->reflections[i].owner == RID()) { best_free = i; break; } if (rpi->render_step < 0 && reflection_atlas->reflections[i].last_frame < storage->frame.count && (best_used == -1 || reflection_atlas->reflections[i].last_frame < best_used_frame)) { best_used = i; best_used_frame = reflection_atlas->reflections[i].last_frame; } } if (best_free == -1 && best_used == -1) { return false; // sorry, can not do. Try again next frame. } if (best_free == -1) { //find best from what is used best_free = best_used; ReflectionProbeInstance *victim_rpi = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[best_free].owner); ERR_FAIL_COND_V(!victim_rpi, false); victim_rpi->atlas = RID(); victim_rpi->reflection_atlas_index = -1; } reflection_atlas->reflections.write[best_free].owner = p_instance; reflection_atlas->reflections.write[best_free].last_frame = storage->frame.count; rpi->reflection_atlas_index = best_free; rpi->atlas = p_reflection_atlas; rpi->render_step = 0; return true; } bool RasterizerSceneGLES3::reflection_probe_instance_postprocess_step(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance); ERR_FAIL_COND_V(!rpi, true); ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas); ERR_FAIL_COND_V(!reflection_atlas, false); ERR_FAIL_COND_V(rpi->render_step >= 6, true); glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[rpi->render_step]); state.cube_to_dp_shader.bind(); int target_size = reflection_atlas->size / reflection_atlas->subdiv; int cubemap_index = reflection_cubemaps.size() - 1; for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) { //find appropriate cubemap to render to if (reflection_cubemaps[i].size > target_size * 2) break; cubemap_index = i; } glDisable(GL_BLEND); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, reflection_cubemaps[cubemap_index].cubemap); glDisable(GL_CULL_FACE); storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true); storage->shaders.cubemap_filter.bind(); int cell_size = reflection_atlas->size / reflection_atlas->subdiv; for (int i = 0; i < rpi->render_step; i++) { cell_size >>= 1; //mipmaps! } int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size; int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size; int width = cell_size; int height = cell_size; storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, rpi->render_step == 0); storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS); for (int i = 0; i < 2; i++) { storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i == 0); storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, rpi->render_step / 5.0); uint32_t local_width = width, local_height = height; uint32_t local_x = x, local_y = y; local_height /= 2; local_y += i * local_height; glViewport(local_x, local_y, local_width, local_height); _copy_screen(); } storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false); storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, false); rpi->render_step++; return rpi->render_step == 6; } /* ENVIRONMENT API */ RID RasterizerSceneGLES3::environment_create() { Environment *env = memnew(Environment); return environment_owner.make_rid(env); } void RasterizerSceneGLES3::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_mode = p_bg; } void RasterizerSceneGLES3::environment_set_sky(RID p_env, RID p_sky) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneGLES3::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneGLES3::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneGLES3::environment_set_bg_color(RID p_env, const Color &p_color) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneGLES3::environment_set_bg_energy(RID p_env, float p_energy) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneGLES3::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneGLES3::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ambient_color = p_color; env->ambient_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; } void RasterizerSceneGLES3::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->dof_blur_far_enabled = p_enable; env->dof_blur_far_distance = p_distance; env->dof_blur_far_transition = p_transition; env->dof_blur_far_amount = p_amount; env->dof_blur_far_quality = p_quality; } void RasterizerSceneGLES3::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->dof_blur_near_enabled = p_enable; env->dof_blur_near_distance = p_distance; env->dof_blur_near_transition = p_transition; env->dof_blur_near_amount = p_amount; env->dof_blur_near_quality = p_quality; } void RasterizerSceneGLES3::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->glow_enabled = p_enable; env->glow_levels = p_level_flags; env->glow_intensity = p_intensity; env->glow_strength = p_strength; env->glow_bloom = p_bloom_threshold; env->glow_blend_mode = p_blend_mode; env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; env->glow_hdr_bleed_scale = p_hdr_bleed_scale; env->glow_hdr_luminance_cap = p_hdr_luminance_cap; env->glow_bicubic_upscale = p_bicubic_upscale; } void RasterizerSceneGLES3::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) { } void RasterizerSceneGLES3::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ssr_enabled = p_enable; env->ssr_max_steps = p_max_steps; env->ssr_fade_in = p_fade_in; env->ssr_fade_out = p_fade_out; env->ssr_depth_tolerance = p_depth_tolerance; env->ssr_roughness = p_roughness; } void RasterizerSceneGLES3::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->ssao_enabled = p_enable; env->ssao_radius = p_radius; env->ssao_intensity = p_intensity; env->ssao_radius2 = p_radius2; env->ssao_intensity2 = p_intensity2; env->ssao_bias = p_bias; env->ssao_light_affect = p_light_affect; env->ssao_ao_channel_affect = p_ao_channel_affect; env->ssao_color = p_color; env->ssao_filter = p_blur; env->ssao_quality = p_quality; env->ssao_bilateral_sharpness = p_bilateral_sharpness; } void RasterizerSceneGLES3::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->tone_mapper = p_tone_mapper; env->tone_mapper_exposure = p_exposure; env->tone_mapper_exposure_white = p_white; env->auto_exposure = p_auto_exposure; env->auto_exposure_speed = p_auto_exp_speed; env->auto_exposure_min = p_min_luminance; env->auto_exposure_max = p_max_luminance; env->auto_exposure_grey = p_auto_exp_scale; } void RasterizerSceneGLES3::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->adjustments_enabled = p_enable; env->adjustments_brightness = p_brightness; env->adjustments_contrast = p_contrast; env->adjustments_saturation = p_saturation; env->color_correction = p_ramp; } void RasterizerSceneGLES3::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_enabled = p_enable; env->fog_color = p_color; env->fog_sun_color = p_sun_color; env->fog_sun_amount = p_sun_amount; } void RasterizerSceneGLES3::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_depth_enabled = p_enable; env->fog_depth_begin = p_depth_begin; env->fog_depth_end = p_depth_end; env->fog_depth_curve = p_depth_curve; env->fog_transmit_enabled = p_transmit; env->fog_transmit_curve = p_transmit_curve; } void RasterizerSceneGLES3::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) { Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND(!env); env->fog_height_enabled = p_enable; env->fog_height_min = p_min_height; env->fog_height_max = p_max_height; env->fog_height_curve = p_height_curve; } bool RasterizerSceneGLES3::is_environment(RID p_env) { return environment_owner.owns(p_env); } VS::EnvironmentBG RasterizerSceneGLES3::environment_get_background(RID p_env) { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX); return env->bg_mode; } int RasterizerSceneGLES3::environment_get_canvas_max_layer(RID p_env) { const Environment *env = environment_owner.getornull(p_env); ERR_FAIL_COND_V(!env, -1); return env->canvas_max_layer; } RID RasterizerSceneGLES3::light_instance_create(RID p_light) { LightInstance *light_instance = memnew(LightInstance); light_instance->last_pass = 0; light_instance->last_scene_pass = 0; light_instance->last_scene_shadow_pass = 0; light_instance->light = p_light; light_instance->light_ptr = storage->light_owner.getornull(p_light); if (!light_instance->light_ptr) { memdelete(light_instance); ERR_FAIL_COND_V(!light_instance->light_ptr, RID()); } light_instance->self = light_instance_owner.make_rid(light_instance); return light_instance->self; } void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) { p_pass = 0; } ERR_FAIL_INDEX(p_pass, 4); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; } void RasterizerSceneGLES3::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.getornull(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->last_scene_pass = scene_pass; } ////////////////////// RID RasterizerSceneGLES3::gi_probe_instance_create() { GIProbeInstance *gipi = memnew(GIProbeInstance); return gi_probe_instance_owner.make_rid(gipi); } void RasterizerSceneGLES3::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) { GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gipi); gipi->data = p_data; gipi->probe = storage->gi_probe_owner.getornull(p_base); if (p_data.is_valid()) { RasterizerStorageGLES3::GIProbeData *gipd = storage->gi_probe_data_owner.getornull(p_data); ERR_FAIL_COND(!gipd); if (gipd) { gipi->tex_cache = gipd->tex_id; gipi->cell_size_cache.x = 1.0 / gipd->width; gipi->cell_size_cache.y = 1.0 / gipd->height; gipi->cell_size_cache.z = 1.0 / gipd->depth; } } } void RasterizerSceneGLES3::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) { GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gipi); gipi->transform_to_data = p_xform; } void RasterizerSceneGLES3::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) { GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe); ERR_FAIL_COND(!gipi); gipi->bounds = p_bounds; } //////////////////////////// //////////////////////////// //////////////////////////// bool RasterizerSceneGLES3::_setup_material(RasterizerStorageGLES3::Material *p_material, bool p_alpha_pass) { /* this is handled outside if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } */ if (state.current_line_width != p_material->line_width) { //glLineWidth(MAX(p_material->line_width,1.0)); state.current_line_width = p_material->line_width; } if (state.current_depth_test != (!p_material->shader->spatial.no_depth_test)) { if (p_material->shader->spatial.no_depth_test) { glDisable(GL_DEPTH_TEST); } else { glEnable(GL_DEPTH_TEST); } state.current_depth_test = !p_material->shader->spatial.no_depth_test; } if (state.current_depth_draw != p_material->shader->spatial.depth_draw_mode) { switch (p_material->shader->spatial.depth_draw_mode) { case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS: case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_OPAQUE: { glDepthMask(!p_alpha_pass); } break; case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALWAYS: { glDepthMask(GL_TRUE); } break; case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER: { glDepthMask(GL_FALSE); } break; } state.current_depth_draw = p_material->shader->spatial.depth_draw_mode; } #if 0 //blend mode if (state.current_blend_mode!=p_material->shader->spatial.blend_mode) { switch(p_material->shader->spatial.blend_mode) { case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE); } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA,GL_ONE); } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; } state.current_blend_mode=p_material->shader->spatial.blend_mode; } #endif //material parameters state.scene_shader.set_custom_shader(p_material->shader->custom_code_id); bool rebind = state.scene_shader.bind(); if (p_material->ubo_id) { glBindBufferBase(GL_UNIFORM_BUFFER, 1, p_material->ubo_id); } int tc = p_material->textures.size(); RID *textures = p_material->textures.ptrw(); ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptrw(); const ShaderLanguage::DataType *texture_types = p_material->shader->texture_types.ptr(); state.current_main_tex = 0; for (int i = 0; i < tc; i++) { glActiveTexture(GL_TEXTURE0 + i); GLenum target = GL_TEXTURE_2D; GLuint tex = 0; RasterizerStorageGLES3::Texture *t = storage->texture_owner.getptr(textures[i]); if (t) { t = t->get_ptr(); //resolve for proxies if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies VisualServerRaster::redraw_request(); } #ifdef TOOLS_ENABLED if (t->detect_3d) { t->detect_3d(t->detect_3d_ud); } #endif #ifdef TOOLS_ENABLED if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) { t->detect_normal(t->detect_normal_ud); } #endif if (t->render_target) t->render_target->used_in_frame = true; target = t->target; tex = t->tex_id; } else { switch (texture_types[i]) { case ShaderLanguage::TYPE_ISAMPLER2D: case ShaderLanguage::TYPE_USAMPLER2D: case ShaderLanguage::TYPE_SAMPLER2D: { target = GL_TEXTURE_2D; switch (texture_hints[i]) { case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: { tex = storage->resources.black_tex; } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { tex = storage->resources.aniso_tex; } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: { tex = storage->resources.normal_tex; } break; default: { tex = storage->resources.white_tex; } break; } } break; case ShaderLanguage::TYPE_SAMPLERCUBE: { // TODO } break; case ShaderLanguage::TYPE_ISAMPLER3D: case ShaderLanguage::TYPE_USAMPLER3D: case ShaderLanguage::TYPE_SAMPLER3D: { target = GL_TEXTURE_3D; tex = storage->resources.white_tex_3d; //switch (texture_hints[i]) { // TODO //} } break; case ShaderLanguage::TYPE_ISAMPLER2DARRAY: case ShaderLanguage::TYPE_USAMPLER2DARRAY: case ShaderLanguage::TYPE_SAMPLER2DARRAY: { target = GL_TEXTURE_2D_ARRAY; tex = storage->resources.white_tex_array; //switch (texture_hints[i]) { // TODO //} } break; default: {} } } glBindTexture(target, tex); if (t && storage->config.srgb_decode_supported) { //if SRGB decode extension is present, simply switch the texture to whathever is needed bool must_srgb = false; if (t->srgb && (texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO)) { must_srgb = true; } if (t->using_srgb != must_srgb) { if (must_srgb) { glTexParameteri(t->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); #ifdef TOOLS_ENABLED if (t->detect_srgb) { t->detect_srgb(t->detect_srgb_ud); } #endif } else { glTexParameteri(t->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT); } t->using_srgb = must_srgb; } } if (i == 0) { state.current_main_tex = tex; } } return rebind; } struct RasterizerGLES3Particle { float color[4]; float velocity_active[4]; float custom[4]; float xform_1[4]; float xform_2[4]; float xform_3[4]; }; struct RasterizerGLES3ParticleSort { Vector3 z_dir; bool operator()(const RasterizerGLES3Particle &p_a, const RasterizerGLES3Particle &p_b) const { return z_dir.dot(Vector3(p_a.xform_1[3], p_a.xform_2[3], p_a.xform_3[3])) < z_dir.dot(Vector3(p_b.xform_1[3], p_b.xform_2[3], p_b.xform_3[3])); } }; void RasterizerSceneGLES3::_setup_geometry(RenderList::Element *e, const Transform &p_view_transform) { switch (e->instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); if (s->blend_shapes.size() && e->instance->blend_values.size()) { //blend shapes, use transform feedback storage->mesh_render_blend_shapes(s, e->instance->blend_values.ptr()); //rebind shader state.scene_shader.bind(); #ifdef DEBUG_ENABLED } else if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glBindVertexArray(s->array_wireframe_id); // everything is so easy nowadays #endif } else { glBindVertexArray(s->array_id); // everything is so easy nowadays } } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast(e->owner); RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) { glBindVertexArray(s->instancing_array_wireframe_id); // use the instancing array ID } else #endif { glBindVertexArray(s->instancing_array_id); // use the instancing array ID } glBindBuffer(GL_ARRAY_BUFFER, multi_mesh->buffer); //modify the buffer int stride = (multi_mesh->xform_floats + multi_mesh->color_floats + multi_mesh->custom_data_floats) * 4; glEnableVertexAttribArray(8); glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + 0); glVertexAttribDivisor(8, 1); glEnableVertexAttribArray(9); glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + 4 * 4); glVertexAttribDivisor(9, 1); int color_ofs; if (multi_mesh->transform_format == VS::MULTIMESH_TRANSFORM_3D) { glEnableVertexAttribArray(10); glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + 8 * 4); glVertexAttribDivisor(10, 1); color_ofs = 12 * 4; } else { glDisableVertexAttribArray(10); glVertexAttrib4f(10, 0, 0, 1, 0); color_ofs = 8 * 4; } int custom_data_ofs = color_ofs; switch (multi_mesh->color_format) { case VS::MULTIMESH_COLOR_NONE: { glDisableVertexAttribArray(11); glVertexAttrib4f(11, 1, 1, 1, 1); } break; case VS::MULTIMESH_COLOR_8BIT: { glEnableVertexAttribArray(11); glVertexAttribPointer(11, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, ((uint8_t *)NULL) + color_ofs); glVertexAttribDivisor(11, 1); custom_data_ofs += 4; } break; case VS::MULTIMESH_COLOR_FLOAT: { glEnableVertexAttribArray(11); glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + color_ofs); glVertexAttribDivisor(11, 1); custom_data_ofs += 4 * 4; } break; } switch (multi_mesh->custom_data_format) { case VS::MULTIMESH_CUSTOM_DATA_NONE: { glDisableVertexAttribArray(12); glVertexAttrib4f(12, 1, 1, 1, 1); } break; case VS::MULTIMESH_CUSTOM_DATA_8BIT: { glEnableVertexAttribArray(12); glVertexAttribPointer(12, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, ((uint8_t *)NULL) + custom_data_ofs); glVertexAttribDivisor(12, 1); } break; case VS::MULTIMESH_CUSTOM_DATA_FLOAT: { glEnableVertexAttribArray(12); glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + custom_data_ofs); glVertexAttribDivisor(12, 1); } break; } } break; case VS::INSTANCE_PARTICLES: { RasterizerStorageGLES3::Particles *particles = static_cast(e->owner); RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); if (particles->draw_order == VS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->particle_valid_histories[1]) { glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[1]); //modify the buffer, this was used 2 frames ago so it should be good enough for flushing RasterizerGLES3Particle *particle_array; #ifndef __EMSCRIPTEN__ particle_array = static_cast(glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * 24 * sizeof(float), GL_MAP_READ_BIT | GL_MAP_WRITE_BIT)); #else PoolVector particle_vector; particle_vector.resize(particles->amount); PoolVector::Write w = particle_vector.write(); particle_array = w.ptr(); glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(RasterizerGLES3Particle), particle_array); #endif SortArray sorter; if (particles->use_local_coords) { sorter.compare.z_dir = e->instance->transform.affine_inverse().xform(p_view_transform.basis.get_axis(2)).normalized(); } else { sorter.compare.z_dir = p_view_transform.basis.get_axis(2).normalized(); } sorter.sort(particle_array, particles->amount); #ifndef __EMSCRIPTEN__ glUnmapBuffer(GL_ARRAY_BUFFER); #else w = PoolVector::Write(); particle_array = NULL; { PoolVector::Read r = particle_vector.read(); glBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(RasterizerGLES3Particle), r.ptr()); } particle_vector = PoolVector(); #endif #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) { glBindVertexArray(s->instancing_array_wireframe_id); // use the wireframe instancing array ID } else #endif { glBindVertexArray(s->instancing_array_id); // use the instancing array ID } glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[1]); //modify the buffer } else { #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) { glBindVertexArray(s->instancing_array_wireframe_id); // use the wireframe instancing array ID } else #endif { glBindVertexArray(s->instancing_array_id); // use the instancing array ID } glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]); //modify the buffer } int stride = sizeof(float) * 4 * 6; //transform if (particles->draw_order != VS::PARTICLES_DRAW_ORDER_LIFETIME) { glEnableVertexAttribArray(8); //xform x glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 3); glVertexAttribDivisor(8, 1); glEnableVertexAttribArray(9); //xform y glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 4); glVertexAttribDivisor(9, 1); glEnableVertexAttribArray(10); //xform z glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 5); glVertexAttribDivisor(10, 1); glEnableVertexAttribArray(11); //color glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + 0); glVertexAttribDivisor(11, 1); glEnableVertexAttribArray(12); //custom glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 2); glVertexAttribDivisor(12, 1); } } break; default: {} } } static const GLenum gl_primitive[] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; void RasterizerSceneGLES3::_render_geometry(RenderList::Element *e) { switch (e->instance->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glDrawElements(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0); storage->info.render.vertices_count += s->index_array_len; } else #endif if (s->index_array_len > 0) { glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); storage->info.render.vertices_count += s->index_array_len; } else { glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); storage->info.render.vertices_count += s->array_len; } } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast(e->owner); RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); int amount = MIN(multi_mesh->size, multi_mesh->visible_instances); if (amount == -1) { amount = multi_mesh->size; } #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount); storage->info.render.vertices_count += s->index_array_len * amount; } else #endif if (s->index_array_len > 0) { glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount); storage->info.render.vertices_count += s->index_array_len * amount; } else { glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount); storage->info.render.vertices_count += s->array_len * amount; } } break; case VS::INSTANCE_IMMEDIATE: { bool restore_tex = false; const RasterizerStorageGLES3::Immediate *im = static_cast(e->geometry); if (im->building) { return; } glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); glBindVertexArray(state.immediate_array); for (const List::Element *E = im->chunks.front(); E; E = E->next()) { const RasterizerStorageGLES3::Immediate::Chunk &c = E->get(); if (c.vertices.empty()) { continue; } int vertices = c.vertices.size(); uint32_t buf_ofs = 0; storage->info.render.vertices_count += vertices; if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) { RasterizerStorageGLES3::Texture *t = storage->texture_owner.get(c.texture); t = t->get_ptr(); //resolve for proxies if (t->redraw_if_visible) { VisualServerRaster::redraw_request(); } #ifdef TOOLS_ENABLED if (t->detect_3d) { t->detect_3d(t->detect_3d_ud); } #endif if (t->render_target) { t->render_target->used_in_frame = true; } glActiveTexture(GL_TEXTURE0); glBindTexture(t->target, t->tex_id); restore_tex = true; } else if (restore_tex) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, state.current_main_tex); restore_tex = false; } if (!c.normals.empty()) { glEnableVertexAttribArray(VS::ARRAY_NORMAL); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr()); glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs); buf_ofs += sizeof(Vector3) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_NORMAL); } if (!c.tangents.empty()) { glEnableVertexAttribArray(VS::ARRAY_TANGENT); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr()); glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, sizeof(Plane), ((uint8_t *)NULL) + buf_ofs); buf_ofs += sizeof(Plane) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TANGENT); } if (!c.colors.empty()) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr()); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), ((uint8_t *)NULL) + buf_ofs); buf_ofs += sizeof(Color) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1); } if (!c.uvs.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr()); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs); buf_ofs += sizeof(Vector2) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } if (!c.uvs2.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV2); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs2.ptr()); glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs); buf_ofs += sizeof(Vector2) * vertices; } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV2); } glEnableVertexAttribArray(VS::ARRAY_VERTEX); glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr()); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs); glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size()); } if (restore_tex) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, state.current_main_tex); restore_tex = false; } } break; case VS::INSTANCE_PARTICLES: { RasterizerStorageGLES3::Particles *particles = static_cast(e->owner); RasterizerStorageGLES3::Surface *s = static_cast(e->geometry); if (!particles->use_local_coords) //not using local coordinates? then clear transform.. state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, Transform()); int amount = particles->amount; if (particles->draw_order == VS::PARTICLES_DRAW_ORDER_LIFETIME) { //split int stride = sizeof(float) * 4 * 6; int split = int(Math::ceil(particles->phase * particles->amount)); if (amount - split > 0) { glEnableVertexAttribArray(8); //xform x glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + stride * split + sizeof(float) * 4 * 3); glVertexAttribDivisor(8, 1); glEnableVertexAttribArray(9); //xform y glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + stride * split + sizeof(float) * 4 * 4); glVertexAttribDivisor(9, 1); glEnableVertexAttribArray(10); //xform z glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + stride * split + sizeof(float) * 4 * 5); glVertexAttribDivisor(10, 1); glEnableVertexAttribArray(11); //color glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + stride * split + 0); glVertexAttribDivisor(11, 1); glEnableVertexAttribArray(12); //custom glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + stride * split + sizeof(float) * 4 * 2); glVertexAttribDivisor(12, 1); #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount - split); storage->info.render.vertices_count += s->index_array_len * (amount - split); } else #endif if (s->index_array_len > 0) { glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount - split); storage->info.render.vertices_count += s->index_array_len * (amount - split); } else { glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount - split); storage->info.render.vertices_count += s->array_len * (amount - split); } } if (split > 0) { glEnableVertexAttribArray(8); //xform x glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 3); glVertexAttribDivisor(8, 1); glEnableVertexAttribArray(9); //xform y glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 4); glVertexAttribDivisor(9, 1); glEnableVertexAttribArray(10); //xform z glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 5); glVertexAttribDivisor(10, 1); glEnableVertexAttribArray(11); //color glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + 0); glVertexAttribDivisor(11, 1); glEnableVertexAttribArray(12); //custom glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, ((uint8_t *)NULL) + sizeof(float) * 4 * 2); glVertexAttribDivisor(12, 1); #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, split); storage->info.render.vertices_count += s->index_array_len * split; } else #endif if (s->index_array_len > 0) { glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, split); storage->info.render.vertices_count += s->index_array_len * split; } else { glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, split); storage->info.render.vertices_count += s->array_len * split; } } } else { #ifdef DEBUG_ENABLED if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) { glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount); storage->info.render.vertices_count += s->index_array_len * amount; } else #endif if (s->index_array_len > 0) { glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount); storage->info.render.vertices_count += s->index_array_len * amount; } else { glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount); storage->info.render.vertices_count += s->array_len * amount; } } } break; default: {} } } void RasterizerSceneGLES3::_setup_light(RenderList::Element *e, const Transform &p_view_transform) { int omni_indices[16]; int omni_count = 0; int spot_indices[16]; int spot_count = 0; int reflection_indices[16]; int reflection_count = 0; int maxobj = MIN(16, state.max_forward_lights_per_object); int lc = e->instance->light_instances.size(); if (lc) { const RID *lights = e->instance->light_instances.ptr(); for (int i = 0; i < lc; i++) { LightInstance *li = light_instance_owner.getptr(lights[i]); if (li->last_pass != render_pass) //not visible continue; if (li->light_ptr->type == VS::LIGHT_OMNI) { if (omni_count < maxobj && e->instance->layer_mask & li->light_ptr->cull_mask) { omni_indices[omni_count++] = li->light_index; } } if (li->light_ptr->type == VS::LIGHT_SPOT) { if (spot_count < maxobj && e->instance->layer_mask & li->light_ptr->cull_mask) { spot_indices[spot_count++] = li->light_index; } } } } state.scene_shader.set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, omni_count); if (omni_count) { glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES), omni_count, omni_indices); } state.scene_shader.set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, spot_count); if (spot_count) { glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES), spot_count, spot_indices); } int rc = e->instance->reflection_probe_instances.size(); if (rc) { const RID *reflections = e->instance->reflection_probe_instances.ptr(); for (int i = 0; i < rc; i++) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getptr(reflections[i]); if (rpi->last_pass != render_pass) //not visible continue; if (reflection_count < maxobj) { reflection_indices[reflection_count++] = rpi->reflection_index; } } } state.scene_shader.set_uniform(SceneShaderGLES3::REFLECTION_COUNT, reflection_count); if (reflection_count) { glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::REFLECTION_INDICES), reflection_count, reflection_indices); } int gi_probe_count = e->instance->gi_probe_instances.size(); if (gi_probe_count) { const RID *ridp = e->instance->gi_probe_instances.ptr(); GIProbeInstance *gipi = gi_probe_instance_owner.getptr(ridp[0]); float bias_scale = e->instance->baked_light ? 1 : 0; glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 9); glBindTexture(GL_TEXTURE_3D, gipi->tex_cache); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM1, gipi->transform_to_data * p_view_transform); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS1, gipi->bounds); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER1, gipi->probe ? gipi->probe->dynamic_range * gipi->probe->energy : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BIAS1, gipi->probe ? gipi->probe->bias * bias_scale : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_NORMAL_BIAS1, gipi->probe ? gipi->probe->normal_bias * bias_scale : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT1, gipi->probe ? !gipi->probe->interior : false); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE1, gipi->cell_size_cache); if (gi_probe_count > 1) { GIProbeInstance *gipi2 = gi_probe_instance_owner.getptr(ridp[1]); glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 10); glBindTexture(GL_TEXTURE_3D, gipi2->tex_cache); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM2, gipi2->transform_to_data * p_view_transform); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS2, gipi2->bounds); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE2, gipi2->cell_size_cache); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER2, gipi2->probe ? gipi2->probe->dynamic_range * gipi2->probe->energy : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BIAS2, gipi2->probe ? gipi2->probe->bias * bias_scale : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_NORMAL_BIAS2, gipi2->probe ? gipi2->probe->normal_bias * bias_scale : 0.0); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT2, gipi2->probe ? !gipi2->probe->interior : false); state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, true); } else { state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, false); } } else if (!e->instance->lightmap_capture_data.empty()) { glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES3::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr()); state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_CAPTURE_SKY, false); } else if (e->instance->lightmap.is_valid()) { RasterizerStorageGLES3::Texture *lightmap = storage->texture_owner.getornull(e->instance->lightmap); RasterizerStorageGLES3::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base); if (lightmap && capture) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 9); glBindTexture(GL_TEXTURE_2D, lightmap->tex_id); state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_ENERGY, capture->energy); } } } void RasterizerSceneGLES3::_set_cull(bool p_front, bool p_disabled, bool p_reverse_cull) { bool front = p_front; if (p_reverse_cull) front = !front; if (p_disabled != state.cull_disabled) { if (p_disabled) glDisable(GL_CULL_FACE); else glEnable(GL_CULL_FACE); state.cull_disabled = p_disabled; } if (front != state.cull_front) { glCullFace(front ? GL_FRONT : GL_BACK); state.cull_front = front; } } void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, GLuint p_base_env, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow, bool p_directional_add, bool p_directional_shadows) { glBindBufferBase(GL_UNIFORM_BUFFER, 0, state.scene_ubo); //bind globals ubo bool use_radiance_map = false; if (!p_shadow && !p_directional_add) { glBindBufferBase(GL_UNIFORM_BUFFER, 2, state.env_radiance_ubo); //bind environment radiance info if (p_base_env) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2); if (storage->config.use_texture_array_environment) { glBindTexture(GL_TEXTURE_2D_ARRAY, p_base_env); } else { glBindTexture(GL_TEXTURE_2D, p_base_env); } state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, true); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, storage->config.use_texture_array_environment); use_radiance_map = true; } else { state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, false); } } else { state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, false); } state.cull_front = false; state.cull_disabled = false; glCullFace(GL_BACK); glEnable(GL_CULL_FACE); state.current_depth_test = true; glEnable(GL_DEPTH_TEST); state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, false); state.current_blend_mode = -1; state.current_line_width = -1; state.current_depth_draw = -1; RasterizerStorageGLES3::Material *prev_material = NULL; RasterizerStorageGLES3::Geometry *prev_geometry = NULL; RasterizerStorageGLES3::GeometryOwner *prev_owner = NULL; VS::InstanceType prev_base_type = VS::INSTANCE_MAX; int current_blend_mode = -1; int prev_shading = -1; RID prev_skeleton; state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, true); //by default unshaded (easier to set) bool first = true; bool prev_use_instancing = false; storage->info.render.draw_call_count += p_element_count; bool prev_opaque_prepass = false; for (int i = 0; i < p_element_count; i++) { RenderList::Element *e = p_elements[i]; RasterizerStorageGLES3::Material *material = e->material; RID skeleton = e->instance->skeleton; bool rebind = first; int shading = (e->sort_key >> RenderList::SORT_KEY_SHADING_SHIFT) & RenderList::SORT_KEY_SHADING_MASK; if (!p_shadow) { if (p_directional_add) { if (e->sort_key & SORT_KEY_UNSHADED_FLAG || !(e->instance->layer_mask & directional_light->light_ptr->cull_mask)) { continue; } shading &= ~1; //ignore the ignore directional for base pass } if (shading != prev_shading) { if (e->sort_key & SORT_KEY_UNSHADED_FLAG) { state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, true); state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false); //state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true); } else { state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, e->instance->gi_probe_instances.size() > 0); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, !e->instance->lightmap_capture_data.empty() && !e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0); state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, !p_directional_add); state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, (e->sort_key & SORT_KEY_VERTEX_LIT_FLAG)); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, use_radiance_map); state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, state.used_contact_shadows); if (p_directional_add || (directional_light && (e->sort_key & SORT_KEY_NO_DIRECTIONAL_FLAG) == 0)) { state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, true); if (p_directional_shadows && directional_light->light_ptr->shadow) { state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, true); switch (directional_light->light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, true); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, directional_light->light_ptr->directional_blend_splits); break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, true); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, directional_light->light_ptr->directional_blend_splits); break; } } } } rebind = true; } if (p_alpha_pass || p_directional_add) { int desired_blend_mode; if (p_directional_add) { desired_blend_mode = RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD; } else { desired_blend_mode = material->shader->spatial.blend_mode; } if (desired_blend_mode != current_blend_mode) { switch (desired_blend_mode) { case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; } current_blend_mode = desired_blend_mode; } } } bool use_opaque_prepass = e->sort_key & RenderList::SORT_KEY_OPAQUE_PRE_PASS; if (use_opaque_prepass != prev_opaque_prepass) { state.scene_shader.set_conditional(SceneShaderGLES3::USE_OPAQUE_PREPASS, use_opaque_prepass); rebind = true; } bool use_instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH || e->instance->base_type == VS::INSTANCE_PARTICLES; if (use_instancing != prev_use_instancing) { state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING, use_instancing); rebind = true; } if (prev_skeleton != skeleton) { if (prev_skeleton.is_valid() != skeleton.is_valid()) { state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, skeleton.is_valid()); rebind = true; } if (skeleton.is_valid()) { RasterizerStorageGLES3::Skeleton *sk = storage->skeleton_owner.getornull(skeleton); glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1); glBindTexture(GL_TEXTURE_2D, sk->texture); } } if (material != prev_material || rebind) { storage->info.render.material_switch_count++; rebind = _setup_material(material, p_alpha_pass); if (rebind) { storage->info.render.shader_rebind_count++; } } if (!(e->sort_key & SORT_KEY_UNSHADED_FLAG) && !p_directional_add && !p_shadow) { _setup_light(e, p_view_transform); } if (e->owner != prev_owner || prev_base_type != e->instance->base_type || prev_geometry != e->geometry) { _setup_geometry(e, p_view_transform); storage->info.render.surface_switch_count++; } _set_cull(e->sort_key & RenderList::SORT_KEY_MIRROR_FLAG, e->sort_key & RenderList::SORT_KEY_CULL_DISABLED_FLAG, p_reverse_cull); state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, e->instance->transform); _render_geometry(e); prev_material = material; prev_base_type = e->instance->base_type; prev_geometry = e->geometry; prev_owner = e->owner; prev_shading = shading; prev_skeleton = skeleton; prev_use_instancing = use_instancing; prev_opaque_prepass = use_opaque_prepass; first = false; } glBindVertexArray(0); state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false); state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false); state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, false); state.scene_shader.set_conditional(SceneShaderGLES3::USE_OPAQUE_PREPASS, false); } void RasterizerSceneGLES3::_add_geometry(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) { RasterizerStorageGLES3::Material *m = NULL; RID m_src = p_instance->material_override.is_valid() ? p_instance->material_override : (p_material >= 0 ? p_instance->materials[p_material] : p_geometry->material); if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { m_src = default_overdraw_material; } /* #ifdef DEBUG_ENABLED if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) { m_src=overdraw_material; } #endif */ if (m_src.is_valid()) { m = storage->material_owner.getornull(m_src); if (!m->shader || !m->shader->valid) { m = NULL; } } if (!m) { m = storage->material_owner.getptr(default_material); } ERR_FAIL_COND(!m); _add_geometry_with_material(p_geometry, p_instance, p_owner, m, p_depth_pass, p_shadow_pass); while (m->next_pass.is_valid()) { m = storage->material_owner.getornull(m->next_pass); if (!m || !m->shader || !m->shader->valid) break; _add_geometry_with_material(p_geometry, p_instance, p_owner, m, p_depth_pass, p_shadow_pass); } } void RasterizerSceneGLES3::_add_geometry_with_material(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, RasterizerStorageGLES3::Material *p_material, bool p_depth_pass, bool p_shadow_pass) { bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture; bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX; bool has_alpha = has_base_alpha || has_blend_alpha; bool mirror = p_instance->mirror; bool no_cull = false; if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) { no_cull = true; mirror = false; } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_FRONT) { mirror = !mirror; } if (p_material->shader->spatial.uses_sss) { state.used_sss = true; } if (p_material->shader->spatial.uses_screen_texture) { state.used_screen_texture = true; } if (p_material->shader->spatial.uses_depth_texture) { state.used_depth_texture = true; } if (p_depth_pass) { if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) || p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER || p_material->shader->spatial.no_depth_test) return; //bye if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { //shader does not use discard and does not write a vertex position, use generic material if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) { p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided); no_cull = true; mirror = false; } else { p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material); } } has_alpha = false; } RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element(); if (!e) return; e->geometry = p_geometry; e->material = p_material; e->instance = p_instance; e->owner = p_owner; e->sort_key = 0; if (e->geometry->last_pass != render_pass) { e->geometry->last_pass = render_pass; e->geometry->index = current_geometry_index++; } if (!p_depth_pass && directional_light && (directional_light->light_ptr->cull_mask & e->instance->layer_mask) == 0) { e->sort_key |= SORT_KEY_NO_DIRECTIONAL_FLAG; } e->sort_key |= uint64_t(e->geometry->index) << RenderList::SORT_KEY_GEOMETRY_INDEX_SHIFT; e->sort_key |= uint64_t(e->instance->base_type) << RenderList::SORT_KEY_GEOMETRY_TYPE_SHIFT; if (e->material->last_pass != render_pass) { e->material->last_pass = render_pass; e->material->index = current_material_index++; } e->sort_key |= uint64_t(e->material->index) << RenderList::SORT_KEY_MATERIAL_INDEX_SHIFT; e->sort_key |= uint64_t(e->instance->depth_layer) << RenderList::SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT; if (!p_depth_pass) { if (e->instance->gi_probe_instances.size()) { e->sort_key |= SORT_KEY_GI_PROBES_FLAG; } if (e->instance->lightmap.is_valid()) { e->sort_key |= SORT_KEY_LIGHTMAP_FLAG; } if (!e->instance->lightmap_capture_data.empty()) { e->sort_key |= SORT_KEY_LIGHTMAP_CAPTURE_FLAG; } e->sort_key |= uint64_t(p_material->render_priority + 128) << RenderList::SORT_KEY_PRIORITY_SHIFT; } /* if (e->geometry->type==RasterizerStorageGLES3::Geometry::GEOMETRY_MULTISURFACE) e->sort_flags|=RenderList::SORT_FLAG_INSTANCING; */ if (mirror) { e->sort_key |= RenderList::SORT_KEY_MIRROR_FLAG; } if (no_cull) { e->sort_key |= RenderList::SORT_KEY_CULL_DISABLED_FLAG; } //e->light_type=0xFF; // no lights! if (p_depth_pass || p_material->shader->spatial.unshaded || state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_UNSHADED) { e->sort_key |= SORT_KEY_UNSHADED_FLAG; } if (p_depth_pass && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) { e->sort_key |= RenderList::SORT_KEY_OPAQUE_PRE_PASS; } if (!p_depth_pass && (p_material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading)) { e->sort_key |= SORT_KEY_VERTEX_LIT_FLAG; } if (p_material->shader->spatial.uses_time) { VisualServerRaster::redraw_request(); } } void RasterizerSceneGLES3::_draw_sky(RasterizerStorageGLES3::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) { ERR_FAIL_COND(!p_sky); RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(p_sky->panorama); ERR_FAIL_COND(!tex); glActiveTexture(GL_TEXTURE0); tex = tex->get_ptr(); //resolve for proxies glBindTexture(tex->target, tex->tex_id); if (storage->config.srgb_decode_supported && tex->srgb && !tex->using_srgb) { glTexParameteri(tex->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT); tex->using_srgb = true; #ifdef TOOLS_ENABLED if (!(tex->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { tex->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR; //notify that texture must be set to linear beforehand, so it works in other platforms when exported } #endif } glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); // Camera CameraMatrix camera; if (p_custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } float flip_sign = p_vflip ? -1 : 1; /* If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR). To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced. It also means the uv coordinates are ignored in this mode and we don't need our loop. */ bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0)); Vector3 vertices[8] = { Vector3(-1, -1 * flip_sign, 1), Vector3(0, 1, 0), Vector3(1, -1 * flip_sign, 1), Vector3(1, 1, 0), Vector3(1, 1 * flip_sign, 1), Vector3(1, 0, 0), Vector3(-1, 1 * flip_sign, 1), Vector3(0, 0, 0) }; if (!asymmetrical) { float vw, vh, zn; camera.get_viewport_size(vw, vh); zn = p_projection.get_z_near(); for (int i = 0; i < 4; i++) { Vector3 uv = vertices[i * 2 + 1]; uv.x = (uv.x * 2.0 - 1.0) * vw; uv.y = -(uv.y * 2.0 - 1.0) * vh; uv.z = -zn; vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized(); vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z; } } glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glBindVertexArray(state.sky_array); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, asymmetrical); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, !asymmetrical); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, true); storage->shaders.copy.bind(); storage->shaders.copy.set_uniform(CopyShaderGLES3::MULTIPLIER, p_energy); // don't know why but I always have problems setting a uniform mat3, so we're using a transform storage->shaders.copy.set_uniform(CopyShaderGLES3::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse()); if (asymmetrical) { // pack the bits we need from our projection matrix storage->shaders.copy.set_uniform(CopyShaderGLES3::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]); ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here. storage->shaders.copy.set_uniform(CopyShaderGLES3::PANO_TRANSFORM, p_transform); } glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); glColorMask(1, 1, 1, 1); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, false); } void RasterizerSceneGLES3::_setup_environment(Environment *env, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, bool p_no_fog) { Transform sky_orientation; //store camera into ubo store_camera(p_cam_projection, state.ubo_data.projection_matrix); store_camera(p_cam_projection.inverse(), state.ubo_data.inv_projection_matrix); store_transform(p_cam_transform, state.ubo_data.camera_matrix); store_transform(p_cam_transform.affine_inverse(), state.ubo_data.camera_inverse_matrix); //time global variables state.ubo_data.time = storage->frame.time[0]; state.ubo_data.z_far = p_cam_projection.get_z_far(); //bg and ambient if (env) { state.ubo_data.bg_energy = env->bg_energy; state.ubo_data.ambient_energy = env->ambient_energy; Color linear_ambient_color = env->ambient_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; Color bg_color; switch (env->bg_mode) { case VS::ENV_BG_CLEAR_COLOR: { bg_color = storage->frame.clear_request_color.to_linear(); } break; case VS::ENV_BG_COLOR: { bg_color = env->bg_color.to_linear(); } break; default: { bg_color = Color(0, 0, 0, 1); } break; } state.ubo_data.bg_color[0] = bg_color.r; state.ubo_data.bg_color[1] = bg_color.g; state.ubo_data.bg_color[2] = bg_color.b; state.ubo_data.bg_color[3] = bg_color.a; //use the inverse of our sky_orientation, we may need to skip this if we're using a reflection probe? sky_orientation = Transform(env->sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse(); state.env_radiance_data.ambient_contribution = env->ambient_sky_contribution; state.ubo_data.ambient_occlusion_affect_light = env->ssao_light_affect; state.ubo_data.ambient_occlusion_affect_ssao = env->ssao_ao_channel_affect; //fog Color linear_fog = env->fog_color.to_linear(); state.ubo_data.fog_color_enabled[0] = linear_fog.r; state.ubo_data.fog_color_enabled[1] = linear_fog.g; state.ubo_data.fog_color_enabled[2] = linear_fog.b; state.ubo_data.fog_color_enabled[3] = (!p_no_fog && env->fog_enabled) ? 1.0 : 0.0; state.ubo_data.fog_density = linear_fog.a; Color linear_sun = env->fog_sun_color.to_linear(); state.ubo_data.fog_sun_color_amount[0] = linear_sun.r; state.ubo_data.fog_sun_color_amount[1] = linear_sun.g; state.ubo_data.fog_sun_color_amount[2] = linear_sun.b; state.ubo_data.fog_sun_color_amount[3] = env->fog_sun_amount; state.ubo_data.fog_depth_enabled = env->fog_depth_enabled; state.ubo_data.fog_depth_begin = env->fog_depth_begin; state.ubo_data.fog_depth_end = env->fog_depth_end; state.ubo_data.fog_depth_curve = env->fog_depth_curve; state.ubo_data.fog_transmit_enabled = env->fog_transmit_enabled; state.ubo_data.fog_transmit_curve = env->fog_transmit_curve; state.ubo_data.fog_height_enabled = env->fog_height_enabled; state.ubo_data.fog_height_min = env->fog_height_min; state.ubo_data.fog_height_max = env->fog_height_max; state.ubo_data.fog_height_curve = env->fog_height_curve; } else { state.ubo_data.bg_energy = 1.0; state.ubo_data.ambient_energy = 1.0; //use from clear color instead, since there is no ambient Color linear_ambient_color = storage->frame.clear_request_color.to_linear(); state.ubo_data.ambient_light_color[0] = linear_ambient_color.r; state.ubo_data.ambient_light_color[1] = linear_ambient_color.g; state.ubo_data.ambient_light_color[2] = linear_ambient_color.b; state.ubo_data.ambient_light_color[3] = linear_ambient_color.a; state.ubo_data.bg_color[0] = linear_ambient_color.r; state.ubo_data.bg_color[1] = linear_ambient_color.g; state.ubo_data.bg_color[2] = linear_ambient_color.b; state.ubo_data.bg_color[3] = linear_ambient_color.a; state.env_radiance_data.ambient_contribution = 0; state.ubo_data.ambient_occlusion_affect_light = 0; state.ubo_data.fog_color_enabled[3] = 0.0; } { //directional shadow state.ubo_data.shadow_directional_pixel_size[0] = 1.0 / directional_shadow.size; state.ubo_data.shadow_directional_pixel_size[1] = 1.0 / directional_shadow.size; glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); } glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::SceneDataUBO), &state.ubo_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); //fill up environment store_transform(sky_orientation * p_cam_transform, state.env_radiance_data.transform); glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); } void RasterizerSceneGLES3::_setup_directional_light(int p_index, const Transform &p_camera_inverse_transform, bool p_use_shadows) { LightInstance *li = directional_lights[p_index]; LightDataUBO ubo_data; //used for filling float sign = li->light_ptr->negative ? -1 : 1; Color linear_col = li->light_ptr->color.to_linear(); //compensate normalized diffuse range by multiplying by PI ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[3] = 0; //omni, keep at 0 ubo_data.light_pos_inv_radius[0] = 0.0; ubo_data.light_pos_inv_radius[1] = 0.0; ubo_data.light_pos_inv_radius[2] = 0.0; ubo_data.light_pos_inv_radius[3] = 0.0; Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0, 0, -1))).normalized(); ubo_data.light_direction_attenuation[0] = direction.x; ubo_data.light_direction_attenuation[1] = direction.y; ubo_data.light_direction_attenuation[2] = direction.z; ubo_data.light_direction_attenuation[3] = 1.0; ubo_data.light_params[0] = 0; ubo_data.light_params[1] = 0; ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; ubo_data.light_params[3] = 0; Color shadow_color = li->light_ptr->shadow_color.to_linear(); ubo_data.light_shadow_color_contact[0] = shadow_color.r; ubo_data.light_shadow_color_contact[1] = shadow_color.g; ubo_data.light_shadow_color_contact[2] = shadow_color.b; ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE]; if (p_use_shadows && li->light_ptr->shadow) { int shadow_count = 0; switch (li->light_ptr->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { shadow_count = 1; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: { shadow_count = 2; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { shadow_count = 4; } break; } for (int j = 0; j < shadow_count; j++) { uint32_t x = li->directional_rect.position.x; uint32_t y = li->directional_rect.position.y; uint32_t width = li->directional_rect.size.x; uint32_t height = li->directional_rect.size.y; if (li->light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { width /= 2; height /= 2; if (j == 0) { } else if (j == 1) { x += width; } else if (j == 2) { y += height; } else if (j == 3) { x += width; y += height; } } else if (li->light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { height /= 2; if (j == 0) { } else { y += height; } } ubo_data.shadow_split_offsets[j] = li->shadow_transform[j].split; Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).affine_inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size); rectm.set_light_atlas_rect(atlas_rect); CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[j].camera * modelview; store_camera(shadow_mtx, &ubo_data.shadow.matrix[16 * j]); ubo_data.light_clamp[0] = atlas_rect.position.x; ubo_data.light_clamp[1] = atlas_rect.position.y; ubo_data.light_clamp[2] = atlas_rect.size.x; ubo_data.light_clamp[3] = atlas_rect.size.y; } } glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightDataUBO), &ubo_data); glBindBuffer(GL_UNIFORM_BUFFER, 0); directional_light = li; glBindBufferBase(GL_UNIFORM_BUFFER, 3, state.directional_ubo); } void RasterizerSceneGLES3::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_shadow_atlas) { state.omni_light_count = 0; state.spot_light_count = 0; state.directional_light_count = 0; directional_light = NULL; ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); for (int i = 0; i < p_light_cull_count; i++) { ERR_BREAK(i >= RenderList::MAX_LIGHTS); LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]); LightDataUBO ubo_data; //used for filling switch (li->light_ptr->type) { case VS::LIGHT_DIRECTIONAL: { if (state.directional_light_count < RenderList::MAX_DIRECTIONAL_LIGHTS) { directional_lights[state.directional_light_count++] = li; } } break; case VS::LIGHT_OMNI: { float sign = li->light_ptr->negative ? -1 : 1; Color linear_col = li->light_ptr->color.to_linear(); ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[3] = 0; Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin); //directional, keep at 0 ubo_data.light_pos_inv_radius[0] = pos.x; ubo_data.light_pos_inv_radius[1] = pos.y; ubo_data.light_pos_inv_radius[2] = pos.z; ubo_data.light_pos_inv_radius[3] = 1.0 / MAX(0.001, li->light_ptr->param[VS::LIGHT_PARAM_RANGE]); ubo_data.light_direction_attenuation[0] = 0; ubo_data.light_direction_attenuation[1] = 0; ubo_data.light_direction_attenuation[2] = 0; ubo_data.light_direction_attenuation[3] = li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; ubo_data.light_params[0] = 0; ubo_data.light_params[1] = 0; ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; ubo_data.light_params[3] = 0; Color shadow_color = li->light_ptr->shadow_color.to_linear(); ubo_data.light_shadow_color_contact[0] = shadow_color.r; ubo_data.light_shadow_color_contact[1] = shadow_color.g; ubo_data.light_shadow_color_contact[2] = shadow_color.b; ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE]; if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) { // fill in the shadow information uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; if (li->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { height /= 2; } else { width /= 2; } Transform proj = (p_camera_inverse_transform * li->transform).inverse(); store_transform(proj, ubo_data.shadow.matrix1); ubo_data.light_params[3] = 1.0; //means it has shadow ubo_data.light_clamp[0] = float(x) / atlas_size; ubo_data.light_clamp[1] = float(y) / atlas_size; ubo_data.light_clamp[2] = float(width) / atlas_size; ubo_data.light_clamp[3] = float(height) / atlas_size; } li->light_index = state.omni_light_count; copymem(&state.omni_array_tmp[li->light_index * state.ubo_light_size], &ubo_data, state.ubo_light_size); state.omni_light_count++; } break; case VS::LIGHT_SPOT: { float sign = li->light_ptr->negative ? -1 : 1; Color linear_col = li->light_ptr->color.to_linear(); ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI; ubo_data.light_color_energy[3] = 0; Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin); //directional, keep at 0 ubo_data.light_pos_inv_radius[0] = pos.x; ubo_data.light_pos_inv_radius[1] = pos.y; ubo_data.light_pos_inv_radius[2] = pos.z; ubo_data.light_pos_inv_radius[3] = 1.0 / MAX(0.001, li->light_ptr->param[VS::LIGHT_PARAM_RANGE]); Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0, 0, -1))).normalized(); ubo_data.light_direction_attenuation[0] = direction.x; ubo_data.light_direction_attenuation[1] = direction.y; ubo_data.light_direction_attenuation[2] = direction.z; ubo_data.light_direction_attenuation[3] = li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION]; ubo_data.light_params[0] = li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION]; ubo_data.light_params[1] = Math::cos(Math::deg2rad(li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE])); ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR]; ubo_data.light_params[3] = 0; Color shadow_color = li->light_ptr->shadow_color.to_linear(); ubo_data.light_shadow_color_contact[0] = shadow_color.r; ubo_data.light_shadow_color_contact[1] = shadow_color.g; ubo_data.light_shadow_color_contact[2] = shadow_color.b; ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE]; if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) { // fill in the shadow information uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; uint32_t width = shadow_size; uint32_t height = shadow_size; Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size); ubo_data.light_params[3] = 1.0; //means it has shadow ubo_data.light_clamp[0] = rect.position.x; ubo_data.light_clamp[1] = rect.position.y; ubo_data.light_clamp[2] = rect.size.x; ubo_data.light_clamp[3] = rect.size.y; Transform modelview = (p_camera_inverse_transform * li->transform).inverse(); CameraMatrix bias; bias.set_light_bias(); CameraMatrix rectm; rectm.set_light_atlas_rect(rect); CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[0].camera * modelview; store_camera(shadow_mtx, ubo_data.shadow.matrix1); } li->light_index = state.spot_light_count; copymem(&state.spot_array_tmp[li->light_index * state.ubo_light_size], &ubo_data, state.ubo_light_size); state.spot_light_count++; #if 0 if (li->light_ptr->shadow_enabled) { CameraMatrix bias; bias.set_light_bias(); Transform modelview=Transform(camera_transform_inverse * li->transform).inverse(); li->shadow_projection[0] = bias * li->projection * modelview; lights_use_shadow=true; } #endif } break; } li->last_pass = render_pass; //update UBO for forward rendering, blit to texture for clustered } if (state.omni_light_count) { glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, state.omni_light_count * state.ubo_light_size, state.omni_array_tmp); glBindBuffer(GL_UNIFORM_BUFFER, 0); } glBindBufferBase(GL_UNIFORM_BUFFER, 4, state.omni_array_ubo); if (state.spot_light_count) { glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, state.spot_light_count * state.ubo_light_size, state.spot_array_tmp); glBindBuffer(GL_UNIFORM_BUFFER, 0); } glBindBufferBase(GL_UNIFORM_BUFFER, 5, state.spot_array_ubo); } void RasterizerSceneGLES3::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_reflection_atlas, Environment *p_env) { state.reflection_probe_count = 0; for (int i = 0; i < p_reflection_probe_cull_count; i++) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]); ERR_CONTINUE(!rpi); ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas); ERR_CONTINUE(!reflection_atlas); ERR_CONTINUE(rpi->reflection_atlas_index < 0); if (state.reflection_probe_count >= state.max_ubo_reflections) break; rpi->last_pass = render_pass; ReflectionProbeDataUBO reflection_ubo; reflection_ubo.box_extents[0] = rpi->probe_ptr->extents.x; reflection_ubo.box_extents[1] = rpi->probe_ptr->extents.y; reflection_ubo.box_extents[2] = rpi->probe_ptr->extents.z; reflection_ubo.box_extents[3] = 0; reflection_ubo.box_ofs[0] = rpi->probe_ptr->origin_offset.x; reflection_ubo.box_ofs[1] = rpi->probe_ptr->origin_offset.y; reflection_ubo.box_ofs[2] = rpi->probe_ptr->origin_offset.z; reflection_ubo.box_ofs[3] = 0; reflection_ubo.params[0] = rpi->probe_ptr->intensity; reflection_ubo.params[1] = 0; reflection_ubo.params[2] = rpi->probe_ptr->interior ? 1.0 : 0.0; reflection_ubo.params[3] = rpi->probe_ptr->box_projection ? 1.0 : 0.0; if (rpi->probe_ptr->interior) { Color ambient_linear = rpi->probe_ptr->interior_ambient.to_linear(); reflection_ubo.ambient[0] = ambient_linear.r * rpi->probe_ptr->interior_ambient_energy; reflection_ubo.ambient[1] = ambient_linear.g * rpi->probe_ptr->interior_ambient_energy; reflection_ubo.ambient[2] = ambient_linear.b * rpi->probe_ptr->interior_ambient_energy; reflection_ubo.ambient[3] = rpi->probe_ptr->interior_ambient_probe_contrib; } else { Color ambient_linear; if (p_env) { ambient_linear = p_env->ambient_color.to_linear(); ambient_linear.r *= p_env->ambient_energy; ambient_linear.g *= p_env->ambient_energy; ambient_linear.b *= p_env->ambient_energy; } reflection_ubo.ambient[0] = ambient_linear.r; reflection_ubo.ambient[1] = ambient_linear.g; reflection_ubo.ambient[2] = ambient_linear.b; reflection_ubo.ambient[3] = 0; //not used in exterior mode, since it just blends with regular ambient light } int cell_size = reflection_atlas->size / reflection_atlas->subdiv; int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size; int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size; int width = cell_size; int height = cell_size; reflection_ubo.atlas_clamp[0] = float(x) / reflection_atlas->size; reflection_ubo.atlas_clamp[1] = float(y) / reflection_atlas->size; reflection_ubo.atlas_clamp[2] = float(width) / reflection_atlas->size; reflection_ubo.atlas_clamp[3] = float(height) / reflection_atlas->size; Transform proj = (p_camera_inverse_transform * rpi->transform).inverse(); store_transform(proj, reflection_ubo.local_matrix); rpi->reflection_index = state.reflection_probe_count; copymem(&state.reflection_array_tmp[rpi->reflection_index * sizeof(ReflectionProbeDataUBO)], &reflection_ubo, sizeof(ReflectionProbeDataUBO)); state.reflection_probe_count++; } if (state.reflection_probe_count) { glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo); glBufferSubData(GL_UNIFORM_BUFFER, 0, state.reflection_probe_count * sizeof(ReflectionProbeDataUBO), state.reflection_array_tmp); glBindBuffer(GL_UNIFORM_BUFFER, 0); } glBindBufferBase(GL_UNIFORM_BUFFER, 6, state.reflection_array_ubo); } void RasterizerSceneGLES3::_copy_screen(bool p_invalidate_color, bool p_invalidate_depth) { #ifndef GLES_OVER_GL if (p_invalidate_color) { GLenum attachments[2] = { GL_COLOR_ATTACHMENT0, GL_DEPTH_ATTACHMENT }; glInvalidateFramebuffer(GL_FRAMEBUFFER, p_invalidate_depth ? 2 : 1, attachments); } #endif glBindVertexArray(storage->resources.quadie_array); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); } void RasterizerSceneGLES3::_copy_texture_to_front_buffer(GLuint p_texture) { //copy to front buffer glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, p_texture); glViewport(0, 0, storage->frame.current_rt->width * 0.5, storage->frame.current_rt->height * 0.5); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); storage->shaders.copy.bind(); _copy_screen(); //turn off everything used storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); } void RasterizerSceneGLES3::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) { current_geometry_index = 0; current_material_index = 0; state.used_sss = false; state.used_screen_texture = false; state.used_depth_texture = false; //fill list for (int i = 0; i < p_cull_count; i++) { InstanceBase *inst = p_cull_result[i]; switch (inst->base_type) { case VS::INSTANCE_MESH: { RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(inst->base); ERR_CONTINUE(!mesh); int ssize = mesh->surfaces.size(); for (int j = 0; j < ssize; j++) { int mat_idx = inst->materials[j].is_valid() ? j : -1; RasterizerStorageGLES3::Surface *s = mesh->surfaces[j]; _add_geometry(s, inst, NULL, mat_idx, p_depth_pass, p_shadow_pass); } //mesh->last_pass=frame; } break; case VS::INSTANCE_MULTIMESH: { RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(inst->base); ERR_CONTINUE(!multi_mesh); if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0) continue; RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh); if (!mesh) continue; //mesh not assigned int ssize = mesh->surfaces.size(); for (int j = 0; j < ssize; j++) { RasterizerStorageGLES3::Surface *s = mesh->surfaces[j]; _add_geometry(s, inst, multi_mesh, -1, p_depth_pass, p_shadow_pass); } } break; case VS::INSTANCE_IMMEDIATE: { RasterizerStorageGLES3::Immediate *immediate = storage->immediate_owner.getptr(inst->base); ERR_CONTINUE(!immediate); _add_geometry(immediate, inst, NULL, -1, p_depth_pass, p_shadow_pass); } break; case VS::INSTANCE_PARTICLES: { RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getptr(inst->base); ERR_CONTINUE(!particles); for (int j = 0; j < particles->draw_passes.size(); j++) { RID pmesh = particles->draw_passes[j]; if (!pmesh.is_valid()) continue; RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.get(pmesh); if (!mesh) continue; //mesh not assigned int ssize = mesh->surfaces.size(); for (int k = 0; k < ssize; k++) { RasterizerStorageGLES3::Surface *s = mesh->surfaces[k]; _add_geometry(s, inst, particles, -1, p_depth_pass, p_shadow_pass); } } } break; default: {} } } } void RasterizerSceneGLES3::_blur_effect_buffer() { //blur diffuse into effect mipmaps using separatable convolution //storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true); for (int i = 0; i < storage->frame.current_rt->effects.mip_maps[1].sizes.size(); i++) { int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width; int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height; glViewport(0, 0, vp_w, vp_h); //horizontal pass state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i)); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo); _copy_screen(true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL, false); //vertical pass state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i)); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger _copy_screen(true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL, false); } } void RasterizerSceneGLES3::_render_mrts(Environment *env, const CameraMatrix &p_cam_projection) { glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); if (!state.used_depth_prepass_and_resolved) { //resolve depth buffer glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } if (env->ssao_enabled || env->ssr_enabled) { //copy normal and roughness to effect buffer glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT2); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->buffers.effect_fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST); } if (env->ssao_enabled) { //copy diffuse to front buffer glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); //copy from depth, convert to linear GLint ss[2]; ss[0] = storage->frame.current_rt->width; ss[1] = storage->frame.current_rt->height; for (int i = 0; i < storage->frame.current_rt->effects.ssao.depth_mipmap_fbos.size(); i++) { state.ssao_minify_shader.set_conditional(SsaoMinifyShaderGLES3::MINIFY_START, i == 0); state.ssao_minify_shader.set_conditional(SsaoMinifyShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.ssao_minify_shader.bind(); state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::SOURCE_MIPMAP, MAX(0, i - 1)); glUniform2iv(state.ssao_minify_shader.get_uniform(SsaoMinifyShaderGLES3::FROM_SIZE), 1, ss); ss[0] >>= 1; ss[1] >>= 1; glActiveTexture(GL_TEXTURE0); if (i == 0) { glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); } else { glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.linear_depth); } glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.depth_mipmap_fbos[i]); //copy to front first glViewport(0, 0, ss[0], ss[1]); _copy_screen(true); } ss[0] = storage->frame.current_rt->width; ss[1] = storage->frame.current_rt->height; glViewport(0, 0, ss[0], ss[1]); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_GREATER); // do SSAO! state.ssao_shader.set_conditional(SsaoShaderGLES3::ENABLE_RADIUS2, env->ssao_radius2 > 0.001); state.ssao_shader.set_conditional(SsaoShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.ssao_shader.set_conditional(SsaoShaderGLES3::SSAO_QUALITY_LOW, env->ssao_quality == VS::ENV_SSAO_QUALITY_LOW); state.ssao_shader.set_conditional(SsaoShaderGLES3::SSAO_QUALITY_HIGH, env->ssao_quality == VS::ENV_SSAO_QUALITY_HIGH); state.ssao_shader.bind(); state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); glUniform2iv(state.ssao_shader.get_uniform(SsaoShaderGLES3::SCREEN_SIZE), 1, ss); float radius = env->ssao_radius; state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS, radius); float intensity = env->ssao_intensity; state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R6, intensity / pow(radius, 6.0f)); if (env->ssao_radius2 > 0.001) { float radius2 = env->ssao_radius2; state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS2, radius2); float intensity2 = env->ssao_intensity2; state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R62, intensity2 / pow(radius2, 6.0f)); } float proj_info[4] = { -2.0f / (ss[0] * p_cam_projection.matrix[0][0]), -2.0f / (ss[1] * p_cam_projection.matrix[1][1]), (1.0f - p_cam_projection.matrix[0][2]) / p_cam_projection.matrix[0][0], (1.0f + p_cam_projection.matrix[1][2]) / p_cam_projection.matrix[1][1] }; glUniform4fv(state.ssao_shader.get_uniform(SsaoShaderGLES3::PROJ_INFO), 1, proj_info); float pixels_per_meter = float(p_cam_projection.get_pixels_per_meter(ss[0])); state.ssao_shader.set_uniform(SsaoShaderGLES3::PROJ_SCALE, pixels_per_meter); state.ssao_shader.set_uniform(SsaoShaderGLES3::BIAS, env->ssao_bias); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.linear_depth); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[0]); //copy to front first Color white(1, 1, 1, 1); glClearBufferfv(GL_COLOR, 0, white.components); // specular _copy_screen(true); //do the batm, i mean blur state.ssao_blur_shader.bind(); if (env->ssao_filter) { for (int i = 0; i < 2; i++) { state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::EDGE_SHARPNESS, env->ssao_bilateral_sharpness); state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::FILTER_SCALE, int(env->ssao_filter)); GLint axis[2] = { i, 1 - i }; glUniform2iv(state.ssao_blur_shader.get_uniform(SsaoBlurShaderGLES3::AXIS), 1, axis); glUniform2iv(state.ssao_blur_shader.get_uniform(SsaoBlurShaderGLES3::SCREEN_SIZE), 1, ss); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[i]); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[1 - i]); if (i == 0) { glClearBufferfv(GL_COLOR, 0, white.components); // specular } _copy_screen(true); } } glDisable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); // just copy diffuse while applying SSAO state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::SSAO_COLOR, env->ssao_color); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); //previous level, since mipmaps[0] starts one level bigger glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[0]); //previous level, since mipmaps[0] starts one level bigger glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level _copy_screen(true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE, false); } else { //copy diffuse to effect buffer glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } if (state.used_sss) { //sss enabled //copy diffuse while performing sss Plane p = p_cam_projection.xform4(Plane(1, 0, -1, 1)); p.normal /= p.d; float unit_size = p.normal.x; //copy normal and roughness to effect buffer glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT3); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[0]); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_LINEAR); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_11_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_LOW); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_17_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_MEDIUM); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_25_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_HIGH); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::ENABLE_FOLLOW_SURFACE, subsurface_scatter_follow_surface); state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::ENABLE_STRENGTH_WEIGHTING, subsurface_scatter_weight_samples); state.sss_shader.bind(); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::MAX_RADIUS, subsurface_scatter_size); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::UNIT_SIZE, unit_size); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR, Vector2(1, 0)); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //disable filter (fixes bugs on AMD) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[0]); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first _copy_screen(true); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR, Vector2(0, 1)); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level _copy_screen(true); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //restore filter glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } if (env->ssr_enabled) { //blur diffuse into effect mipmaps using separatable convolution //storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true); _blur_effect_buffer(); //perform SSR state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::REFLECT_ROUGHNESS, env->ssr_roughness); state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.ssr_shader.bind(); int ssr_w = storage->frame.current_rt->effects.mip_maps[1].sizes[0].width; int ssr_h = storage->frame.current_rt->effects.mip_maps[1].sizes[0].height; state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PIXEL_SIZE, Vector2(1.0 / (ssr_w * 0.5), 1.0 / (ssr_h * 0.5))); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PROJECTION, p_cam_projection); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::INVERSE_PROJECTION, p_cam_projection.inverse()); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::VIEWPORT_SIZE, Size2(ssr_w, ssr_h)); //state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FRAME_INDEX,int(render_pass)); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FILTER_MIPMAP_LEVELS, float(storage->frame.current_rt->effects.mip_maps[0].sizes.size())); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::NUM_STEPS, env->ssr_max_steps); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DEPTH_TOLERANCE, env->ssr_depth_tolerance); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DISTANCE_FADE, env->ssr_fade_out); state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CURVE_FADE_IN, env->ssr_fade_in); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[0].fbo); glViewport(0, 0, ssr_w, ssr_h); _copy_screen(true); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT1); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); //glDrawBuffer(GL_COLOR_ATTACHMENT0); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); //copy reflection over diffuse, resolving SSR if needed state.resolve_shader.set_conditional(ResolveShaderGLES3::USE_SSR, env->ssr_enabled); state.resolve_shader.bind(); state.resolve_shader.set_uniform(ResolveShaderGLES3::PIXEL_SIZE, Vector2(1.0 / storage->frame.current_rt->width, 1.0 / storage->frame.current_rt->height)); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); if (env->ssr_enabled) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color); } glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE); //use additive to accumulate one over the other _copy_screen(true); glDisable(GL_BLEND); //end additive if (state.used_screen_texture) { _blur_effect_buffer(); //restored framebuffer glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(0)); { GLuint db = GL_COLOR_ATTACHMENT0; glDrawBuffers(1, &db); } glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); _copy_screen(true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY, false); } void RasterizerSceneGLES3::_post_process(Environment *env, const CameraMatrix &p_cam_projection) { //copy to front buffer glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glDepthFunc(GL_LEQUAL); glColorMask(1, 1, 1, 1); //turn off everything used //copy specular to front buffer //copy diffuse to effect buffer if (storage->frame.current_rt->buffers.active) { //transfer to effect buffer if using buffers, also resolve MSAA glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); } if (!env || storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] || storage->frame.current_rt->width < 4 || storage->frame.current_rt->height < 4) { //no post process on small render targets //no environment or transparent render, simply return and convert to SRGB glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::V_FLIP, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]); storage->shaders.copy.bind(); _copy_screen(true); storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); //compute luminance storage->shaders.copy.set_conditional(CopyShaderGLES3::V_FLIP, false); return; } //order of operation //1) DOF Blur (first blur, then copy to buffer applying the blur) //2) Motion Blur //3) Bloom //4) Tonemap //5) Adjustments GLuint composite_from = storage->frame.current_rt->effects.mip_maps[0].color; if (env->dof_blur_far_enabled) { //blur diffuse into effect mipmaps using separatable convolution //storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true); int vp_h = storage->frame.current_rt->height; int vp_w = storage->frame.current_rt->width; state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR, true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_LOW); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH); state.effect_blur_shader.bind(); int qsteps[3] = { 4, 10, 20 }; float radius = (env->dof_blur_far_amount * env->dof_blur_far_amount) / qsteps[env->dof_blur_far_quality]; state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_far_distance); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_far_distance + env->dof_blur_far_transition); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(1, 0)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, composite_from); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first _copy_screen(true); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(0, 1)); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level _copy_screen(); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, false); composite_from = storage->frame.current_rt->effects.mip_maps[0].color; } if (env->dof_blur_near_enabled) { //blur diffuse into effect mipmaps using separatable convolution //storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true); int vp_h = storage->frame.current_rt->height; int vp_w = storage->frame.current_rt->width; state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal()); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR, true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_LOW); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH); state.effect_blur_shader.bind(); int qsteps[3] = { 4, 10, 20 }; float radius = (env->dof_blur_near_amount * env->dof_blur_near_amount) / qsteps[env->dof_blur_near_quality]; state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_near_distance); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(1, 0)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, composite_from); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first _copy_screen(); //manually do the blend if this is the first operation resolving from the diffuse buffer state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE, composite_from == storage->frame.current_rt->buffers.diffuse); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, false); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_near_distance); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(0, 1)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near()); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far()); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level if (composite_from != storage->frame.current_rt->buffers.diffuse) { glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.diffuse); } _copy_screen(true); if (composite_from != storage->frame.current_rt->buffers.diffuse) { glDisable(GL_BLEND); } state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, false); composite_from = storage->frame.current_rt->effects.mip_maps[0].color; } if (env->dof_blur_near_enabled || env->dof_blur_far_enabled) { //these needed to disable filtering, reenamble glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } if (env->auto_exposure) { //compute auto exposure //first step, copy from image to luminance buffer state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN, true); state.exposure_shader.bind(); int ss[2] = { storage->frame.current_rt->width, storage->frame.current_rt->height, }; int ds[2] = { exposure_shrink_size, exposure_shrink_size, }; glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::SOURCE_RENDER_SIZE), 1, ss); glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::TARGET_SIZE), 1, ds); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, composite_from); glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[0].fbo); glViewport(0, 0, exposure_shrink_size, exposure_shrink_size); _copy_screen(true); //second step, shrink to 2x2 pixels state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN, false); state.exposure_shader.bind(); //shrink from second to previous to last level int s_size = exposure_shrink_size / 3; for (int i = 1; i < exposure_shrink.size() - 1; i++) { glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[i].fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, exposure_shrink[i - 1].color); _copy_screen(); glViewport(0, 0, s_size, s_size); s_size /= 3; } //third step, shrink to 1x1 pixel taking in consideration the previous exposure state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END, true); uint64_t tick = OS::get_singleton()->get_ticks_usec(); uint64_t tick_diff = storage->frame.current_rt->last_exposure_tick == 0 ? 0 : tick - storage->frame.current_rt->last_exposure_tick; storage->frame.current_rt->last_exposure_tick = tick; if (tick_diff == 0 || tick_diff > 1000000) { state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET, true); } state.exposure_shader.bind(); glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[exposure_shrink.size() - 1].fbo); glViewport(0, 0, 1, 1); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, exposure_shrink[exposure_shrink.size() - 2].color); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color); //read from previous state.exposure_shader.set_uniform(ExposureShaderGLES3::EXPOSURE_ADJUST, env->auto_exposure_speed * (tick_diff / 1000000.0)); state.exposure_shader.set_uniform(ExposureShaderGLES3::MAX_LUMINANCE, env->auto_exposure_max); state.exposure_shader.set_uniform(ExposureShaderGLES3::MIN_LUMINANCE, env->auto_exposure_min); _copy_screen(true); state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET, false); state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END, false); //last step, swap with the framebuffer exposure, so the right exposure is kept int he framebuffer SWAP(exposure_shrink.write[exposure_shrink.size() - 1].fbo, storage->frame.current_rt->exposure.fbo); SWAP(exposure_shrink.write[exposure_shrink.size() - 1].color, storage->frame.current_rt->exposure.color); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); VisualServerRaster::redraw_request(); //if using auto exposure, redraw must happen } int max_glow_level = -1; int glow_mask = 0; if (env->glow_enabled) { for (int i = 0; i < VS::MAX_GLOW_LEVELS; i++) { if (env->glow_levels & (1 << i)) { if (i >= storage->frame.current_rt->effects.mip_maps[1].sizes.size()) { max_glow_level = storage->frame.current_rt->effects.mip_maps[1].sizes.size() - 1; glow_mask |= 1 << max_glow_level; } else { max_glow_level = i; glow_mask |= (1 << i); } } } //blur diffuse into effect mipmaps using separatable convolution //storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true); for (int i = 0; i < (max_glow_level + 1); i++) { int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width; int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height; glViewport(0, 0, vp_w, vp_h); //horizontal pass if (i == 0) { state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS, true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE, env->auto_exposure); } state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH, env->glow_strength); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LUMINANCE_CAP, env->glow_hdr_luminance_cap); glActiveTexture(GL_TEXTURE0); if (i == 0) { glBindTexture(GL_TEXTURE_2D, composite_from); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::EXPOSURE, env->tone_mapper_exposure); if (env->auto_exposure) { state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::AUTO_EXPOSURE_GREY, env->auto_exposure_grey); } glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_BLOOM, env->glow_bloom); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_THRESHOLD, env->glow_hdr_bleed_threshold); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_SCALE, env->glow_hdr_bleed_scale); } else { glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger } glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo); _copy_screen(true); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS, false); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE, false); //vertical pass state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL, true); state.effect_blur_shader.bind(); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i)); state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH, env->glow_strength); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger _copy_screen(); state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL, false); } glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, composite_from); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_FILMIC); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_ACES); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINHARD_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_REINHARD); state.tonemap_shader.set_conditional(TonemapShaderGLES3::KEEP_3D_LINEAR, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE, env->auto_exposure); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC, env->glow_bicubic_upscale); if (max_glow_level >= 0) { for (int i = 0; i < (max_glow_level + 1); i++) { if (glow_mask & (1 << i)) { if (i == 0) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1, true); } if (i == 1) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2, true); } if (i == 2) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3, true); } if (i == 3) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4, true); } if (i == 4) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5, true); } if (i == 5) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6, true); } if (i == 6) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7, true); } } } state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SCREEN); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SOFTLIGHT); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE, env->glow_blend_mode == VS::GLOW_BLEND_MODE_REPLACE); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); } if (env->adjustments_enabled) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_BCS, true); RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(env->color_correction); if (tex) { state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_COLOR_CORRECTION, true); glActiveTexture(GL_TEXTURE3); glBindTexture(tex->target, tex->tex_id); } } state.tonemap_shader.set_conditional(TonemapShaderGLES3::V_FLIP, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]); state.tonemap_shader.bind(); state.tonemap_shader.set_uniform(TonemapShaderGLES3::EXPOSURE, env->tone_mapper_exposure); state.tonemap_shader.set_uniform(TonemapShaderGLES3::WHITE, env->tone_mapper_exposure_white); if (max_glow_level >= 0) { state.tonemap_shader.set_uniform(TonemapShaderGLES3::GLOW_INTENSITY, env->glow_intensity); int ss[2] = { storage->frame.current_rt->width, storage->frame.current_rt->height, }; glUniform2iv(state.tonemap_shader.get_uniform(TonemapShaderGLES3::GLOW_TEXTURE_SIZE), 1, ss); } if (env->auto_exposure) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color); state.tonemap_shader.set_uniform(TonemapShaderGLES3::AUTO_EXPOSURE_GREY, env->auto_exposure_grey); } if (env->adjustments_enabled) { state.tonemap_shader.set_uniform(TonemapShaderGLES3::BCS, Vector3(env->adjustments_brightness, env->adjustments_contrast, env->adjustments_saturation)); } _copy_screen(true, true); //turn off everything used state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINHARD_TONEMAPPER, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_BCS, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_COLOR_CORRECTION, false); state.tonemap_shader.set_conditional(TonemapShaderGLES3::V_FLIP, false); } void RasterizerSceneGLES3::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) { //first of all, make a new render pass render_pass++; //fill up ubo storage->info.render.object_count += p_cull_count; Environment *env = environment_owner.getornull(p_environment); ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas); if (shadow_atlas && shadow_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS); state.ubo_data.shadow_atlas_pixel_size[0] = 1.0 / shadow_atlas->size; state.ubo_data.shadow_atlas_pixel_size[1] = 1.0 / shadow_atlas->size; } if (reflection_atlas && reflection_atlas->size) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); } if (p_reflection_probe.is_valid()) { state.ubo_data.reflection_multiplier = 0.0; } else { state.ubo_data.reflection_multiplier = 1.0; } state.ubo_data.subsurface_scatter_width = subsurface_scatter_size; state.ubo_data.z_offset = 0; state.ubo_data.z_slope_scale = 0; state.ubo_data.shadow_dual_paraboloid_render_side = 0; state.ubo_data.shadow_dual_paraboloid_render_zfar = 0; state.ubo_data.opaque_prepass_threshold = 0.99; p_cam_projection.get_viewport_size(state.ubo_data.viewport_size[0], state.ubo_data.viewport_size[1]); if (storage->frame.current_rt) { state.ubo_data.screen_pixel_size[0] = 1.0 / storage->frame.current_rt->width; state.ubo_data.screen_pixel_size[1] = 1.0 / storage->frame.current_rt->height; } _setup_environment(env, p_cam_projection, p_cam_transform, p_reflection_probe.is_valid()); bool fb_cleared = false; glDepthFunc(GL_LEQUAL); state.used_contact_shadows = false; state.used_depth_prepass_and_resolved = false; for (int i = 0; i < p_light_cull_count; i++) { ERR_BREAK(i >= RenderList::MAX_LIGHTS); LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]); if (li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] > CMP_EPSILON) { state.used_contact_shadows = true; } } if (!storage->config.no_depth_prepass && storage->frame.current_rt && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]) { //detect with state.used_contact_shadows too //pre z pass glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glDrawBuffers(0, NULL); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); glColorMask(0, 0, 0, 0); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, true, false); render_list.sort_by_key(false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true); _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, 0, false, false, true, false, false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false); glColorMask(1, 1, 1, 1); if (state.used_contact_shadows || state.used_depth_texture) { glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); //bind depth for read glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 8); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth); state.used_depth_prepass_and_resolved = true; } fb_cleared = true; render_pass++; state.used_depth_prepass = true; } else { state.used_depth_prepass = false; } _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_shadow_atlas); _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_reflection_atlas, env); bool use_mrt = false; render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, false, false); // glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); //rendering to a probe cubemap side ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe); GLuint current_fbo; if (probe) { ReflectionAtlas *ref_atlas = reflection_atlas_owner.getptr(probe->atlas); ERR_FAIL_COND(!ref_atlas); int target_size = ref_atlas->size / ref_atlas->subdiv; int cubemap_index = reflection_cubemaps.size() - 1; for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) { //find appropriate cubemap to render to if (reflection_cubemaps[i].size > target_size * 2) break; cubemap_index = i; } current_fbo = reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass]; use_mrt = false; state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); glViewport(0, 0, reflection_cubemaps[cubemap_index].size, reflection_cubemaps[cubemap_index].size); glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); } else { use_mrt = env && (state.used_sss || env->ssao_enabled || env->ssr_enabled); //only enable MRT rendering if any of these is enabled //effects disabled and transparency also prevent using MRTs use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]; use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS]; use_mrt = use_mrt && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW; use_mrt = use_mrt && env && (env->bg_mode != VS::ENV_BG_KEEP && env->bg_mode != VS::ENV_BG_CANVAS); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); if (use_mrt) { current_fbo = storage->frame.current_rt->buffers.fbo; glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, true); Vector draw_buffers; draw_buffers.push_back(GL_COLOR_ATTACHMENT0); draw_buffers.push_back(GL_COLOR_ATTACHMENT1); draw_buffers.push_back(GL_COLOR_ATTACHMENT2); if (state.used_sss) { draw_buffers.push_back(GL_COLOR_ATTACHMENT3); } glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); Color black(0, 0, 0, 0); glClearBufferfv(GL_COLOR, 1, black.components); // specular glClearBufferfv(GL_COLOR, 2, black.components); // normal metal rough if (state.used_sss) { glClearBufferfv(GL_COLOR, 3, black.components); // normal metal rough } } else { if (storage->frame.current_rt->buffers.active) { current_fbo = storage->frame.current_rt->buffers.fbo; } else { current_fbo = storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo; } glBindFramebuffer(GL_FRAMEBUFFER, current_fbo); state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); Vector draw_buffers; draw_buffers.push_back(GL_COLOR_ATTACHMENT0); glDrawBuffers(draw_buffers.size(), draw_buffers.ptr()); } } if (!fb_cleared) { glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); } Color clear_color(0, 0, 0, 0); RasterizerStorageGLES3::Sky *sky = NULL; GLuint env_radiance_tex = 0; if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { clear_color = Color(0, 0, 0, 0); storage->frame.clear_request = false; } else if (!probe && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { clear_color = Color(0, 0, 0, 0); storage->frame.clear_request = false; } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR) { if (storage->frame.clear_request) { clear_color = storage->frame.clear_request_color.to_linear(); storage->frame.clear_request = false; } } else if (env->bg_mode == VS::ENV_BG_CANVAS) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_COLOR) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_SKY) { storage->frame.clear_request = false; } else if (env->bg_mode == VS::ENV_BG_COLOR_SKY) { clear_color = env->bg_color.to_linear(); storage->frame.clear_request = false; } else { storage->frame.clear_request = false; } if (!env || env->bg_mode != VS::ENV_BG_KEEP) { glClearBufferfv(GL_COLOR, 0, clear_color.components); // specular } VS::EnvironmentBG bg_mode = (!env || (probe && env->bg_mode == VS::ENV_BG_CANVAS)) ? VS::ENV_BG_CLEAR_COLOR : env->bg_mode; //if no environment, or canvas while rendering a probe (invalid use case), use color. if (env) { switch (bg_mode) { case VS::ENV_BG_COLOR_SKY: case VS::ENV_BG_SKY: sky = storage->sky_owner.getornull(env->sky); if (sky) { env_radiance_tex = sky->radiance; } break; case VS::ENV_BG_CANVAS: //copy canvas to 3d buffer and convert it to linear glDisable(GL_BLEND); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true); storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true); storage->shaders.copy.bind(); _copy_screen(true, true); //turn off everything used storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false); storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); //restore glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glEnable(GL_CULL_FACE); break; default: {} } } if (probe && probe->probe_ptr->interior) { env_radiance_tex = 0; //for rendering probe interiors, radiance must not be used. } state.texscreen_copied = false; glBlendEquation(GL_FUNC_ADD); if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDisable(GL_BLEND); } render_list.sort_by_key(false); if (state.directional_light_count == 0) { directional_light = NULL; _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, false, shadow_atlas != NULL); } else { for (int i = 0; i < state.directional_light_count; i++) { directional_light = directional_lights[i]; if (i > 0) { glEnable(GL_BLEND); } _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); _render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, false, false, i > 0, shadow_atlas != NULL); } } state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false); if (use_mrt) { GLenum gldb = GL_COLOR_ATTACHMENT0; glDrawBuffers(1, &gldb); } if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || (!storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW))) { /* if (use_mrt) { glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo); //switch to alpha fbo for sky, only diffuse/ambient matters */ if (sky && sky->panorama.is_valid()) _draw_sky(sky, p_cam_projection, p_cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation); } //_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true); //glColorMask(1,1,1,1); //state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false); if (use_mrt) { _render_mrts(env, p_cam_projection); } else { //FIXME: check that this is possible to use if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_screen_texture) { glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glReadBuffer(GL_COLOR_ATTACHMENT0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); _blur_effect_buffer(); //restored framebuffer glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo); glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height); } } if (storage->frame.current_rt && state.used_screen_texture && storage->frame.current_rt->buffers.active) { glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 7); glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); } glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); render_list.sort_by_reverse_depth_and_priority(true); if (state.directional_light_count == 0) { directional_light = NULL; _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, false, shadow_atlas != NULL); } else { for (int i = 0; i < state.directional_light_count; i++) { directional_light = directional_lights[i]; _setup_directional_light(i, p_cam_transform.affine_inverse(), shadow_atlas != NULL && shadow_atlas->size > 0); _render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, env_radiance_tex, false, true, false, i > 0, shadow_atlas != NULL); } } if (probe) { //rendering a probe, do no more! return; } _post_process(env, p_cam_projection); if (false && shadow_atlas) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (false && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, exposure_shrink[4].color); //glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 16, storage->frame.current_rt->height / 16), Rect2(0, 0, 1, 1)); } if (false && reflection_atlas && storage->frame.current_rt) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, reflection_atlas->color); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (false && directional_shadow.fbo) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); } if (false && env_radiance_tex) { //_copy_texture_to_front_buffer(shadow_atlas->depth); storage->canvas->canvas_begin(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, env_radiance_tex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } //disable all stuff } void RasterizerSceneGLES3::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) { render_pass++; directional_light = NULL; LightInstance *light_instance = light_instance_owner.getornull(p_light); ERR_FAIL_COND(!light_instance); RasterizerStorageGLES3::Light *light = storage->light_owner.getornull(light_instance->light); ERR_FAIL_COND(!light); uint32_t x, y, width, height; float dp_direction = 0.0; float zfar = 0; bool flip_facing = false; int custom_vp_size = 0; GLuint fbo; int current_cubemap = -1; float bias = 0; float normal_bias = 0; state.used_depth_prepass = false; CameraMatrix light_projection; Transform light_transform; if (light->type == VS::LIGHT_DIRECTIONAL) { //set pssm stuff if (light_instance->last_scene_shadow_pass != scene_pass) { //assign rect if unassigned light_instance->light_directional_index = directional_shadow.current_light; light_instance->last_scene_shadow_pass = scene_pass; directional_shadow.current_light++; if (directional_shadow.light_count == 1) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size); } else if (directional_shadow.light_count == 2) { light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2); if (light_instance->light_directional_index == 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } } else { //3 and 4 light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2); if (light_instance->light_directional_index & 1) { light_instance->directional_rect.position.x += light_instance->directional_rect.size.x; } if (light_instance->light_directional_index / 2) { light_instance->directional_rect.position.y += light_instance->directional_rect.size.y; } } } light_projection = light_instance->shadow_transform[p_pass].camera; light_transform = light_instance->shadow_transform[p_pass].transform; x = light_instance->directional_rect.position.x; y = light_instance->directional_rect.position.y; width = light_instance->directional_rect.size.x; height = light_instance->directional_rect.size.y; if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { width /= 2; height /= 2; if (p_pass == 0) { } else if (p_pass == 1) { x += width; } else if (p_pass == 2) { y += height; } else if (p_pass == 3) { x += width; y += height; } } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { height /= 2; if (p_pass == 0) { } else { y += height; } } float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]); zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult; normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult; fbo = directional_shadow.fbo; } else { //set from shadow atlas ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); ERR_FAIL_COND(!shadow_atlas); ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light)); fbo = shadow_atlas->fbo; uint32_t key = shadow_atlas->shadow_owners[p_light]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size()); uint32_t quadrant_size = shadow_atlas->size >> 1; x = (quadrant & 1) * quadrant_size; y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; width = shadow_size; height = shadow_size; if (light->type == VS::LIGHT_OMNI) { if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE) { int cubemap_index = shadow_cubemaps.size() - 1; for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) { //find appropriate cubemap to render to if (shadow_cubemaps[i].size > shadow_size * 2) break; cubemap_index = i; } fbo = shadow_cubemaps[cubemap_index].fbo_id[p_pass]; light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; custom_vp_size = shadow_cubemaps[cubemap_index].size; zfar = light->param[VS::LIGHT_PARAM_RANGE]; current_cubemap = cubemap_index; } else { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { height /= 2; y += p_pass * height; } else { width /= 2; x += p_pass * width; } dp_direction = p_pass == 0 ? 1.0 : -1.0; flip_facing = (p_pass == 1); zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH_DUAL_PARABOLOID, true); } } else if (light->type == VS::LIGHT_SPOT) { light_projection = light_instance->shadow_transform[0].camera; light_transform = light_instance->shadow_transform[0].transform; dp_direction = 1.0; flip_facing = false; zfar = light->param[VS::LIGHT_PARAM_RANGE]; bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS]; normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS]; } } render_list.clear(); _fill_render_list(p_cull_result, p_cull_count, true, true); render_list.sort_by_depth(false); //shadow is front to back for performance glDisable(GL_BLEND); glDisable(GL_DITHER); glEnable(GL_DEPTH_TEST); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glDepthMask(true); glColorMask(0, 0, 0, 0); if (custom_vp_size) { glViewport(0, 0, custom_vp_size, custom_vp_size); glScissor(0, 0, custom_vp_size, custom_vp_size); } else { glViewport(x, y, width, height); glScissor(x, y, width, height); } glEnable(GL_SCISSOR_TEST); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); state.ubo_data.z_offset = bias; state.ubo_data.z_slope_scale = normal_bias; state.ubo_data.shadow_dual_paraboloid_render_side = dp_direction; state.ubo_data.shadow_dual_paraboloid_render_zfar = zfar; state.ubo_data.opaque_prepass_threshold = 0.1; _setup_environment(NULL, light_projection, light_transform); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true); if (light->reverse_cull) { flip_facing = !flip_facing; } _render_list(render_list.elements, render_list.element_count, light_transform, light_projection, 0, flip_facing, false, true, false, false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false); state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH_DUAL_PARABOLOID, false); if (light->type == VS::LIGHT_OMNI && light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && p_pass == 5) { //convert the chosen cubemap to dual paraboloid! ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas); glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo); state.cube_to_dp_shader.bind(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE); glDisable(GL_CULL_FACE); for (int i = 0; i < 2; i++) { state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FLIP, i == 1); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_NEAR, light_projection.get_z_near()); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FAR, light_projection.get_z_far()); state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]); uint32_t local_width = width, local_height = height; uint32_t local_x = x, local_y = y; if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) { local_height /= 2; local_y += i * local_height; } else { local_width /= 2; local_x += i * local_width; } glViewport(local_x, local_y, local_width, local_height); glScissor(local_x, local_y, local_width, local_height); glEnable(GL_SCISSOR_TEST); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); //glDisable(GL_DEPTH_TEST); glDisable(GL_BLEND); _copy_screen(); } } glColorMask(1, 1, 1, 1); } void RasterizerSceneGLES3::set_scene_pass(uint64_t p_pass) { scene_pass = p_pass; } bool RasterizerSceneGLES3::free(RID p_rid) { if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.getptr(p_rid); //remove from shadow atlases.. for (Set::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get()); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid)); uint32_t key = shadow_atlas->shadow_owners[p_rid]; uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_rid); } light_instance_owner.free(p_rid); memdelete(light_instance); } else if (shadow_atlas_owner.owns(p_rid)) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid); shadow_atlas_set_size(p_rid, 0); shadow_atlas_owner.free(p_rid); memdelete(shadow_atlas); } else if (reflection_atlas_owner.owns(p_rid)) { ReflectionAtlas *reflection_atlas = reflection_atlas_owner.get(p_rid); reflection_atlas_set_size(p_rid, 0); reflection_atlas_owner.free(p_rid); memdelete(reflection_atlas); } else if (reflection_probe_instance_owner.owns(p_rid)) { ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid); reflection_probe_release_atlas_index(p_rid); reflection_probe_instance_owner.free(p_rid); memdelete(reflection_instance); } else { return false; } return true; } void RasterizerSceneGLES3::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) { state.debug_draw = p_debug_draw; } void RasterizerSceneGLES3::initialize() { render_pass = 0; state.scene_shader.init(); { //default material and shader default_shader = storage->shader_create(); storage->shader_set_code(default_shader, "shader_type spatial;\n"); default_material = storage->material_create(); storage->material_set_shader(default_material, default_shader); default_shader_twosided = storage->shader_create(); default_material_twosided = storage->material_create(); storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n"); storage->material_set_shader(default_material_twosided, default_shader_twosided); //default for shaders using world coordinates (typical for triplanar) default_worldcoord_shader = storage->shader_create(); storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n"); default_worldcoord_material = storage->material_create(); storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader); default_worldcoord_shader_twosided = storage->shader_create(); default_worldcoord_material_twosided = storage->material_create(); storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n"); storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided); } { //default material and shader default_overdraw_shader = storage->shader_create(); storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }"); default_overdraw_material = storage->material_create(); storage->material_set_shader(default_overdraw_material, default_overdraw_shader); } glGenBuffers(1, &state.scene_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(State::SceneDataUBO), &state.scene_ubo, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); glGenBuffers(1, &state.env_radiance_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_ubo, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); render_list.max_elements = GLOBAL_DEF_RST("rendering/limits/rendering/max_renderable_elements", (int)RenderList::DEFAULT_MAX_ELEMENTS); ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/rendering/max_renderable_elements", PropertyInfo(Variant::INT, "rendering/limits/rendering/max_renderable_elements", PROPERTY_HINT_RANGE, "1024,1000000,1")); { //quad buffers glGenBuffers(1, &state.sky_verts); glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &state.sky_array); glBindVertexArray(state.sky_array); glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0); glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, ((uint8_t *)NULL) + sizeof(Vector3)); glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } render_list.init(); state.cube_to_dp_shader.init(); shadow_atlas_realloc_tolerance_msec = 500; int max_shadow_cubemap_sampler_size = 512; int cube_size = max_shadow_cubemap_sampler_size; glActiveTexture(GL_TEXTURE0); while (cube_size >= 32) { ShadowCubeMap cube; cube.size = cube_size; glGenTextures(1, &cube.cubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap); //gen cubemap first for (int i = 0; i < 6; i++) { glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT24, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Remove artifact on the edges of the shadowmap glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); //gen renderbuffers second, because it needs a complete cubemap for (int i = 0; i < 6; i++) { glGenFramebuffers(1, &cube.fbo_id[i]); glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); } shadow_cubemaps.push_back(cube); cube_size >>= 1; } { //directional light shadow directional_shadow.light_count = 0; directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size")); glGenFramebuffers(1, &directional_shadow.fbo); glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo); glGenTextures(1, &directional_shadow.depth); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { ERR_PRINT("Directional shadow framebuffer status invalid"); } } { //spot and omni ubos int max_ubo_size; glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &max_ubo_size); const int ubo_light_size = 160; state.ubo_light_size = ubo_light_size; state.max_ubo_lights = MIN(RenderList::MAX_LIGHTS, max_ubo_size / ubo_light_size); state.spot_array_tmp = (uint8_t *)memalloc(ubo_light_size * state.max_ubo_lights); state.omni_array_tmp = (uint8_t *)memalloc(ubo_light_size * state.max_ubo_lights); glGenBuffers(1, &state.spot_array_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo); glBufferData(GL_UNIFORM_BUFFER, ubo_light_size * state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); glGenBuffers(1, &state.omni_array_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo); glBufferData(GL_UNIFORM_BUFFER, ubo_light_size * state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); glGenBuffers(1, &state.directional_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(LightDataUBO), NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); state.max_forward_lights_per_object = 8; state.scene_shader.add_custom_define("#define MAX_LIGHT_DATA_STRUCTS " + itos(state.max_ubo_lights) + "\n"); state.scene_shader.add_custom_define("#define MAX_FORWARD_LIGHTS " + itos(state.max_forward_lights_per_object) + "\n"); state.max_ubo_reflections = MIN(RenderList::MAX_REFLECTIONS, max_ubo_size / sizeof(ReflectionProbeDataUBO)); state.reflection_array_tmp = (uint8_t *)memalloc(sizeof(ReflectionProbeDataUBO) * state.max_ubo_reflections); glGenBuffers(1, &state.reflection_array_ubo); glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeDataUBO) * state.max_ubo_reflections, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); state.scene_shader.add_custom_define("#define MAX_REFLECTION_DATA_STRUCTS " + itos(state.max_ubo_reflections) + "\n"); state.max_skeleton_bones = MIN(2048, max_ubo_size / (12 * sizeof(float))); state.scene_shader.add_custom_define("#define MAX_SKELETON_BONES " + itos(state.max_skeleton_bones) + "\n"); } shadow_filter_mode = SHADOW_FILTER_NEAREST; { //reflection cubemaps int max_reflection_cubemap_sampler_size = 512; int rcube_size = max_reflection_cubemap_sampler_size; glActiveTexture(GL_TEXTURE0); bool use_float = true; GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2; GLenum format = GL_RGBA; GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV; while (rcube_size >= 32) { ReflectionCubeMap cube; cube.size = rcube_size; glGenTextures(1, &cube.depth); glBindTexture(GL_TEXTURE_2D, cube.depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenTextures(1, &cube.cubemap); glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap); //gen cubemap first for (int i = 0; i < 6; i++) { glTexImage2D(_cube_side_enum[i], 0, internal_format, cube.size, cube.size, 0, format, type, NULL); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Remove artifact on the edges of the reflectionmap glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); //gen renderbuffers second, because it needs a complete cubemap for (int i = 0; i < 6; i++) { glGenFramebuffers(1, &cube.fbo_id[i]); glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], cube.cubemap, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, cube.depth, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); } reflection_cubemaps.push_back(cube); rcube_size >>= 1; } } { uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048); ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater")); glGenBuffers(1, &state.immediate_buffer); glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer); glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glGenVertexArrays(1, &state.immediate_array); } #ifdef GLES_OVER_GL //"desktop" opengl needs this. glEnable(GL_PROGRAM_POINT_SIZE); #endif state.resolve_shader.init(); state.ssr_shader.init(); state.effect_blur_shader.init(); state.sss_shader.init(); state.ssao_minify_shader.init(); state.ssao_shader.init(); state.ssao_blur_shader.init(); state.exposure_shader.init(); state.tonemap_shader.init(); { GLOBAL_DEF("rendering/quality/subsurface_scattering/quality", 1); ProjectSettings::get_singleton()->set_custom_property_info("rendering/quality/subsurface_scattering/quality", PropertyInfo(Variant::INT, "rendering/quality/subsurface_scattering/quality", PROPERTY_HINT_ENUM, "Low,Medium,High")); GLOBAL_DEF("rendering/quality/subsurface_scattering/scale", 1.0); ProjectSettings::get_singleton()->set_custom_property_info("rendering/quality/subsurface_scattering/scale", PropertyInfo(Variant::INT, "rendering/quality/subsurface_scattering/scale", PROPERTY_HINT_RANGE, "0.01,8,0.01")); GLOBAL_DEF("rendering/quality/subsurface_scattering/follow_surface", false); GLOBAL_DEF("rendering/quality/subsurface_scattering/weight_samples", true); GLOBAL_DEF("rendering/quality/voxel_cone_tracing/high_quality", true); } exposure_shrink_size = 243; int max_exposure_shrink_size = exposure_shrink_size; while (max_exposure_shrink_size > 0) { RasterizerStorageGLES3::RenderTarget::Exposure e; glGenFramebuffers(1, &e.fbo); glBindFramebuffer(GL_FRAMEBUFFER, e.fbo); glGenTextures(1, &e.color); glBindTexture(GL_TEXTURE_2D, e.color); if (storage->config.framebuffer_float_supported) { glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_FLOAT, NULL); } else if (storage->config.framebuffer_half_float_supported) { glTexImage2D(GL_TEXTURE_2D, 0, GL_R16F, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_HALF_FLOAT, NULL); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_UNSIGNED_INT_2_10_10_10_REV, NULL); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, e.color, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); exposure_shrink.push_back(e); max_exposure_shrink_size /= 3; GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); } state.debug_draw = VS::VIEWPORT_DEBUG_DRAW_DISABLED; glFrontFace(GL_CW); } void RasterizerSceneGLES3::iteration() { shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode"))); subsurface_scatter_follow_surface = GLOBAL_GET("rendering/quality/subsurface_scattering/follow_surface"); subsurface_scatter_weight_samples = GLOBAL_GET("rendering/quality/subsurface_scattering/weight_samples"); subsurface_scatter_quality = SubSurfaceScatterQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/quality"))); subsurface_scatter_size = GLOBAL_GET("rendering/quality/subsurface_scattering/scale"); state.scene_shader.set_conditional(SceneShaderGLES3::VCT_QUALITY_HIGH, GLOBAL_GET("rendering/quality/voxel_cone_tracing/high_quality")); } void RasterizerSceneGLES3::finalize() { } RasterizerSceneGLES3::RasterizerSceneGLES3() { } RasterizerSceneGLES3::~RasterizerSceneGLES3() { memdelete(default_material.get_data()); memdelete(default_material_twosided.get_data()); memdelete(default_shader.get_data()); memdelete(default_shader_twosided.get_data()); memdelete(default_worldcoord_material.get_data()); memdelete(default_worldcoord_material_twosided.get_data()); memdelete(default_worldcoord_shader.get_data()); memdelete(default_worldcoord_shader_twosided.get_data()); memdelete(default_overdraw_material.get_data()); memdelete(default_overdraw_shader.get_data()); memfree(state.spot_array_tmp); memfree(state.omni_array_tmp); memfree(state.reflection_array_tmp); }