/* clang-format off */ [vertex] #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else precision mediump float; precision mediump int; #endif attribute highp vec4 vertex_attrib; // attrib:0 /* clang-format on */ #if defined(USE_CUBEMAP) || defined(USE_PANORAMA) attribute vec3 cube_in; // attrib:4 #else attribute vec2 uv_in; // attrib:4 #endif attribute vec2 uv2_in; // attrib:5 #if defined(USE_CUBEMAP) || defined(USE_PANORAMA) varying vec3 cube_interp; #else varying vec2 uv_interp; #endif varying vec2 uv2_interp; #ifdef USE_COPY_SECTION uniform vec4 copy_section; #endif void main() { #if defined(USE_CUBEMAP) || defined(USE_PANORAMA) cube_interp = cube_in; #elif defined(USE_ASYM_PANO) uv_interp = vertex_attrib.xy; #else uv_interp = uv_in; #endif uv2_interp = uv2_in; gl_Position = vertex_attrib; #ifdef USE_COPY_SECTION uv_interp = copy_section.xy + uv_interp * copy_section.zw; gl_Position.xy = (copy_section.xy + (gl_Position.xy * 0.5 + 0.5) * copy_section.zw) * 2.0 - 1.0; #endif } /* clang-format off */ [fragment] #define M_PI 3.14159265359 #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else precision mediump float; precision mediump int; #endif #if defined(USE_CUBEMAP) || defined(USE_PANORAMA) varying vec3 cube_interp; #else varying vec2 uv_interp; #endif /* clang-format on */ #ifdef USE_ASYM_PANO uniform highp mat4 pano_transform; uniform highp vec4 asym_proj; #endif #ifdef USE_CUBEMAP uniform samplerCube source_cube; // texunit:0 #else uniform sampler2D source; // texunit:0 #endif varying vec2 uv2_interp; #ifdef USE_MULTIPLIER uniform float multiplier; #endif #ifdef USE_CUSTOM_ALPHA uniform float custom_alpha; #endif #if defined(USE_PANORAMA) || defined(USE_ASYM_PANO) uniform highp mat4 sky_transform; vec4 texturePanorama(sampler2D pano, vec3 normal) { vec2 st = vec2( atan(normal.x, normal.z), acos(normal.y)); if (st.x < 0.0) st.x += M_PI * 2.0; st /= vec2(M_PI * 2.0, M_PI); return texture2D(pano, st); } #endif void main() { #ifdef USE_PANORAMA vec3 cube_normal = normalize(cube_interp); cube_normal.z = -cube_normal.z; cube_normal = mat3(sky_transform) * cube_normal; cube_normal.z = -cube_normal.z; vec4 color = texturePanorama(source, cube_normal); #elif defined(USE_ASYM_PANO) // When an asymmetrical projection matrix is used (applicable for stereoscopic rendering i.e. VR) we need to do this calculation per fragment to get a perspective correct result. // Note that we're ignoring the x-offset for IPD, with Z sufficiently in the distance it becomes neglectible, as a result we could probably just set cube_normal.z to -1. // The Matrix[2][0] (= asym_proj.x) and Matrix[2][1] (= asym_proj.z) values are what provide the right shift in the image. vec3 cube_normal; cube_normal.z = -1000000.0; cube_normal.x = (cube_normal.z * (-uv_interp.x - asym_proj.x)) / asym_proj.y; cube_normal.y = (cube_normal.z * (-uv_interp.y - asym_proj.z)) / asym_proj.a; cube_normal = mat3(sky_transform) * mat3(pano_transform) * cube_normal; cube_normal.z = -cube_normal.z; vec4 color = texturePanorama(source, normalize(cube_normal.xyz)); #elif defined(USE_CUBEMAP) vec4 color = textureCube(source_cube, normalize(cube_interp)); #else vec4 color = texture2D(source, uv_interp); #endif #ifdef USE_NO_ALPHA color.a = 1.0; #endif #ifdef USE_CUSTOM_ALPHA color.a = custom_alpha; #endif #ifdef USE_MULTIPLIER color.rgb *= multiplier; #endif gl_FragColor = color; }