/*************************************************************************/ /* rasterizer_canvas_gles3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_canvas_gles3.h" #ifdef GLES3_ENABLED #include "core/os/os.h" #include "rasterizer_scene_gles3.h" #include "rasterizer_storage_gles3.h" #include "core/config/project_settings.h" #include "servers/rendering/rendering_server_default.h" #include "storage/config.h" #include "storage/material_storage.h" #include "storage/texture_storage.h" #ifndef GLES_OVER_GL #define glClearDepth glClearDepthf #endif //static const GLenum gl_primitive[] = { // GL_POINTS, // GL_LINES, // GL_LINE_STRIP, // GL_LINE_LOOP, // GL_TRIANGLES, // GL_TRIANGLE_STRIP, // GL_TRIANGLE_FAN //}; void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.columns[0][0]; p_mat4[1] = p_transform.columns[0][1]; p_mat4[2] = 0; p_mat4[3] = 0; p_mat4[4] = p_transform.columns[1][0]; p_mat4[5] = p_transform.columns[1][1]; p_mat4[6] = 0; p_mat4[7] = 0; p_mat4[8] = 0; p_mat4[9] = 0; p_mat4[10] = 1; p_mat4[11] = 0; p_mat4[12] = p_transform.columns[2][0]; p_mat4[13] = p_transform.columns[2][1]; p_mat4[14] = 0; p_mat4[15] = 1; } void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) { p_mat2x4[0] = p_transform.columns[0][0]; p_mat2x4[1] = p_transform.columns[1][0]; p_mat2x4[2] = 0; p_mat2x4[3] = p_transform.columns[2][0]; p_mat2x4[4] = p_transform.columns[0][1]; p_mat2x4[5] = p_transform.columns[1][1]; p_mat2x4[6] = 0; p_mat2x4[7] = p_transform.columns[2][1]; } void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) { p_mat2x3[0] = p_transform.columns[0][0]; p_mat2x3[1] = p_transform.columns[0][1]; p_mat2x3[2] = p_transform.columns[1][0]; p_mat2x3[3] = p_transform.columns[1][1]; p_mat2x3[4] = p_transform.columns[2][0]; p_mat2x3[5] = p_transform.columns[2][1]; } void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.basis.rows[0][0]; p_mat4[1] = p_transform.basis.rows[1][0]; p_mat4[2] = p_transform.basis.rows[2][0]; p_mat4[3] = 0; p_mat4[4] = p_transform.basis.rows[0][1]; p_mat4[5] = p_transform.basis.rows[1][1]; p_mat4[6] = p_transform.basis.rows[2][1]; p_mat4[7] = 0; p_mat4[8] = p_transform.basis.rows[0][2]; p_mat4[9] = p_transform.basis.rows[1][2]; p_mat4[10] = p_transform.basis.rows[2][2]; p_mat4[11] = 0; p_mat4[12] = p_transform.origin.x; p_mat4[13] = p_transform.origin.y; p_mat4[14] = p_transform.origin.z; p_mat4[15] = 1; } void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_list, const Transform2D &p_canvas_transform, RS::CanvasItemTextureFilter p_default_filter, RS::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse(); // Clear out any state that may have been left from the 3D pass. reset_canvas(); // TODO: Setup Directional Lights // TODO: Setup lights { //update canvas state uniform buffer StateBuffer state_buffer; Size2i ssize = texture_storage->render_target_get_size(p_to_render_target); Transform3D screen_transform; screen_transform.translate(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); screen_transform.scale(Vector3(2.0f / ssize.width, 2.0f / ssize.height, 1.0f)); _update_transform_to_mat4(screen_transform, state_buffer.screen_transform); _update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform); Transform2D normal_transform = p_canvas_transform; normal_transform.columns[0].normalize(); normal_transform.columns[1].normalize(); normal_transform.columns[2] = Vector2(); _update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform); state_buffer.canvas_modulate[0] = p_modulate.r; state_buffer.canvas_modulate[1] = p_modulate.g; state_buffer.canvas_modulate[2] = p_modulate.b; state_buffer.canvas_modulate[3] = p_modulate.a; Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x; state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y; // TODO: temporary, this should be set at the top of this function glViewport(0, 0, render_target_size.x, render_target_size.y); state_buffer.time = state.time; state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel; state_buffer.directional_light_count = 0; //directional_light_count; Vector2 canvas_scale = p_canvas_transform.get_scale(); state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x; state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y; state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0]; state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1]; Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target); Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale); state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height; state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height; state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5); glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_state_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW); GLuint global_buffer = material_storage->global_variables_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); } { state.default_filter = p_default_filter; state.default_repeat = p_default_repeat; } r_sdf_used = false; int item_count = 0; bool backbuffer_cleared = false; bool time_used = false; bool material_screen_texture_found = false; Rect2 back_buffer_rect; bool backbuffer_copy = false; Item *ci = p_item_list; Item *canvas_group_owner = nullptr; while (ci) { if (ci->copy_back_buffer && canvas_group_owner == nullptr) { backbuffer_copy = true; if (ci->copy_back_buffer->full) { back_buffer_rect = Rect2(); } else { back_buffer_rect = ci->copy_back_buffer->rect; } } // Check material for something that may change flow of rendering, but do not bind for now. RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (material.is_valid()) { GLES3::CanvasMaterialData *md = static_cast(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); if (md && md->shader_data->valid) { if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) { if (!material_screen_texture_found) { backbuffer_copy = true; back_buffer_rect = Rect2(); } } if (md->shader_data->uses_sdf) { r_sdf_used = true; } if (md->shader_data->uses_time) { time_used = true; } } } if (ci->canvas_group_owner != nullptr) { if (canvas_group_owner == nullptr) { // Canvas group begins here, render until before this item _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list); item_count = 0; Rect2i group_rect = ci->canvas_group_owner->global_rect_cache; if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_OPAQUE) { texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false); } else if (!backbuffer_cleared) { texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); backbuffer_cleared = true; } backbuffer_copy = false; canvas_group_owner = ci->canvas_group_owner; //continue until owner found } ci->canvas_group_owner = nullptr; //must be cleared } if (!backbuffer_cleared && canvas_group_owner == nullptr && ci->canvas_group != nullptr && !backbuffer_copy) { texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); backbuffer_cleared = true; } if (ci == canvas_group_owner) { _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, true); item_count = 0; if (ci->canvas_group->blur_mipmaps) { texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache); } canvas_group_owner = nullptr; } if (backbuffer_copy) { //render anything pending, including clearing if no items _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list); item_count = 0; texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, true); backbuffer_copy = false; material_screen_texture_found = true; //after a backbuffer copy, screen texture makes no further copies } // just add all items for now items[item_count++] = ci; if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) { _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list); //then reset item_count = 0; } ci = ci->next; } if (time_used) { RenderingServerDefault::redraw_request(); } // Clear out state used in 2D pass reset_canvas(); } void RasterizerCanvasGLES3::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool p_to_backbuffer) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); Item *current_clip = nullptr; Transform2D canvas_transform_inverse = p_canvas_transform_inverse; canvas_begin(p_to_render_target, p_to_backbuffer); RID prev_material; uint32_t index = 0; GLES3::CanvasShaderData::BlendMode last_blend_mode = GLES3::CanvasShaderData::BLEND_MODE_MIX; GLES3::CanvasShaderData *shader_data_cache = nullptr; state.current_tex = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); state.current_tex_ptr = nullptr; state.current_normal = RID(); state.current_specular = RID(); state.canvas_texscreen_used = false; state.current_shader_version = state.canvas_shader_default_version; for (int i = 0; i < p_item_count; i++) { Item *ci = items[i]; if (current_clip != ci->final_clip_owner) { _render_batch(index); current_clip = ci->final_clip_owner; //setup clip if (current_clip) { glEnable(GL_SCISSOR_TEST); glScissor(current_clip->final_clip_rect.position.x, current_clip->final_clip_rect.position.y, current_clip->final_clip_rect.size.x, current_clip->final_clip_rect.size.y); } else { glDisable(GL_SCISSOR_TEST); } } RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (material.is_null() && ci->canvas_group != nullptr) { material = default_canvas_group_material; } if (material != prev_material) { _render_batch(index); GLES3::CanvasMaterialData *material_data = nullptr; if (material.is_valid()) { material_data = static_cast(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); } if (material_data) { if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { // Bind uniform buffer and textures material_data->bind_uniforms(); state.current_shader_version = material_data->shader_data->version; shader_data_cache = material_data->shader_data; } else { state.current_shader_version = state.canvas_shader_default_version; shader_data_cache = nullptr; } } else { state.current_shader_version = state.canvas_shader_default_version; shader_data_cache = nullptr; } prev_material = material; } GLES3::CanvasShaderData::BlendMode blend_mode = shader_data_cache ? shader_data_cache->blend_mode : GLES3::CanvasShaderData::BLEND_MODE_MIX; if (last_blend_mode != blend_mode) { if (last_blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { // re-enable it glEnable(GL_BLEND); } else if (blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { // disable it glDisable(GL_BLEND); } switch (blend_mode) { case GLES3::CanvasShaderData::BLEND_MODE_DISABLED: { // Nothing to do here. } break; case GLES3::CanvasShaderData::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_PMALPHA: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; } last_blend_mode = blend_mode; } _render_item(p_to_render_target, ci, canvas_transform_inverse, current_clip, p_lights, index); } // Render last command _render_batch(index); } void RasterizerCanvasGLES3::_render_item(RID p_render_target, const Item *p_item, const Transform2D &p_canvas_transform_inverse, Item *¤t_clip, Light *p_lights, uint32_t &r_index) { // Used by Polygon and Mesh. static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; RS::CanvasItemTextureFilter current_filter = state.default_filter; RS::CanvasItemTextureRepeat current_repeat = state.default_repeat; if (p_item->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT) { current_filter = p_item->texture_filter; } if (p_item->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT) { current_repeat = p_item->texture_repeat; } Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform; Transform2D draw_transform; // Used by transform command Color base_color = p_item->final_modulate; uint32_t base_flags = 0; bool reclip = false; bool skipping = false; const Item::Command *c = p_item->commands; while (c) { if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) { c = c->next; continue; } if (c->type != Item::Command::TYPE_MESH) { // For Meshes, this gets updated below. _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); } for (int i = 0; i < 4; i++) { state.instance_data_array[r_index].modulation[i] = 0.0; state.instance_data_array[r_index].ninepatch_margins[i] = 0.0; state.instance_data_array[r_index].src_rect[i] = 0.0; state.instance_data_array[r_index].dst_rect[i] = 0.0; state.instance_data_array[r_index].lights[i] = uint32_t(0); } state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0; state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0; state.instance_data_array[r_index].pad[0] = 0.0; state.instance_data_array[r_index].pad[1] = 0.0; state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); //reset on each command for sanity, keep canvastexture binding config switch (c->type) { case Item::Command::TYPE_RECT: { const Item::CommandRect *rect = static_cast(c); if (rect->flags & CANVAS_RECT_TILE) { current_repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED; } if (rect->texture != state.current_tex || state.current_primitive_points != 0 || state.current_command != Item::Command::TYPE_RECT) { _render_batch(r_index); state.current_primitive_points = 0; state.current_command = Item::Command::TYPE_RECT; } _bind_canvas_texture(rect->texture, current_filter, current_repeat, r_index); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_QUAD); Rect2 src_rect; Rect2 dst_rect; if (rect->texture != RID()) { src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * state.current_pixel_size, rect->source.size * state.current_pixel_size) : Rect2(0, 0, 1, 1); dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } if (rect->flags & CANVAS_RECT_FLIP_H) { src_rect.size.x *= -1; } if (rect->flags & CANVAS_RECT_FLIP_V) { src_rect.size.y *= -1; } if (rect->flags & CANVAS_RECT_TRANSPOSE) { dst_rect.size.x *= -1; // Encoding in the dst_rect.z uniform } if (rect->flags & CANVAS_RECT_CLIP_UV) { state.instance_data_array[r_index].flags |= FLAGS_CLIP_RECT_UV; } } else { dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } src_rect = Rect2(0, 0, 1, 1); } if (rect->flags & CANVAS_RECT_MSDF) { state.instance_data_array[r_index].flags |= FLAGS_USE_MSDF; state.instance_data_array[r_index].msdf[0] = rect->px_range; // Pixel range. state.instance_data_array[r_index].msdf[1] = rect->outline; // Outline size. state.instance_data_array[r_index].msdf[2] = 0.f; // Reserved. state.instance_data_array[r_index].msdf[3] = 0.f; // Reserved. } state.instance_data_array[r_index].modulation[0] = rect->modulate.r * base_color.r; state.instance_data_array[r_index].modulation[1] = rect->modulate.g * base_color.g; state.instance_data_array[r_index].modulation[2] = rect->modulate.b * base_color.b; state.instance_data_array[r_index].modulation[3] = rect->modulate.a * base_color.a; state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; r_index++; if (r_index >= state.max_instances_per_batch - 1) { _render_batch(r_index); } } break; case Item::Command::TYPE_NINEPATCH: { const Item::CommandNinePatch *np = static_cast(c); if (np->texture != state.current_tex || state.current_primitive_points != 0 || state.current_command != Item::Command::TYPE_NINEPATCH) { _render_batch(r_index); state.current_primitive_points = 0; state.current_command = Item::Command::TYPE_NINEPATCH; } //bind textures _bind_canvas_texture(np->texture, current_filter, current_repeat, r_index); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_NINEPATCH); Rect2 src_rect; Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y); if (np->texture == RID()) { state.current_pixel_size = Size2(1, 1); src_rect = Rect2(0, 0, 1, 1); } else { if (np->source != Rect2()) { src_rect = Rect2(np->source.position.x * state.current_pixel_size.width, np->source.position.y * state.current_pixel_size.height, np->source.size.x * state.current_pixel_size.width, np->source.size.y * state.current_pixel_size.height); state.instance_data_array[r_index].color_texture_pixel_size[0] = 1.0 / np->source.size.width; state.instance_data_array[r_index].color_texture_pixel_size[1] = 1.0 / np->source.size.height; } else { src_rect = Rect2(0, 0, 1, 1); } } state.instance_data_array[r_index].modulation[0] = np->color.r * base_color.r; state.instance_data_array[r_index].modulation[1] = np->color.g * base_color.g; state.instance_data_array[r_index].modulation[2] = np->color.b * base_color.b; state.instance_data_array[r_index].modulation[3] = np->color.a * base_color.a; state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; state.instance_data_array[r_index].flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT; state.instance_data_array[r_index].flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT; if (np->draw_center) { state.instance_data_array[r_index].flags |= FLAGS_NINEPACH_DRAW_CENTER; } state.instance_data_array[r_index].ninepatch_margins[0] = np->margin[SIDE_LEFT]; state.instance_data_array[r_index].ninepatch_margins[1] = np->margin[SIDE_TOP]; state.instance_data_array[r_index].ninepatch_margins[2] = np->margin[SIDE_RIGHT]; state.instance_data_array[r_index].ninepatch_margins[3] = np->margin[SIDE_BOTTOM]; r_index++; if (r_index >= state.max_instances_per_batch - 1) { _render_batch(r_index); } // Restore if overridden. state.instance_data_array[r_index].color_texture_pixel_size[0] = state.current_pixel_size.x; state.instance_data_array[r_index].color_texture_pixel_size[1] = state.current_pixel_size.y; } break; case Item::Command::TYPE_POLYGON: { const Item::CommandPolygon *polygon = static_cast(c); PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id); ERR_CONTINUE(!pb); if (polygon->texture != state.current_tex || state.current_primitive_points != 0 || state.current_command != Item::Command::TYPE_POLYGON) { _render_batch(r_index); state.current_primitive_points = 0; state.current_command = Item::Command::TYPE_POLYGON; } _bind_canvas_texture(polygon->texture, current_filter, current_repeat, r_index); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_ATTRIBUTES); state.current_primitive = polygon->primitive; state.instance_data_array[r_index].modulation[0] = base_color.r; state.instance_data_array[r_index].modulation[1] = base_color.g; state.instance_data_array[r_index].modulation[2] = base_color.b; state.instance_data_array[r_index].modulation[3] = base_color.a; for (int j = 0; j < 4; j++) { state.instance_data_array[r_index].src_rect[j] = 0; state.instance_data_array[r_index].dst_rect[j] = 0; state.instance_data_array[r_index].ninepatch_margins[j] = 0; } _bind_instance_data_buffer(1); glBindVertexArray(pb->vertex_array); if (pb->color_disabled) { glVertexAttrib4f(RS::ARRAY_COLOR, pb->color.r, pb->color.g, pb->color.b, pb->color.a); } if (pb->index_buffer != 0) { glDrawElements(prim[polygon->primitive], pb->count, GL_UNSIGNED_INT, nullptr); } else { glDrawArrays(prim[polygon->primitive], 0, pb->count); } glBindVertexArray(0); state.fences[state.current_buffer] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); state.current_buffer = (state.current_buffer + 1) % state.canvas_instance_data_buffers.size(); if (pb->color_disabled) { // Reset so this doesn't pollute other draw calls. glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); } } break; case Item::Command::TYPE_PRIMITIVE: { const Item::CommandPrimitive *primitive = static_cast(c); if (state.current_primitive_points != primitive->point_count || state.current_command != Item::Command::TYPE_PRIMITIVE) { _render_batch(r_index); state.current_primitive_points = primitive->point_count; state.current_command = Item::Command::TYPE_PRIMITIVE; } _bind_canvas_texture(RID(), current_filter, current_repeat, r_index); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_PRIMITIVE); for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) { state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j].x; state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j].y; state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j].x; state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j].y; Color col = primitive->colors[j] * base_color; state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } r_index++; if (primitive->point_count == 4) { // Reset base data _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0; state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0; state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); //reset on each command for sanity, keep canvastexture binding config for (uint32_t j = 0; j < 3; j++) { //second half of triangle state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j + 1].x; state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j + 1].y; state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j + 1].x; state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j + 1].y; Color col = primitive->colors[j + 1] * base_color; state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } r_index++; } if (r_index >= state.max_instances_per_batch - 1) { _render_batch(r_index); } } break; case Item::Command::TYPE_MESH: case Item::Command::TYPE_MULTIMESH: case Item::Command::TYPE_PARTICLES: { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); RID mesh; RID mesh_instance; RID texture; Color modulate(1, 1, 1, 1); uint32_t instance_count = 1; GLuint multimesh_buffer = 0; uint32_t multimesh_stride = 0; uint32_t multimesh_color_offset = 0; bool multimesh_uses_color = false; bool multimesh_uses_custom_data = false; if (c->type == Item::Command::TYPE_MESH) { const Item::CommandMesh *m = static_cast(c); mesh = m->mesh; mesh_instance = m->mesh_instance; texture = m->texture; modulate = m->modulate; _update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, state.instance_data_array[r_index].world); } else if (c->type == Item::Command::TYPE_MULTIMESH) { const Item::CommandMultiMesh *mm = static_cast(c); RID multimesh = mm->multimesh; mesh = mesh_storage->multimesh_get_mesh(multimesh); texture = mm->texture; if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) { break; } instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh); if (instance_count == 0) { break; } multimesh_buffer = mesh_storage->multimesh_get_gl_buffer(multimesh); multimesh_stride = mesh_storage->multimesh_get_stride(multimesh); multimesh_color_offset = mesh_storage->multimesh_get_color_offset(multimesh); multimesh_uses_color = mesh_storage->multimesh_uses_colors(multimesh); multimesh_uses_custom_data = mesh_storage->multimesh_uses_custom_data(multimesh); } // TODO: implement particles here if (mesh.is_null()) { break; } if (texture != state.current_tex || state.current_primitive_points != 0 || state.current_command != Item::Command::TYPE_PRIMITIVE) { _render_batch(r_index); state.current_primitive_points = 0; state.current_command = c->type; } _bind_canvas_texture(texture, current_filter, current_repeat, r_index); if (instance_count == 1) { GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_ATTRIBUTES); } else if (instance_count > 1) { GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.current_shader_version, CanvasShaderGLES3::MODE_INSTANCED); } else { ERR_PRINT("Must have at least one mesh instance to draw mesh"); } uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh); state.instance_data_array[r_index].modulation[0] = base_color.r * modulate.r; state.instance_data_array[r_index].modulation[1] = base_color.g * modulate.g; state.instance_data_array[r_index].modulation[2] = base_color.b * modulate.b; state.instance_data_array[r_index].modulation[3] = base_color.a * modulate.a; for (int j = 0; j < 4; j++) { state.instance_data_array[r_index].src_rect[j] = 0; state.instance_data_array[r_index].dst_rect[j] = 0; state.instance_data_array[r_index].ninepatch_margins[j] = 0; } _bind_instance_data_buffer(1); for (uint32_t j = 0; j < surf_count; j++) { void *surface = mesh_storage->mesh_get_surface(mesh, j); RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface); ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX); GLuint vertex_array_gl = 0; GLuint index_array_gl = 0; uint32_t input_mask = 0; // 2D meshes always use the same vertex format if (mesh_instance.is_valid()) { mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, input_mask, vertex_array_gl); } else { mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, input_mask, vertex_array_gl); } index_array_gl = mesh_storage->mesh_surface_get_index_buffer(surface, 0); bool use_index_buffer = false; glBindVertexArray(vertex_array_gl); if (index_array_gl != 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); use_index_buffer = true; } if (instance_count > 1) { // Bind instance buffers. glBindBuffer(GL_ARRAY_BUFFER, multimesh_buffer); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, multimesh_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); glVertexAttribDivisor(1, 1); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, multimesh_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(4 * 4)); glVertexAttribDivisor(2, 1); if (multimesh_uses_color || multimesh_uses_custom_data) { glEnableVertexAttribArray(5); glVertexAttribIPointer(5, 4, GL_UNSIGNED_INT, multimesh_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(multimesh_color_offset * sizeof(float))); glVertexAttribDivisor(5, 1); } } GLenum primitive_gl = prim[int(primitive)]; if (instance_count == 1) { if (use_index_buffer) { glDrawElements(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), mesh_storage->mesh_surface_get_index_type(surface), 0); } else { glDrawArrays(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(surface)); } } else if (instance_count > 1) { if (use_index_buffer) { glDrawElementsInstanced(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), mesh_storage->mesh_surface_get_index_type(surface), 0, instance_count); } else { glDrawArraysInstanced(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(surface), instance_count); } } state.fences[state.current_buffer] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); state.current_buffer = (state.current_buffer + 1) % state.canvas_instance_data_buffers.size(); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); if (instance_count > 1) { glDisableVertexAttribArray(5); glDisableVertexAttribArray(6); glDisableVertexAttribArray(7); glDisableVertexAttribArray(8); } } } break; case Item::Command::TYPE_TRANSFORM: { const Item::CommandTransform *transform = static_cast(c); draw_transform = transform->xform; } break; case Item::Command::TYPE_CLIP_IGNORE: { const Item::CommandClipIgnore *ci = static_cast(c); if (current_clip) { if (ci->ignore != reclip) { if (ci->ignore) { glDisable(GL_SCISSOR_TEST); reclip = true; } else { // Scissor area is already set glEnable(GL_SCISSOR_TEST); reclip = false; } } } } break; case Item::Command::TYPE_ANIMATION_SLICE: { /* const Item::CommandAnimationSlice *as = static_cast(c); double current_time = RendererCompositorRD::singleton->get_total_time(); double local_time = Math::fposmod(current_time - as->offset, as->animation_length); skipping = !(local_time >= as->slice_begin && local_time < as->slice_end); RenderingServerDefault::redraw_request(); // animation visible means redraw request */ } break; } c = c->next; } if (current_clip && reclip) { //will make it re-enable clipping if needed afterwards current_clip = nullptr; } } void RasterizerCanvasGLES3::_render_batch(uint32_t &r_index) { if (r_index > 0) { _bind_instance_data_buffer(r_index); glBindVertexArray(data.canvas_quad_array); if (state.current_primitive_points == 0) { glDrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, r_index); } else { static const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLES }; glDrawArraysInstanced(prim[state.current_primitive_points], 0, state.current_primitive_points, r_index); } glBindBuffer(GL_UNIFORM_BUFFER, 0); state.fences[state.current_buffer] = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); state.current_buffer = (state.current_buffer + 1) % state.canvas_instance_data_buffers.size(); //copy the new data into the base of the batch for (int i = 0; i < 4; i++) { state.instance_data_array[0].modulation[i] = state.instance_data_array[r_index].modulation[i]; state.instance_data_array[0].ninepatch_margins[i] = state.instance_data_array[r_index].ninepatch_margins[i]; state.instance_data_array[0].src_rect[i] = state.instance_data_array[r_index].src_rect[i]; state.instance_data_array[0].dst_rect[i] = state.instance_data_array[r_index].dst_rect[i]; state.instance_data_array[0].lights[i] = state.instance_data_array[r_index].lights[i]; } state.instance_data_array[0].flags = state.instance_data_array[r_index].flags; state.instance_data_array[0].color_texture_pixel_size[0] = state.instance_data_array[r_index].color_texture_pixel_size[0]; state.instance_data_array[0].color_texture_pixel_size[1] = state.instance_data_array[r_index].color_texture_pixel_size[1]; state.instance_data_array[0].pad[0] = state.instance_data_array[r_index].pad[0]; state.instance_data_array[0].pad[1] = state.instance_data_array[r_index].pad[1]; for (int i = 0; i < 6; i++) { state.instance_data_array[0].world[i] = state.instance_data_array[r_index].world[i]; } r_index = 0; } } void RasterizerCanvasGLES3::_bind_instance_data_buffer(uint32_t p_max_index) { if (p_max_index == 0) { return; } // If the previous operation is not done yet, allocate a new buffer if (state.fences[state.current_buffer] != GLsync()) { GLint syncStatus; glGetSynciv(state.fences[state.current_buffer], GL_SYNC_STATUS, sizeof(GLint), nullptr, &syncStatus); if (syncStatus == GL_UNSIGNALED) { _allocate_instance_data_buffer(); } else { glDeleteSync(state.fences[state.current_buffer]); } } glBindBufferBase(GL_UNIFORM_BUFFER, INSTANCE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_buffer]); #ifdef JAVASCRIPT_ENABLED //WebGL 2.0 does not support mapping buffers, so use slow glBufferData instead glBufferData(GL_UNIFORM_BUFFER, sizeof(InstanceData) * p_max_index, state.instance_data_array, GL_DYNAMIC_DRAW); #else void *ubo = glMapBufferRange(GL_UNIFORM_BUFFER, 0, sizeof(InstanceData) * p_max_index, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); memcpy(ubo, state.instance_data_array, sizeof(InstanceData) * p_max_index); glUnmapBuffer(GL_UNIFORM_BUFFER); #endif } RID RasterizerCanvasGLES3::light_create() { return RID(); } void RasterizerCanvasGLES3::light_set_texture(RID p_rid, RID p_texture) { } void RasterizerCanvasGLES3::light_set_use_shadow(RID p_rid, bool p_enable) { } void RasterizerCanvasGLES3::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) { } void RasterizerCanvasGLES3::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) { } void RasterizerCanvasGLES3::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) { } RID RasterizerCanvasGLES3::occluder_polygon_create() { return RID(); } void RasterizerCanvasGLES3::occluder_polygon_set_shape(RID p_occluder, const Vector &p_points, bool p_closed) { } void RasterizerCanvasGLES3::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) { } void RasterizerCanvasGLES3::set_shadow_texture_size(int p_size) { } bool RasterizerCanvasGLES3::free(RID p_rid) { return true; } void RasterizerCanvasGLES3::update() { } void RasterizerCanvasGLES3::canvas_begin(RID p_to_render_target, bool p_to_backbuffer) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); GLES3::RenderTarget *render_target = texture_storage->get_render_target(p_to_render_target); if (p_to_backbuffer) { glBindFramebuffer(GL_FRAMEBUFFER, render_target->backbuffer_fbo); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glBindFramebuffer(GL_FRAMEBUFFER, render_target->fbo); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, render_target->backbuffer); } if (render_target->is_transparent) { state.transparent_render_target = true; glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { state.transparent_render_target = false; glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } if (render_target && render_target->clear_requested) { const Color &col = render_target->clear_color; glClearColor(col.r, col.g, col.b, col.a); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); render_target->clear_requested = false; } glActiveTexture(GL_TEXTURE0); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } void RasterizerCanvasGLES3::_bind_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, uint32_t &r_index) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); if (p_texture == RID()) { p_texture = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); } if (state.current_tex == p_texture) { return; //nothing to do, its the same } state.current_tex = p_texture; GLES3::CanvasTexture *ct = nullptr; GLES3::Texture *t = texture_storage->get_texture(p_texture); if (t) { //regular texture if (!t->canvas_texture) { t->canvas_texture = memnew(GLES3::CanvasTexture); t->canvas_texture->diffuse = p_texture; } ct = t->canvas_texture; } else { ct = texture_storage->get_canvas_texture(p_texture); } if (!ct) { // Invalid Texture RID. _bind_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat, r_index); return; } RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter; ERR_FAIL_COND(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT); RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat; ERR_FAIL_COND(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT); GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); if (!texture) { state.current_tex = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); GLES3::Texture *tex = texture_storage->get_texture(state.current_tex); state.current_tex_ptr = tex; ct->size_cache = Size2i(tex->width, tex->height); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); state.current_tex = p_texture; state.current_tex_ptr = texture; ct->size_cache = Size2i(texture->width, texture->height); texture->gl_set_filter(filter); texture->gl_set_repeat(repeat); } GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); if (!normal_map) { state.current_normal = RID(); ct->use_normal_cache = false; glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 6); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_NORMAL)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); glBindTexture(GL_TEXTURE_2D, normal_map->tex_id); state.current_normal = ct->normal_map; ct->use_normal_cache = true; texture->gl_set_filter(filter); texture->gl_set_repeat(repeat); } GLES3::Texture *specular_map = texture_storage->get_texture(ct->specular); if (!specular_map) { state.current_specular = RID(); ct->use_specular_cache = false; glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); glBindTexture(GL_TEXTURE_2D, specular_map->tex_id); state.current_specular = ct->specular; ct->use_specular_cache = true; texture->gl_set_filter(filter); texture->gl_set_repeat(repeat); } if (ct->use_specular_cache) { state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED; } else { state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED; } if (ct->use_normal_cache) { state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_NORMAL_MAP_USED; } else { state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED; } state.instance_data_array[r_index].specular_shininess = uint32_t(CLAMP(ct->specular_color.a * 255.0, 0, 255)) << 24; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.b * 255.0, 0, 255)) << 16; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.g * 255.0, 0, 255)) << 8; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.r * 255.0, 0, 255)); state.current_pixel_size.x = 1.0 / float(ct->size_cache.x); state.current_pixel_size.y = 1.0 / float(ct->size_cache.y); state.instance_data_array[r_index].color_texture_pixel_size[0] = state.current_pixel_size.x; state.instance_data_array[r_index].color_texture_pixel_size[1] = state.current_pixel_size.y; } void RasterizerCanvasGLES3::reset_canvas() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glEnable(GL_BLEND); glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void RasterizerCanvasGLES3::canvas_debug_viewport_shadows(Light *p_lights_with_shadow) { } void RasterizerCanvasGLES3::canvas_light_shadow_buffer_update(RID p_buffer, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders, CameraMatrix *p_xform_cache) { } void RasterizerCanvasGLES3::draw_lens_distortion_rect(const Rect2 &p_rect, float p_k1, float p_k2, const Vector2 &p_eye_center, float p_oversample) { } RendererCanvasRender::PolygonID RasterizerCanvasGLES3::request_polygon(const Vector &p_indices, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, const Vector &p_bones, const Vector &p_weights) { // We interleave the vertex data into one big VBO to improve cache coherence uint32_t vertex_count = p_points.size(); uint32_t stride = 2; if ((uint32_t)p_colors.size() == vertex_count) { stride += 4; } if ((uint32_t)p_uvs.size() == vertex_count) { stride += 2; } if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { stride += 4; } PolygonBuffers pb; glGenBuffers(1, &pb.vertex_buffer); glGenVertexArrays(1, &pb.vertex_array); glBindVertexArray(pb.vertex_array); pb.count = vertex_count; pb.index_buffer = 0; uint32_t buffer_size = stride * p_points.size(); Vector polygon_buffer; polygon_buffer.resize(buffer_size * sizeof(float)); { glBindBuffer(GL_ARRAY_BUFFER, pb.vertex_buffer); glBufferData(GL_ARRAY_BUFFER, stride * vertex_count * sizeof(float), nullptr, GL_STATIC_DRAW); // TODO may not be necessary uint8_t *r = polygon_buffer.ptrw(); float *fptr = reinterpret_cast(r); uint32_t *uptr = (uint32_t *)r; uint32_t base_offset = 0; { // Always uses vertex positions glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), nullptr); const Vector2 *points_ptr = p_points.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = points_ptr[i].x; fptr[base_offset + i * stride + 1] = points_ptr[i].y; } base_offset += 2; } // Next add colors if ((uint32_t)p_colors.size() == vertex_count) { glEnableVertexAttribArray(RS::ARRAY_COLOR); glVertexAttribPointer(RS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const Color *color_ptr = p_colors.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = color_ptr[i].r; fptr[base_offset + i * stride + 1] = color_ptr[i].g; fptr[base_offset + i * stride + 2] = color_ptr[i].b; fptr[base_offset + i * stride + 3] = color_ptr[i].a; } base_offset += 4; } else { glDisableVertexAttribArray(RS::ARRAY_COLOR); pb.color_disabled = true; pb.color = p_colors.size() == 1 ? p_colors[0] : Color(1.0, 1.0, 1.0, 1.0); } if ((uint32_t)p_uvs.size() == vertex_count) { glEnableVertexAttribArray(RS::ARRAY_TEX_UV); glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const Vector2 *uv_ptr = p_uvs.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = uv_ptr[i].x; fptr[base_offset + i * stride + 1] = uv_ptr[i].y; } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_TEX_UV); } if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { glEnableVertexAttribArray(RS::ARRAY_BONES); glVertexAttribPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_INT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const int *bone_ptr = p_bones.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride]; bone16w[0] = bone_ptr[i * 4 + 0]; bone16w[1] = bone_ptr[i * 4 + 1]; bone16w[2] = bone_ptr[i * 4 + 2]; bone16w[3] = bone_ptr[i * 4 + 3]; } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_BONES); } if ((uint32_t)p_weights.size() == vertex_count * 4) { glEnableVertexAttribArray(RS::ARRAY_WEIGHTS); glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const float *weight_ptr = p_weights.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride]; weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535); weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535); weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535); weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535); } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_WEIGHTS); } ERR_FAIL_COND_V(base_offset != stride, 0); glBufferData(GL_ARRAY_BUFFER, vertex_count * stride * sizeof(float), polygon_buffer.ptr(), GL_STATIC_DRAW); } if (p_indices.size()) { //create indices, as indices were requested Vector index_buffer; index_buffer.resize(p_indices.size() * sizeof(int32_t)); { uint8_t *w = index_buffer.ptrw(); memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size()); } glGenBuffers(1, &pb.index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_indices.size() * 4, nullptr, GL_STATIC_DRAW); // TODO may not be necessary glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_indices.size() * 4, index_buffer.ptr(), GL_STATIC_DRAW); pb.count = p_indices.size(); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); PolygonID id = polygon_buffers.last_id++; polygon_buffers.polygons[id] = pb; return id; } void RasterizerCanvasGLES3::free_polygon(PolygonID p_polygon) { PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon); ERR_FAIL_COND(!pb_ptr); PolygonBuffers &pb = *pb_ptr; if (pb.index_buffer != 0) { glDeleteBuffers(1, &pb.index_buffer); } glDeleteVertexArrays(1, &pb.vertex_array); glDeleteBuffers(1, &pb.vertex_buffer); polygon_buffers.polygons.erase(p_polygon); } // Creates a new uniform buffer and uses it right away // This expands the instance buffer continually // In theory allocations can reach as high as number_of_draw_calls * 3 frames // because OpenGL can start rendering subsequent frames before finishing the current one void RasterizerCanvasGLES3::_allocate_instance_data_buffer() { GLuint new_buffer; glGenBuffers(1, &new_buffer); glBindBuffer(GL_UNIFORM_BUFFER, new_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(InstanceData) * state.max_instances_per_batch, nullptr, GL_DYNAMIC_DRAW); state.current_buffer = (state.current_buffer + 1); state.canvas_instance_data_buffers.insert(state.current_buffer, new_buffer); state.fences.insert(state.current_buffer, GLsync()); state.current_buffer = state.current_buffer % state.canvas_instance_data_buffers.size(); glBindBuffer(GL_UNIFORM_BUFFER, 0); } void RasterizerCanvasGLES3::set_time(double p_time) { state.time = p_time; } RasterizerCanvasGLES3 *RasterizerCanvasGLES3::singleton = nullptr; RasterizerCanvasGLES3 *RasterizerCanvasGLES3::get_singleton() { return singleton; } RasterizerCanvasGLES3::RasterizerCanvasGLES3(RasterizerStorageGLES3 *p_storage) { singleton = this; storage = p_storage; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); // quad buffer { glGenBuffers(1, &data.canvas_quad_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); const float qv[8] = { 0, 0, 0, 1, 1, 1, 1, 0 }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 8, qv, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glGenVertexArrays(1, &data.canvas_quad_array); glBindVertexArray(data.canvas_quad_array); glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); glEnableVertexAttribArray(0); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } { //particle quad buffers glGenBuffers(1, &data.particle_quad_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); { //quad of size 1, with pivot on the center for particles, then regular UVS. Color is general plus fetched from particle const float qv[16] = { -0.5, -0.5, 0.0, 0.0, -0.5, 0.5, 0.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, -0.5, 1.0, 0.0 }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &data.particle_quad_array); glBindVertexArray(data.particle_quad_array); glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr); glEnableVertexAttribArray(RS::ARRAY_TEX_UV); glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } // ninepatch buffers { // array buffer glGenBuffers(1, &data.ninepatch_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.ninepatch_vertices); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * (16 + 16) * 2, nullptr, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); // element buffer glGenBuffers(1, &data.ninepatch_elements); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ninepatch_elements); #define _EIDX(y, x) (y * 4 + x) uint8_t elems[3 * 2 * 9] = { // first row _EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1), _EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0), _EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2), _EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1), _EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3), _EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2), // second row _EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1), _EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0), // the center one would be here, but we'll put it at the end // so it's easier to disable the center and be able to use // one draw call for both _EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3), _EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2), // third row _EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1), _EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0), _EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2), _EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1), _EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3), _EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2), // center field _EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2), _EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1) }; #undef _EIDX glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elems), elems, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } int uniform_max_size = config->max_uniform_buffer_size; if (uniform_max_size < 65536) { state.max_lights_per_render = 64; state.max_instances_per_batch = 128; } else { state.max_lights_per_render = 256; state.max_instances_per_batch = 512; } // Reserve 64 Uniform Buffers for instance data state.canvas_instance_data_buffers.resize(64); state.fences.resize(64); glGenBuffers(64, state.canvas_instance_data_buffers.ptr()); for (int i = 0; i < 64; i++) { state.fences[i] = GLsync(); glBindBuffer(GL_UNIFORM_BUFFER, state.canvas_instance_data_buffers[i]); glBufferData(GL_UNIFORM_BUFFER, sizeof(InstanceData) * state.max_instances_per_batch, nullptr, GL_DYNAMIC_DRAW); } glBindBuffer(GL_UNIFORM_BUFFER, 0); state.instance_data_array = memnew_arr(InstanceData, state.max_instances_per_batch); glGenBuffers(1, &state.canvas_state_buffer); glBindBuffer(GL_UNIFORM_BUFFER, state.canvas_state_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), nullptr, GL_STREAM_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); String global_defines; global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now global_defines += "#define MAX_LIGHTS " + itos(state.max_instances_per_batch) + "\n"; global_defines += "#define MAX_DRAW_DATA_INSTANCES " + itos(state.max_instances_per_batch) + "\n"; GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.initialize(global_defines); state.canvas_shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_create(); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(state.canvas_shader_default_version, CanvasShaderGLES3::MODE_QUAD); { default_canvas_group_shader = material_storage->shader_allocate(); material_storage->shader_initialize(default_canvas_group_shader); material_storage->shader_set_code(default_canvas_group_shader, R"( // Default CanvasGroup shader. shader_type canvas_item; void fragment() { vec4 c = textureLod(SCREEN_TEXTURE, SCREEN_UV, 0.0); if (c.a > 0.0001) { c.rgb /= c.a; } COLOR *= c; } )"); default_canvas_group_material = material_storage->material_allocate(); material_storage->material_initialize(default_canvas_group_material); material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader); } state.current_shader_version = state.canvas_shader_default_version; state.time = 0.0; } RasterizerCanvasGLES3::~RasterizerCanvasGLES3() { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_free(state.canvas_shader_default_version); material_storage->material_free(default_canvas_group_material); material_storage->shader_free(default_canvas_group_shader); singleton = nullptr; glDeleteBuffers(1, &data.canvas_quad_vertices); glDeleteVertexArrays(1, &data.canvas_quad_array); glDeleteBuffers(1, &data.canvas_quad_vertices); glDeleteVertexArrays(1, &data.canvas_quad_array); } #endif // GLES3_ENABLED