/*************************************************************************/ /* rasterizer_gles2.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef GLES2_ENABLED #include "rasterizer_gles2.h" #include "gl_context/context_gl.h" #include "global_config.h" #include "os/os.h" #include "servers/visual/particle_system_sw.h" #include "servers/visual/shader_language.h" #include #include #include #ifdef GLEW_ENABLED #define _GL_HALF_FLOAT_OES 0x140B #else #define _GL_HALF_FLOAT_OES 0x8D61 #endif #define _GL_RGBA16F_EXT 0x881A #define _GL_RGB16F_EXT 0x881B #define _GL_RG16F_EXT 0x822F #define _GL_R16F_EXT 0x822D #define _GL_R32F_EXT 0x822E #define _GL_RED_EXT 0x1903 #define _GL_RG_EXT 0x8227 #define _GL_R8_EXT 0x8229 #define _GL_RG8_EXT 0x822B #define _DEPTH_COMPONENT24_OES 0x81A6 #ifdef GLEW_ENABLED #define _glClearDepth glClearDepth #else #define _glClearDepth glClearDepthf #endif #define _GL_SRGB_EXT 0x8C40 #define _GL_SRGB_ALPHA_EXT 0x8C42 #define _GL_TEXTURE_MAX_ANISOTROPY_EXT 0x84FE #define _GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT 0x84FF //#define DEBUG_OPENGL #ifdef DEBUG_OPENGL #define DEBUG_TEST_ERROR(m_section) \ { \ print_line("AT: " + String(m_section)); \ glFlush(); \ uint32_t err = glGetError(); \ if (err) { \ print_line("OpenGL Error #" + itos(err) + " at: " + m_section); \ } \ } #else #define DEBUG_TEST_ERROR(m_section) #endif static RasterizerGLES2 *_singleton = NULL; #ifdef GLES_NO_CLIENT_ARRAYS static float GlobalVertexBuffer[MAX_POLYGON_VERTICES * 8] = { 0 }; #endif static const GLenum prim_type[] = { GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN }; _FORCE_INLINE_ static void _set_color_attrib(const Color &p_color) { GLfloat c[4] = { p_color.r, p_color.g, p_color.b, p_color.a }; glVertexAttrib4fv(VS::ARRAY_COLOR, c); } static _FORCE_INLINE_ uint16_t make_half_float(float f) { union { float fv; uint32_t ui; } ci; ci.fv = f; unsigned int x = ci.ui; unsigned int sign = (unsigned short)(x >> 31); unsigned int mantissa; unsigned int exp; uint16_t hf; // get mantissa mantissa = x & ((1 << 23) - 1); // get exponent bits exp = x & (0xFF << 23); if (exp >= 0x47800000) { // check if the original single precision float number is a NaN if (mantissa && (exp == (0xFF << 23))) { // we have a single precision NaN mantissa = (1 << 23) - 1; } else { // 16-bit half-float representation stores number as Inf mantissa = 0; } hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | (uint16_t)(mantissa >> 13); } // check if exponent is <= -15 else if (exp <= 0x38000000) { /*// store a denorm half-float value or zero exp = (0x38000000 - exp) >> 23; mantissa >>= (14 + exp); hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa); */ hf = 0; //denormals do not work for 3D, convert to zero } else { hf = (((uint16_t)sign) << 15) | (uint16_t)((exp - 0x38000000) >> 13) | (uint16_t)(mantissa >> 13); } return hf; } void RasterizerGLES2::_draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color *p_colors, const Vector3 *p_uvs, const Plane *p_tangents, int p_instanced) { ERR_FAIL_COND(!p_vertices); ERR_FAIL_COND(p_points < 1 || p_points > 4); bool quad = false; GLenum type; switch (p_points) { case 1: type = GL_POINTS; break; case 2: type = GL_LINES; break; case 4: quad = true; p_points = 3; case 3: type = GL_TRIANGLES; break; }; glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); GLfloat vert_array[18]; GLfloat normal_array[18]; GLfloat color_array[24]; GLfloat tangent_array[24]; GLfloat uv_array[18]; glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, vert_array); for (int i = 0; i < p_points; i++) { vert_array[i * 3 + 0] = p_vertices[i].x; vert_array[i * 3 + 1] = p_vertices[i].y; vert_array[i * 3 + 2] = p_vertices[i].z; if (quad) { int idx = 2 + i; if (idx == 4) idx = 0; vert_array[9 + i * 3 + 0] = p_vertices[idx].x; vert_array[9 + i * 3 + 1] = p_vertices[idx].y; vert_array[9 + i * 3 + 2] = p_vertices[idx].z; } } if (p_normals) { glEnableVertexAttribArray(VS::ARRAY_NORMAL); glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, 0, normal_array); for (int i = 0; i < p_points; i++) { normal_array[i * 3 + 0] = p_normals[i].x; normal_array[i * 3 + 1] = p_normals[i].y; normal_array[i * 3 + 2] = p_normals[i].z; if (quad) { int idx = 2 + i; if (idx == 4) idx = 0; normal_array[9 + i * 3 + 0] = p_normals[idx].x; normal_array[9 + i * 3 + 1] = p_normals[idx].y; normal_array[9 + i * 3 + 2] = p_normals[idx].z; } } } else { glDisableVertexAttribArray(VS::ARRAY_NORMAL); } if (p_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, 0, color_array); for (int i = 0; i < p_points; i++) { color_array[i * 4 + 0] = p_colors[i].r; color_array[i * 4 + 1] = p_colors[i].g; color_array[i * 4 + 2] = p_colors[i].b; color_array[i * 4 + 3] = p_colors[i].a; if (quad) { int idx = 2 + i; if (idx == 4) idx = 0; color_array[12 + i * 4 + 0] = p_colors[idx].r; color_array[12 + i * 4 + 1] = p_colors[idx].g; color_array[12 + i * 4 + 2] = p_colors[idx].b; color_array[12 + i * 4 + 3] = p_colors[idx].a; } } } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (p_tangents) { glEnableVertexAttribArray(VS::ARRAY_TANGENT); glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, 0, tangent_array); for (int i = 0; i < p_points; i++) { tangent_array[i * 4 + 0] = p_tangents[i].normal.x; tangent_array[i * 4 + 1] = p_tangents[i].normal.y; tangent_array[i * 4 + 2] = p_tangents[i].normal.z; tangent_array[i * 4 + 3] = p_tangents[i].d; if (quad) { int idx = 2 + i; if (idx == 4) idx = 0; tangent_array[12 + i * 4 + 0] = p_tangents[idx].normal.x; tangent_array[12 + i * 4 + 1] = p_tangents[idx].normal.y; tangent_array[12 + i * 4 + 2] = p_tangents[idx].normal.z; tangent_array[12 + i * 4 + 3] = p_tangents[idx].d; } } } else { glDisableVertexAttribArray(VS::ARRAY_TANGENT); } if (p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, false, 0, uv_array); for (int i = 0; i < p_points; i++) { uv_array[i * 3 + 0] = p_uvs[i].x; uv_array[i * 3 + 1] = p_uvs[i].y; uv_array[i * 3 + 2] = p_uvs[i].z; if (quad) { int idx = 2 + i; if (idx == 4) idx = 0; uv_array[9 + i * 3 + 0] = p_uvs[idx].x; uv_array[9 + i * 3 + 1] = p_uvs[idx].y; uv_array[9 + i * 3 + 2] = p_uvs[idx].z; } } } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } /* if (p_instanced>1) glDrawArraysInstanced(type,0,p_points,p_instanced); else */ glDrawArrays(type, 0, quad ? 6 : p_points); }; /* TEXTURE API */ #define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT 0x8A54 #define _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT 0x8A55 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT 0x8A56 #define _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT 0x8A57 #define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define _EXT_COMPRESSED_LUMINANCE_LATC1_EXT 0x8C70 #define _EXT_COMPRESSED_SIGNED_LUMINANCE_LATC1_EXT 0x8C71 #define _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT 0x8C72 #define _EXT_COMPRESSED_SIGNED_LUMINANCE_ALPHA_LATC2_EXT 0x8C73 #define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB #define _EXT_COMPRESSED_RED_RGTC1 0x8DBB #define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define _EXT_COMPRESSED_RG_RGTC2 0x8DBD #define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC #define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD #define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE #define _EXT_ETC1_RGB8_OES 0x8D64 #define _EXT_SLUMINANCE_NV 0x8C46 #define _EXT_SLUMINANCE_ALPHA_NV 0x8C44 #define _EXT_SRGB8_NV 0x8C41 #define _EXT_SLUMINANCE8_NV 0x8C47 #define _EXT_SLUMINANCE8_ALPHA8_NV 0x8C45 #define _EXT_COMPRESSED_SRGB_S3TC_DXT1_NV 0x8C4C #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV 0x8C4D #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV 0x8C4E #define _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV 0x8C4F #define _EXT_ATC_RGB_AMD 0x8C92 #define _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD 0x8C93 #define _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD 0x87EE /* TEXTURE API */ Image RasterizerGLES2::_get_gl_image_and_format(const Image &p_image, Image::Format p_format, uint32_t p_flags, GLenum &r_gl_format, GLenum &r_gl_internal_format, int &r_gl_components, bool &r_has_alpha_cache, bool &r_compressed) { r_has_alpha_cache = false; r_compressed = false; r_gl_format = 0; Image image = p_image; switch (p_format) { case Image::FORMAT_L8: { r_gl_components = 1; r_gl_format = GL_LUMINANCE; r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_SLUMINANCE_NV : GL_LUMINANCE; } break; case Image::FORMAT_INTENSITY: { if (!image.empty()) image.convert(Image::FORMAT_RGBA8); r_gl_components = 4; r_gl_format = GL_RGBA; r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _GL_SRGB_ALPHA_EXT : GL_RGBA; r_has_alpha_cache = true; } break; case Image::FORMAT_LA8: { //image.convert(Image::FORMAT_RGBA8); r_gl_components = 2; r_gl_format = GL_LUMINANCE_ALPHA; r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_SLUMINANCE_ALPHA_NV : GL_LUMINANCE_ALPHA; r_has_alpha_cache = true; } break; case Image::FORMAT_INDEXED: { if (!image.empty()) image.convert(Image::FORMAT_RGB8); r_gl_components = 3; r_gl_format = GL_RGB; r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _GL_SRGB_EXT : GL_RGB; } break; case Image::FORMAT_INDEXED_ALPHA: { if (!image.empty()) image.convert(Image::FORMAT_RGBA8); r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } break; case Image::FORMAT_RGB8: { r_gl_components = 3; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_internal_format = _GL_SRGB_EXT; r_gl_format = GL_RGB; } else { r_gl_internal_format = GL_RGB; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGB; } } break; case Image::FORMAT_RGBA8: { r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_internal_format = _GL_SRGB_ALPHA_EXT; r_gl_format = GL_RGBA; //r_gl_internal_format=GL_RGBA; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } break; case Image::FORMAT_DXT1: { if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_components = 1; //doesn't matter much r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT; r_compressed = true; }; } break; case Image::FORMAT_DXT3: { if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_components = 1; //doesn't matter much r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT; r_has_alpha_cache = true; r_compressed = true; }; } break; case Image::FORMAT_DXT5: { if (!s3tc_supported || (!s3tc_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_components = 1; //doesn't matter much r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_NV : _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT; r_has_alpha_cache = true; r_compressed = true; }; } break; case Image::FORMAT_ATI1: { if (!latc_supported) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = _EXT_COMPRESSED_LUMINANCE_LATC1_EXT; r_gl_components = 1; //doesn't matter much r_compressed = true; }; } break; case Image::FORMAT_ATI2: { if (!latc_supported) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = _EXT_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT; r_gl_components = 1; //doesn't matter much r_compressed = true; }; } break; case Image::FORMAT_PVRTC2: { if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_PVRTC2A: { if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) image.decompress(); r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_2BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_PVRTC4: { if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) image.decompress(); r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_PVRTC4A: { if (!pvr_supported || (!pvr_srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) { if (!image.empty()) image.decompress(); r_gl_components = 4; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGBA; r_gl_internal_format = _GL_SRGB_ALPHA_EXT; } else { r_gl_internal_format = GL_RGBA; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGBA; } r_has_alpha_cache = true; } else { r_gl_internal_format = (srgb_supported && p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) ? _EXT_COMPRESSED_SRGB_ALPHA_PVRTC_4BPPV1_EXT : _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_ETC: { if (!etc_supported || p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (!image.empty()) { image.decompress(); } r_gl_components = 3; if (p_flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR) { if (srgb_supported) { r_gl_format = GL_RGB; r_gl_internal_format = _GL_SRGB_EXT; } else { r_gl_internal_format = GL_RGB; if (!image.empty()) image.srgb_to_linear(); } } else { r_gl_internal_format = GL_RGB; } r_gl_internal_format = GL_RGB; } else { r_gl_internal_format = _EXT_ETC1_RGB8_OES; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_ATC: { if (!atitc_supported) { if (!image.empty()) { image.decompress(); } r_gl_components = 3; r_gl_internal_format = GL_RGB; } else { r_gl_internal_format = _EXT_ATC_RGB_AMD; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_ATC_ALPHA_EXPLICIT: { if (!atitc_supported) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; r_gl_internal_format = GL_RGBA; } else { r_gl_internal_format = _EXT_ATC_RGBA_EXPLICIT_ALPHA_AMD; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_ATC_ALPHA_INTERPOLATED: { if (!atitc_supported) { if (!image.empty()) { image.decompress(); } r_gl_components = 4; r_gl_internal_format = GL_RGBA; } else { r_gl_internal_format = _EXT_ATC_RGBA_INTERPOLATED_ALPHA_AMD; r_gl_components = 1; //doesn't matter much r_compressed = true; } } break; case Image::FORMAT_YUV_422: case Image::FORMAT_YUV_444: { if (!image.empty()) image.convert(Image::FORMAT_RGB8); r_gl_internal_format = GL_RGB; r_gl_components = 3; } break; default: { ERR_FAIL_V(Image()); } } if (r_gl_format == 0) { r_gl_format = r_gl_internal_format; } return image; } static const GLenum _cube_side_enum[6] = { GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, }; RID RasterizerGLES2::texture_create() { Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture, RID()); glGenTextures(1, &texture->tex_id); texture->active = false; texture->total_data_size = 0; return texture_owner.make_rid(texture); } void RasterizerGLES2::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) { bool has_alpha_cache; int components; GLenum format; GLenum internal_format; bool compressed; int po2_width = nearest_power_of_2(p_width); int po2_height = nearest_power_of_2(p_height); if (p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) { p_flags &= ~VS::TEXTURE_FLAG_MIPMAPS; // no mipies for video } Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->width = p_width; texture->height = p_height; texture->format = p_format; texture->flags = p_flags; texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D; _get_gl_image_and_format(Image(), texture->format, texture->flags, format, internal_format, components, has_alpha_cache, compressed); bool scale_textures = !compressed && !(p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && (!npo2_textures_available || p_flags & VS::TEXTURE_FLAG_MIPMAPS); if (scale_textures) { texture->alloc_width = po2_width; texture->alloc_height = po2_height; //print_line("scale because npo2: "+itos(npo2_textures_available)+" mm: "+itos(p_format&VS::TEXTURE_FLAG_MIPMAPS)+" "+itos(p_mipmap_count) ); } else { texture->alloc_width = texture->width; texture->alloc_height = texture->height; }; if (!(p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && shrink_textures_x2) { texture->alloc_height = MAX(1, texture->alloc_height / 2); texture->alloc_width = MAX(1, texture->alloc_width / 2); } texture->gl_components_cache = components; texture->gl_format_cache = format; texture->gl_internal_format_cache = internal_format; texture->format_has_alpha = has_alpha_cache; texture->compressed = compressed; texture->has_alpha = false; //by default it doesn't have alpha unless something with alpha is blitteds texture->data_size = 0; texture->mipmaps = 0; glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); if (p_flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) { //prealloc if video glTexImage2D(texture->target, 0, internal_format, p_width, p_height, 0, format, GL_UNSIGNED_BYTE, NULL); } texture->active = true; } void RasterizerGLES2::texture_set_data(RID p_texture, const Image &p_image, VS::CubeMapSide p_cube_side) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(texture->format != p_image.get_format()); ERR_FAIL_COND(p_image.empty()); int components; GLenum format; GLenum internal_format; bool alpha; bool compressed; if (keep_copies && !(texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && !(use_reload_hooks && texture->reloader)) { texture->image[p_cube_side] = p_image; } Image img = _get_gl_image_and_format(p_image, p_image.get_format(), texture->flags, format, internal_format, components, alpha, compressed); if (texture->alloc_width != img.get_width() || texture->alloc_height != img.get_height()) { if (texture->alloc_width == img.get_width() / 2 && texture->alloc_height == img.get_height() / 2) { img.shrink_x2(); } else if (img.get_format() <= Image::FORMAT_INDEXED_ALPHA) { img.resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR); } }; if (!(texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) && img.detect_alpha() == Image::ALPHA_BLEND) { texture->has_alpha = true; } GLenum blit_target = (texture->target == GL_TEXTURE_CUBE_MAP) ? _cube_side_enum[p_cube_side] : GL_TEXTURE_2D; texture->data_size = img.get_data().size(); PoolVector::Read read = img.get_data().read(); glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); texture->ignore_mipmaps = compressed && img.get_mipmaps() == 0; if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR); else { if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering } bool force_clamp_to_edge = !(texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height) != texture->alloc_height || nearest_power_of_2(texture->alloc_width) != texture->alloc_width); if (!force_clamp_to_edge && (texture->flags & VS::TEXTURE_FLAG_REPEAT || texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) && texture->target != GL_TEXTURE_CUBE_MAP) { if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } if (use_anisotropic_filter) { if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropic_level); } else { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1); } } int mipmaps = (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && img.get_mipmaps() > 0) ? img.get_mipmaps() + 1 : 1; int w = img.get_width(); int h = img.get_height(); int tsize = 0; for (int i = 0; i < mipmaps; i++) { int size, ofs; img.get_mipmap_offset_and_size(i, ofs, size); //print_line("mipmap: "+itos(i)+" size: "+itos(size)+" w: "+itos(mm_w)+", h: "+itos(mm_h)); if (texture->compressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glCompressedTexImage2D(blit_target, i, format, w, h, 0, size, &read[ofs]); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); if (texture->flags & VS::TEXTURE_FLAG_VIDEO_SURFACE) { glTexSubImage2D(blit_target, i, 0, 0, w, h, format, GL_UNSIGNED_BYTE, &read[ofs]); } else { glTexImage2D(blit_target, i, internal_format, w, h, 0, format, GL_UNSIGNED_BYTE, &read[ofs]); } } tsize += size; w = MAX(1, w >> 1); h = MAX(1, h >> 1); } _rinfo.texture_mem -= texture->total_data_size; texture->total_data_size = tsize; _rinfo.texture_mem += texture->total_data_size; //printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem); if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && mipmaps == 1 && !texture->ignore_mipmaps) { //generate mipmaps if they were requested and the image does not contain them glGenerateMipmap(texture->target); } texture->mipmaps = mipmaps; if (mipmaps > 1) { //glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps-1 ); - assumed to have all, always } //texture_set_flags(p_texture,texture->flags); } Image RasterizerGLES2::texture_get_data(RID p_texture, VS::CubeMapSide p_cube_side) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, Image()); ERR_FAIL_COND_V(!texture->active, Image()); ERR_FAIL_COND_V(texture->data_size == 0, Image()); ERR_FAIL_COND_V(texture->render_target, Image()); return texture->image[p_cube_side]; #if 0 Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image()); ERR_FAIL_COND_V(!texture->active,Image()); ERR_FAIL_COND_V(texture->data_size==0,Image()); PoolVector data; GLenum format,type=GL_UNSIGNED_BYTE; Image::Format fmt; int pixelsize=0; int pixelshift=0; int minw=1,minh=1; bool compressed=false; fmt=texture->format; switch(texture->format) { case Image::FORMAT_L8: { format=GL_LUMINANCE; type=GL_UNSIGNED_BYTE; data.resize(texture->alloc_width*texture->alloc_height); pixelsize=1; } break; case Image::FORMAT_INTENSITY: { return Image(); } break; case Image::FORMAT_LA8: { format=GL_LUMINANCE_ALPHA; type=GL_UNSIGNED_BYTE; pixelsize=2; } break; case Image::FORMAT_RGB8: { format=GL_RGB; type=GL_UNSIGNED_BYTE; pixelsize=3; } break; case Image::FORMAT_RGBA8: { format=GL_RGBA; type=GL_UNSIGNED_BYTE; pixelsize=4; } break; case Image::FORMAT_INDEXED: { format=GL_RGB; type=GL_UNSIGNED_BYTE; fmt=Image::FORMAT_RGB8; pixelsize=3; } break; case Image::FORMAT_INDEXED_ALPHA: { format=GL_RGBA; type=GL_UNSIGNED_BYTE; fmt=Image::FORMAT_RGBA8; pixelsize=4; } break; case Image::FORMAT_DXT1: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; compressed=true; pixelshift=1; minw=minh=4; } break; case Image::FORMAT_DXT3: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; compressed=true; minw=minh=4; } break; case Image::FORMAT_DXT5: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; compressed=true; minw=minh=4; } break; case Image::FORMAT_ATI1: { format=GL_COMPRESSED_RED_RGTC1; pixelsize=1; //doesn't matter much compressed=true; pixelshift=1; minw=minh=4; } break; case Image::FORMAT_ATI2: { format=GL_COMPRESSED_RG_RGTC2; pixelsize=1; //doesn't matter much compressed=true; minw=minh=4; } break; default:{} } data.resize(texture->data_size); PoolVector::Write wb = data.write(); glActiveTexture(GL_TEXTURE0); int ofs=0; glBindTexture(texture->target,texture->tex_id); int w=texture->alloc_width; int h=texture->alloc_height; for(int i=0;imipmaps+1;i++) { if (compressed) { glPixelStorei(GL_PACK_ALIGNMENT, 4); glGetCompressedTexImage(texture->target,i,&wb[ofs]); } else { glPixelStorei(GL_PACK_ALIGNMENT, 1); glGetTexImage(texture->target,i,format,type,&wb[ofs]); } int size = (w*h*pixelsize)>>pixelshift; ofs+=size; w=MAX(minw,w>>1); h=MAX(minh,h>>1); } wb=PoolVector::Write(); Image img(texture->alloc_width,texture->alloc_height,texture->mipmaps,fmt,data); if (texture->formatalloc_width!=texture->width || texture->alloc_height!=texture->height)) img.resize(texture->width,texture->height); return img; #endif } void RasterizerGLES2::texture_set_flags(RID p_texture, uint32_t p_flags) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); if (texture->render_target) { p_flags &= VS::TEXTURE_FLAG_FILTER; //can change only filter } bool had_mipmaps = texture->flags & VS::TEXTURE_FLAG_MIPMAPS; glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP; texture->flags = p_flags | cube; // can't remove a cube from being a cube bool force_clamp_to_edge = !(p_flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) && (nearest_power_of_2(texture->alloc_height) != texture->alloc_height || nearest_power_of_2(texture->alloc_width) != texture->alloc_width); if (!force_clamp_to_edge && (texture->flags & VS::TEXTURE_FLAG_REPEAT || texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) && texture->target != GL_TEXTURE_CUBE_MAP) { if (texture->flags & VS::TEXTURE_FLAG_MIRRORED_REPEAT) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT); } else { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } if (use_anisotropic_filter) { if (texture->flags & VS::TEXTURE_FLAG_ANISOTROPIC_FILTER) { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropic_level); } else { glTexParameterf(texture->target, _GL_TEXTURE_MAX_ANISOTROPY_EXT, 1); } } if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS && !texture->ignore_mipmaps) { if (!had_mipmaps && texture->mipmaps == 1) { glGenerateMipmap(texture->target); } glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, use_fast_texture_filter ? GL_LINEAR_MIPMAP_NEAREST : GL_LINEAR_MIPMAP_LINEAR); } else { if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } if (texture->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // raw Filtering } } uint32_t RasterizerGLES2::texture_get_flags(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->flags; } Image::Format RasterizerGLES2::texture_get_format(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, Image::FORMAT_L8); return texture->format; } uint32_t RasterizerGLES2::texture_get_width(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->width; } uint32_t RasterizerGLES2::texture_get_height(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->height; } bool RasterizerGLES2::texture_has_alpha(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, 0); return texture->has_alpha; } void RasterizerGLES2::texture_set_size_override(RID p_texture, int p_width, int p_height) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(texture->render_target); ERR_FAIL_COND(p_width <= 0 || p_width > 16384); ERR_FAIL_COND(p_height <= 0 || p_height > 16384); //real texture size is in alloc width and height texture->width = p_width; texture->height = p_height; } void RasterizerGLES2::texture_set_reload_hook(RID p_texture, ObjectID p_owner, const StringName &p_function) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(texture->render_target); texture->reloader = p_owner; texture->reloader_func = p_function; if (use_reload_hooks && p_owner && keep_copies) { for (int i = 0; i < 6; i++) texture->image[i] = Image(); } } GLuint RasterizerGLES2::_texture_get_name(RID p_tex) { Texture *texture = texture_owner.get(p_tex); ERR_FAIL_COND_V(!texture, 0); return texture->tex_id; }; void RasterizerGLES2::texture_set_path(RID p_texture, const String &p_path) { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->path = p_path; } String RasterizerGLES2::texture_get_path(RID p_texture) const { Texture *texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture, String()); return texture->path; } void RasterizerGLES2::texture_debug_usage(List *r_info) { List textures; texture_owner.get_owned_list(&textures); for (List::Element *E = textures.front(); E; E = E->next()) { Texture *t = texture_owner.get(E->get()); if (!t) continue; VS::TextureInfo tinfo; tinfo.path = t->path; tinfo.format = t->format; tinfo.size.x = t->alloc_width; tinfo.size.y = t->alloc_height; tinfo.bytes = t->total_data_size; r_info->push_back(tinfo); } } void RasterizerGLES2::texture_set_shrink_all_x2_on_set_data(bool p_enable) { shrink_textures_x2 = p_enable; } /* SHADER API */ RID RasterizerGLES2::shader_create(VS::ShaderMode p_mode) { Shader *shader = memnew(Shader); shader->mode = p_mode; RID rid = shader_owner.make_rid(shader); shader_set_mode(rid, p_mode); _shader_make_dirty(shader); return rid; } void RasterizerGLES2::shader_set_mode(RID p_shader, VS::ShaderMode p_mode) { ERR_FAIL_INDEX(p_mode, 3); Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); if (shader->custom_code_id && p_mode == shader->mode) return; if (shader->custom_code_id) { switch (shader->mode) { case VS::SHADER_MATERIAL: { material_shader.free_custom_shader(shader->custom_code_id); } break; case VS::SHADER_CANVAS_ITEM: { canvas_shader.free_custom_shader(shader->custom_code_id); } break; } shader->custom_code_id = 0; } shader->mode = p_mode; switch (shader->mode) { case VS::SHADER_MATERIAL: { shader->custom_code_id = material_shader.create_custom_shader(); } break; case VS::SHADER_CANVAS_ITEM: { shader->custom_code_id = canvas_shader.create_custom_shader(); } break; } _shader_make_dirty(shader); } VS::ShaderMode RasterizerGLES2::shader_get_mode(RID p_shader) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, VS::SHADER_MATERIAL); return shader->mode; } void RasterizerGLES2::shader_set_code(RID p_shader, const String &p_vertex, const String &p_fragment, const String &p_light, int p_vertex_ofs, int p_fragment_ofs, int p_light_ofs) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); #ifdef DEBUG_ENABLED if (shader->vertex_code == p_vertex && shader->fragment_code == p_fragment && shader->light_code == p_light) return; #endif shader->fragment_code = p_fragment; shader->vertex_code = p_vertex; shader->light_code = p_light; shader->fragment_line = p_fragment_ofs; shader->vertex_line = p_vertex_ofs; shader->light_line = p_light_ofs; _shader_make_dirty(shader); } String RasterizerGLES2::shader_get_vertex_code(RID p_shader) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->vertex_code; } String RasterizerGLES2::shader_get_fragment_code(RID p_shader) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->fragment_code; } String RasterizerGLES2::shader_get_light_code(RID p_shader) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->light_code; } void RasterizerGLES2::_shader_make_dirty(Shader *p_shader) { if (p_shader->dirty_list.in_list()) return; _shader_dirty_list.add(&p_shader->dirty_list); } void RasterizerGLES2::shader_get_param_list(RID p_shader, List *p_param_list) const { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); if (shader->dirty_list.in_list()) _update_shader(shader); // ok should be not anymore dirty Map order; for (Map::Element *E = shader->uniforms.front(); E; E = E->next()) { order[E->get().order] = E->key(); } for (Map::Element *E = order.front(); E; E = E->next()) { PropertyInfo pi; ShaderLanguage::Uniform &u = shader->uniforms[E->get()]; pi.name = E->get(); switch (u.type) { case ShaderLanguage::TYPE_VOID: case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_FLOAT: case ShaderLanguage::TYPE_VEC2: case ShaderLanguage::TYPE_VEC3: case ShaderLanguage::TYPE_MAT3: case ShaderLanguage::TYPE_MAT4: case ShaderLanguage::TYPE_VEC4: pi.type = u.default_value.get_type(); break; case ShaderLanguage::TYPE_TEXTURE: pi.type = Variant::_RID; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "Texture"; break; case ShaderLanguage::TYPE_CUBEMAP: pi.type = Variant::_RID; pi.hint = PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string = "CubeMap"; break; }; p_param_list->push_back(pi); } } void RasterizerGLES2::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND(!shader); ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture)); if (p_texture.is_valid()) shader->default_textures[p_name] = p_texture; else shader->default_textures.erase(p_name); _shader_make_dirty(shader); } RID RasterizerGLES2::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { const Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, RID()); const Map::Element *E = shader->default_textures.find(p_name); if (!E) return RID(); return E->get(); } Variant RasterizerGLES2::shader_get_default_param(RID p_shader, const StringName &p_name) { Shader *shader = shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader, Variant()); //update shader params if necessary //make sure the shader is compiled and everything //so the actual parameters can be properly retrieved! if (shader->dirty_list.in_list()) { _update_shader(shader); } if (shader->valid && shader->uniforms.has(p_name)) return shader->uniforms[p_name].default_value; return Variant(); } /* COMMON MATERIAL API */ RID RasterizerGLES2::material_create() { RID material = material_owner.make_rid(memnew(Material)); return material; } void RasterizerGLES2::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); if (material->shader == p_shader) return; material->shader = p_shader; material->shader_version = 0; } RID RasterizerGLES2::material_get_shader(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, RID()); return material->shader; } void RasterizerGLES2::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); Map::Element *E = material->shader_params.find(p_param); if (E) { if (p_value.get_type() == Variant::NIL) { material->shader_params.erase(E); material->shader_version = 0; //get default! } else { E->get().value = p_value; E->get().inuse = true; } } else { if (p_value.get_type() == Variant::NIL) return; Material::UniformData ud; ud.index = -1; ud.value = p_value; ud.istexture = p_value.get_type() == Variant::_RID; /// cache it being texture ud.inuse = true; material->shader_params[p_param] = ud; //may be got at some point, or erased } } Variant RasterizerGLES2::material_get_param(RID p_material, const StringName &p_param) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->shader.is_valid()) { //update shader params if necessary //make sure the shader is compiled and everything //so the actual parameters can be properly retrieved! material->shader_cache = shader_owner.get(material->shader); if (!material->shader_cache) { //invalidate material->shader = RID(); material->shader_cache = NULL; } else { if (material->shader_cache->dirty_list.in_list()) _update_shader(material->shader_cache); if (material->shader_cache->valid && material->shader_cache->version != material->shader_version) { //validate _update_material_shader_params(material); } } } if (material->shader_params.has(p_param) && material->shader_params[p_param].inuse) return material->shader_params[p_param].value; else return Variant(); } void RasterizerGLES2::material_set_flag(RID p_material, VS::MaterialFlag p_flag, bool p_enabled) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); ERR_FAIL_INDEX(p_flag, VS::MATERIAL_FLAG_MAX); material->flags[p_flag] = p_enabled; } bool RasterizerGLES2::material_get_flag(RID p_material, VS::MaterialFlag p_flag) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, false); ERR_FAIL_INDEX_V(p_flag, VS::MATERIAL_FLAG_MAX, false); return material->flags[p_flag]; } void RasterizerGLES2::material_set_depth_draw_mode(RID p_material, VS::MaterialDepthDrawMode p_mode) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->depth_draw_mode = p_mode; } VS::MaterialDepthDrawMode RasterizerGLES2::material_get_depth_draw_mode(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, VS::MATERIAL_DEPTH_DRAW_ALWAYS); return material->depth_draw_mode; } void RasterizerGLES2::material_set_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->blend_mode = p_mode; } VS::MaterialBlendMode RasterizerGLES2::material_get_blend_mode(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, VS::MATERIAL_BLEND_MODE_ADD); return material->blend_mode; } void RasterizerGLES2::material_set_line_width(RID p_material, float p_line_width) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->line_width = p_line_width; } float RasterizerGLES2::material_get_line_width(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material, 0); return material->line_width; } /* MESH API */ RID RasterizerGLES2::mesh_create() { return mesh_owner.make_rid(memnew(Mesh)); } void RasterizerGLES2::mesh_add_surface(RID p_mesh, VS::PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, bool p_alpha_sort) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_primitive, VS::PRIMITIVE_MAX); ERR_FAIL_COND(p_arrays.size() != VS::ARRAY_MAX); uint32_t format = 0; // validation int index_array_len = 0; int array_len = 0; for (int i = 0; i < p_arrays.size(); i++) { if (p_arrays[i].get_type() == Variant::NIL) continue; format |= (1 << i); if (i == VS::ARRAY_VERTEX) { array_len = Vector3Array(p_arrays[i]).size(); ERR_FAIL_COND(array_len == 0); } else if (i == VS::ARRAY_INDEX) { index_array_len = IntArray(p_arrays[i]).size(); } } ERR_FAIL_COND((format & VS::ARRAY_FORMAT_VERTEX) == 0); // mandatory ERR_FAIL_COND(mesh->morph_target_count != p_blend_shapes.size()); if (mesh->morph_target_count) { //validate format for morphs for (int i = 0; i < p_blend_shapes.size(); i++) { uint32_t bsformat = 0; Array arr = p_blend_shapes[i]; for (int j = 0; j < arr.size(); j++) { if (arr[j].get_type() != Variant::NIL) bsformat |= (1 << j); } ERR_FAIL_COND((bsformat) != (format & (VS::ARRAY_FORMAT_BONES - 1))); } } Surface *surface = memnew(Surface); ERR_FAIL_COND(!surface); bool use_VBO = true; //glGenBuffersARB!=NULL; // TODO detect if it's in there if ((!use_hw_skeleton_xform && format & VS::ARRAY_FORMAT_WEIGHTS) || mesh->morph_target_count > 0) { use_VBO = false; } //surface->packed=pack_arrays && use_VBO; int total_elem_size = 0; for (int i = 0; i < VS::ARRAY_MAX; i++) { Surface::ArrayData &ad = surface->array[i]; ad.size = 0; ad.ofs = 0; int elem_size = 0; int elem_count = 0; bool valid_local = true; GLenum datatype; bool normalize = false; bool bind = false; if (!(format & (1 << i))) // no array continue; switch (i) { case VS::ARRAY_VERTEX: { if (use_VBO && use_half_float) { elem_size = 3 * sizeof(int16_t); // vertex datatype = _GL_HALF_FLOAT_OES; } else { elem_size = 3 * sizeof(GLfloat); // vertex datatype = GL_FLOAT; } bind = true; elem_count = 3; } break; case VS::ARRAY_NORMAL: { if (use_VBO) { elem_size = 4 * sizeof(int8_t); // vertex datatype = GL_BYTE; normalize = true; } else { elem_size = 3 * sizeof(GLfloat); // vertex datatype = GL_FLOAT; } bind = true; elem_count = 3; } break; case VS::ARRAY_TANGENT: { if (use_VBO) { elem_size = 4 * sizeof(int8_t); // vertex datatype = GL_BYTE; normalize = true; } else { elem_size = 4 * sizeof(GLfloat); // vertex datatype = GL_FLOAT; } bind = true; elem_count = 4; } break; case VS::ARRAY_COLOR: { elem_size = 4 * sizeof(uint8_t); /* RGBA */ datatype = GL_UNSIGNED_BYTE; elem_count = 4; bind = true; normalize = true; } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { if (use_VBO && use_half_float) { elem_size = 2 * sizeof(int16_t); // vertex datatype = _GL_HALF_FLOAT_OES; } else { elem_size = 2 * sizeof(GLfloat); // vertex datatype = GL_FLOAT; } bind = true; elem_count = 2; } break; case VS::ARRAY_WEIGHTS: { if (use_VBO) { elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLushort); valid_local = false; bind = true; normalize = true; datatype = GL_UNSIGNED_SHORT; elem_count = 4; } else { elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLfloat); valid_local = false; bind = false; datatype = GL_FLOAT; elem_count = 4; } } break; case VS::ARRAY_BONES: { if (use_VBO) { elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLubyte); valid_local = false; bind = true; datatype = GL_UNSIGNED_BYTE; elem_count = 4; } else { elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLushort); valid_local = false; bind = false; datatype = GL_UNSIGNED_SHORT; elem_count = 4; } } break; case VS::ARRAY_INDEX: { if (index_array_len <= 0) { ERR_PRINT("index_array_len==NO_INDEX_ARRAY"); break; } /* determine wether using 16 or 32 bits indices */ if (array_len > (1 << 16)) { elem_size = 4; datatype = GL_UNSIGNED_INT; } else { elem_size = 2; datatype = GL_UNSIGNED_SHORT; } /* if (use_VBO) { glGenBuffers(1,&surface->index_id); ERR_FAIL_COND(surface->index_id==0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*elem_size,NULL,GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind } else { surface->index_array_local = (uint8_t*)memalloc(index_array_len*elem_size); }; */ surface->index_array_len = index_array_len; // only way it can exist ad.ofs = 0; ad.size = elem_size; continue; } break; default: { ERR_FAIL(); } } ad.ofs = total_elem_size; ad.size = elem_size; ad.datatype = datatype; ad.normalize = normalize; ad.bind = bind; ad.count = elem_count; total_elem_size += elem_size; if (valid_local) { surface->local_stride += elem_size; surface->morph_format |= (1 << i); } } surface->stride = total_elem_size; surface->array_len = array_len; surface->format = format; surface->primitive = p_primitive; surface->morph_target_count = mesh->morph_target_count; surface->configured_format = 0; surface->mesh = mesh; if (keep_copies) { surface->data = p_arrays; surface->morph_data = p_blend_shapes; } uint8_t *array_ptr = NULL; uint8_t *index_array_ptr = NULL; PoolVector array_pre_vbo; PoolVector::Write vaw; PoolVector index_array_pre_vbo; PoolVector::Write iaw; /* create pointers */ if (use_VBO) { array_pre_vbo.resize(surface->array_len * surface->stride); vaw = array_pre_vbo.write(); array_ptr = vaw.ptr(); if (surface->index_array_len) { index_array_pre_vbo.resize(surface->index_array_len * surface->array[VS::ARRAY_INDEX].size); iaw = index_array_pre_vbo.write(); index_array_ptr = iaw.ptr(); } _surface_set_arrays(surface, array_ptr, index_array_ptr, p_arrays, true); } else { surface->array_local = (uint8_t *)memalloc(surface->array_len * surface->stride); array_ptr = (uint8_t *)surface->array_local; if (surface->index_array_len) { surface->index_array_local = (uint8_t *)memalloc(index_array_len * surface->array[VS::ARRAY_INDEX].size); index_array_ptr = (uint8_t *)surface->index_array_local; } _surface_set_arrays(surface, array_ptr, index_array_ptr, p_arrays, true); if (mesh->morph_target_count) { surface->morph_targets_local = memnew_arr(Surface::MorphTarget, mesh->morph_target_count); for (int i = 0; i < mesh->morph_target_count; i++) { surface->morph_targets_local[i].array = memnew_arr(uint8_t, surface->local_stride * surface->array_len); surface->morph_targets_local[i].configured_format = surface->morph_format; _surface_set_arrays(surface, surface->morph_targets_local[i].array, NULL, p_blend_shapes[i], false); } } } /* create buffers!! */ if (use_VBO) { glGenBuffers(1, &surface->vertex_id); ERR_FAIL_COND(surface->vertex_id == 0); glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id); glBufferData(GL_ARRAY_BUFFER, surface->array_len * surface->stride, array_ptr, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (surface->index_array_len) { glGenBuffers(1, &surface->index_id); ERR_FAIL_COND(surface->index_id == 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, index_array_len * surface->array[VS::ARRAY_INDEX].size, index_array_ptr, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind } } mesh->surfaces.push_back(surface); } Error RasterizerGLES2::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem, uint8_t *p_index_mem, const Array &p_arrays, bool p_main) { uint32_t stride = p_main ? p_surface->stride : p_surface->local_stride; for (int ai = 0; ai < VS::ARRAY_MAX; ai++) { if (ai >= p_arrays.size()) break; if (p_arrays[ai].get_type() == Variant::NIL) continue; Surface::ArrayData &a = p_surface->array[ai]; switch (ai) { case VS::ARRAY_VERTEX: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Vector3 *src = read.ptr(); // setting vertices means regenerating the AABB AABB aabb; float scale = 1; if (p_surface->array[VS::ARRAY_VERTEX].datatype == _GL_HALF_FLOAT_OES) { for (int i = 0; i < p_surface->array_len; i++) { uint16_t vector[3] = { make_half_float(src[i].x), make_half_float(src[i].y), make_half_float(src[i].z) }; copymem(&p_mem[a.ofs + i * stride], vector, a.size); if (i == 0) { aabb = AABB(src[i], Vector3()); } else { aabb.expand_to(src[i]); } } } else { for (int i = 0; i < p_surface->array_len; i++) { GLfloat vector[3] = { src[i].x, src[i].y, src[i].z }; copymem(&p_mem[a.ofs + i * stride], vector, a.size); if (i == 0) { aabb = AABB(src[i], Vector3()); } else { aabb.expand_to(src[i]); } } } if (p_main) { p_surface->aabb = aabb; p_surface->vertex_scale = scale; } } break; case VS::ARRAY_NORMAL: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Vector3 *src = read.ptr(); // setting vertices means regenerating the AABB if (p_surface->array[VS::ARRAY_NORMAL].datatype == GL_BYTE) { for (int i = 0; i < p_surface->array_len; i++) { GLbyte vector[4] = { CLAMP(src[i].x * 127, -128, 127), CLAMP(src[i].y * 127, -128, 127), CLAMP(src[i].z * 127, -128, 127), 0, }; copymem(&p_mem[a.ofs + i * stride], vector, a.size); } } else { for (int i = 0; i < p_surface->array_len; i++) { GLfloat vector[3] = { src[i].x, src[i].y, src[i].z }; copymem(&p_mem[a.ofs + i * stride], vector, a.size); } } } break; case VS::ARRAY_TANGENT: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len * 4, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const real_t *src = read.ptr(); if (p_surface->array[VS::ARRAY_TANGENT].datatype == GL_BYTE) { for (int i = 0; i < p_surface->array_len; i++) { GLbyte xyzw[4] = { CLAMP(src[i * 4 + 0] * 127, -128, 127), CLAMP(src[i * 4 + 1] * 127, -128, 127), CLAMP(src[i * 4 + 2] * 127, -128, 127), CLAMP(src[i * 4 + 3] * 127, -128, 127) }; copymem(&p_mem[a.ofs + i * stride], xyzw, a.size); } } else { for (int i = 0; i < p_surface->array_len; i++) { GLfloat xyzw[4] = { src[i * 4 + 0], src[i * 4 + 1], src[i * 4 + 2], src[i * 4 + 3] }; copymem(&p_mem[a.ofs + i * stride], xyzw, a.size); } } } break; case VS::ARRAY_COLOR: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Color *src = read.ptr(); bool alpha = false; for (int i = 0; i < p_surface->array_len; i++) { if (src[i].a < 0.98) // tolerate alpha a bit, for crappy exporters alpha = true; uint8_t colors[4]; for (int j = 0; j < 4; j++) { colors[j] = CLAMP(int((src[i][j]) * 255.0), 0, 255); } copymem(&p_mem[a.ofs + i * stride], colors, a.size); } if (p_main) p_surface->has_alpha = alpha; } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const Vector2 *src = read.ptr(); float scale = 1.0; if (p_surface->array[ai].datatype == _GL_HALF_FLOAT_OES) { for (int i = 0; i < p_surface->array_len; i++) { uint16_t uv[2] = { make_half_float(src[i].x), make_half_float(src[i].y) }; copymem(&p_mem[a.ofs + i * stride], uv, a.size); } } else { for (int i = 0; i < p_surface->array_len; i++) { GLfloat uv[2] = { src[i].x, src[i].y }; copymem(&p_mem[a.ofs + i * stride], uv, a.size); } } if (p_main) { if (ai == VS::ARRAY_TEX_UV) { p_surface->uv_scale = scale; } if (ai == VS::ARRAY_TEX_UV2) { p_surface->uv2_scale = scale; } } } break; case VS::ARRAY_WEIGHTS: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const real_t *src = read.ptr(); if (p_surface->array[VS::ARRAY_WEIGHTS].datatype == GL_UNSIGNED_SHORT) { for (int i = 0; i < p_surface->array_len; i++) { GLushort data[VS::ARRAY_WEIGHTS_SIZE]; for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) { data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j] * 65535, 0, 65535); } copymem(&p_mem[a.ofs + i * stride], data, a.size); } } else { for (int i = 0; i < p_surface->array_len; i++) { GLfloat data[VS::ARRAY_WEIGHTS_SIZE]; for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) { data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j]; } copymem(&p_mem[a.ofs + i * stride], data, a.size); } } } break; case VS::ARRAY_BONES: { ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER); PoolVector array = p_arrays[ai]; ERR_FAIL_COND_V(array.size() != p_surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER); PoolVector::Read read = array.read(); const int *src = read.ptr(); p_surface->max_bone = 0; if (p_surface->array[VS::ARRAY_BONES].datatype == GL_UNSIGNED_BYTE) { for (int i = 0; i < p_surface->array_len; i++) { GLubyte data[VS::ARRAY_WEIGHTS_SIZE]; for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) { data[j] = CLAMP(src[i * VS::ARRAY_WEIGHTS_SIZE + j], 0, 255); p_surface->max_bone = MAX(data[j], p_surface->max_bone); } copymem(&p_mem[a.ofs + i * stride], data, a.size); } } else { for (int i = 0; i < p_surface->array_len; i++) { GLushort data[VS::ARRAY_WEIGHTS_SIZE]; for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++) { data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j]; p_surface->max_bone = MAX(data[j], p_surface->max_bone); } copymem(&p_mem[a.ofs + i * stride], data, a.size); } } } break; case VS::ARRAY_INDEX: { ERR_FAIL_COND_V(p_surface->index_array_len <= 0, ERR_INVALID_DATA); ERR_FAIL_COND_V(p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER); PoolVector indices = p_arrays[ai]; ERR_FAIL_COND_V(indices.size() == 0, ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(indices.size() != p_surface->index_array_len, ERR_INVALID_PARAMETER); /* determine wether using 16 or 32 bits indices */ PoolVector::Read read = indices.read(); const int *src = read.ptr(); for (int i = 0; i < p_surface->index_array_len; i++) { if (a.size == 2) { uint16_t v = src[i]; copymem(&p_index_mem[i * a.size], &v, a.size); } else { uint32_t v = src[i]; copymem(&p_index_mem[i * a.size], &v, a.size); } } } break; default: { ERR_FAIL_V(ERR_INVALID_PARAMETER); } } p_surface->configured_format |= (1 << ai); } if (p_surface->format & VS::ARRAY_FORMAT_BONES) { //create AABBs for each detected bone int total_bones = p_surface->max_bone + 1; if (p_main) { p_surface->skeleton_bone_aabb.resize(total_bones); p_surface->skeleton_bone_used.resize(total_bones); for (int i = 0; i < total_bones; i++) p_surface->skeleton_bone_used[i] = false; } PoolVector vertices = p_arrays[VS::ARRAY_VERTEX]; PoolVector bones = p_arrays[VS::ARRAY_BONES]; PoolVector weights = p_arrays[VS::ARRAY_WEIGHTS]; bool any_valid = false; if (vertices.size() && bones.size() == vertices.size() * 4 && weights.size() == bones.size()) { //print_line("MAKING SKELETHONG"); int vs = vertices.size(); PoolVector::Read rv = vertices.read(); PoolVector::Read rb = bones.read(); PoolVector::Read rw = weights.read(); Vector first; first.resize(total_bones); for (int i = 0; i < total_bones; i++) { first[i] = p_main; } AABB *bptr = p_surface->skeleton_bone_aabb.ptr(); bool *fptr = first.ptr(); bool *usedptr = p_surface->skeleton_bone_used.ptr(); for (int i = 0; i < vs; i++) { Vector3 v = rv[i]; for (int j = 0; j < 4; j++) { int idx = rb[i * 4 + j]; float w = rw[i * 4 + j]; if (w == 0) continue; //break; ERR_FAIL_INDEX_V(idx, total_bones, ERR_INVALID_DATA); if (fptr[idx]) { bptr[idx].pos = v; fptr[idx] = false; any_valid = true; } else { bptr[idx].expand_to(v); } usedptr[idx] = true; } } } if (p_main && !any_valid) { p_surface->skeleton_bone_aabb.clear(); p_surface->skeleton_bone_used.clear(); } } return OK; } void RasterizerGLES2::mesh_add_custom_surface(RID p_mesh, const Variant &p_dat) { ERR_EXPLAIN("OpenGL Rasterizer does not support custom surfaces. Running on wrong platform?"); ERR_FAIL(); } Array RasterizerGLES2::mesh_get_surface_arrays(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, Array()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, Array()); return surface->data; } Array RasterizerGLES2::mesh_get_surface_morph_arrays(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, Array()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, Array()); return surface->morph_data; } void RasterizerGLES2::mesh_set_morph_target_count(RID p_mesh, int p_amount) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_COND(mesh->surfaces.size() != 0); mesh->morph_target_count = p_amount; } int RasterizerGLES2::mesh_get_morph_target_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); return mesh->morph_target_count; } void RasterizerGLES2::mesh_set_morph_target_mode(RID p_mesh, VS::MorphTargetMode p_mode) { ERR_FAIL_INDEX(p_mode, 2); Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); mesh->morph_target_mode = p_mode; } VS::MorphTargetMode RasterizerGLES2::mesh_get_morph_target_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, VS::MORPH_MODE_NORMALIZED); return mesh->morph_target_mode; } void RasterizerGLES2::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND(!surface); if (surface->material_owned && surface->material.is_valid()) free(surface->material); surface->material_owned = p_owned; surface->material = p_material; } RID RasterizerGLES2::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID()); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, RID()); return surface->material; } int RasterizerGLES2::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, -1); return surface->array_len; } int RasterizerGLES2::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, -1); return surface->index_array_len; } uint32_t RasterizerGLES2::mesh_surface_get_format(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, 0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, 0); return surface->format; } VS::PrimitiveType RasterizerGLES2::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_POINTS); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V(!surface, VS::PRIMITIVE_POINTS); return surface->primitive; } void RasterizerGLES2::mesh_remove_surface(RID p_mesh, int p_index) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_index, mesh->surfaces.size()); Surface *surface = mesh->surfaces[p_index]; ERR_FAIL_COND(!surface); if (surface->vertex_id) glDeleteBuffers(1, &surface->vertex_id); if (surface->index_id) glDeleteBuffers(1, &surface->index_id); if (mesh->morph_target_count) { for (int i = 0; i < mesh->morph_target_count; i++) memfree(surface->morph_targets_local[i].array); memfree(surface->morph_targets_local); } memdelete(mesh->surfaces[p_index]); mesh->surfaces.remove(p_index); } int RasterizerGLES2::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, -1); return mesh->surfaces.size(); } AABB RasterizerGLES2::mesh_get_aabb(RID p_mesh, RID p_skeleton) const { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); if (mesh->custom_aabb != AABB()) return mesh->custom_aabb; Skeleton *sk = NULL; if (p_skeleton.is_valid()) sk = skeleton_owner.get(p_skeleton); AABB aabb; if (sk && sk->bones.size() != 0) { for (int i = 0; i < mesh->surfaces.size(); i++) { AABB laabb; if (mesh->surfaces[i]->format & VS::ARRAY_FORMAT_BONES && mesh->surfaces[i]->skeleton_bone_aabb.size()) { int bs = mesh->surfaces[i]->skeleton_bone_aabb.size(); const AABB *skbones = mesh->surfaces[i]->skeleton_bone_aabb.ptr(); const bool *skused = mesh->surfaces[i]->skeleton_bone_used.ptr(); int sbs = sk->bones.size(); ERR_CONTINUE(bs > sbs); Skeleton::Bone *skb = sk->bones.ptr(); bool first = true; for (int j = 0; j < bs; j++) { if (!skused[j]) continue; AABB baabb = skb[j].transform_aabb(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } else { laabb = mesh->surfaces[i]->aabb; } if (i == 0) aabb = laabb; else aabb.merge_with(laabb); } } else { for (int i = 0; i < mesh->surfaces.size(); i++) { if (i == 0) aabb = mesh->surfaces[i]->aabb; else aabb.merge_with(mesh->surfaces[i]->aabb); } } return aabb; } void RasterizerGLES2::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); mesh->custom_aabb = p_aabb; } AABB RasterizerGLES2::mesh_get_custom_aabb(RID p_mesh) const { const Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); return mesh->custom_aabb; } /* MULTIMESH API */ RID RasterizerGLES2::multimesh_create() { return multimesh_owner.make_rid(memnew(MultiMesh)); } void RasterizerGLES2::multimesh_set_instance_count(RID p_multimesh, int p_count) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); //multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations if (use_texture_instancing) { if (nearest_power_of_2(p_count) != nearest_power_of_2(multimesh->elements.size())) { if (multimesh->tex_id) { glDeleteTextures(1, &multimesh->tex_id); multimesh->tex_id = 0; } if (p_count) { uint32_t po2 = nearest_power_of_2(p_count); if (po2 & 0xAAAAAAAA) { //half width multimesh->tw = Math::sqrt(po2 * 2); multimesh->th = multimesh->tw / 2; } else { multimesh->tw = Math::sqrt(po2); multimesh->th = multimesh->tw; } multimesh->tw *= 4; if (multimesh->th == 0) multimesh->th = 1; glGenTextures(1, &multimesh->tex_id); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, multimesh->tex_id); #ifdef GLEW_ENABLED glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT, NULL); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, multimesh->tw, multimesh->th, 0, GL_RGBA, GL_FLOAT, NULL); #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //multimesh->pixel_size=1.0/ps; glBindTexture(GL_TEXTURE_2D, 0); } } if (!multimesh->dirty_list.in_list()) { _multimesh_dirty_list.add(&multimesh->dirty_list); } } multimesh->elements.resize(p_count); } int RasterizerGLES2::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, -1); return multimesh->elements.size(); } void RasterizerGLES2::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->mesh = p_mesh; } void RasterizerGLES2::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->aabb = p_aabb; } void RasterizerGLES2::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->elements.size()); MultiMesh::Element &e = multimesh->elements[p_index]; e.matrix[0] = p_transform.basis.elements[0][0]; e.matrix[1] = p_transform.basis.elements[1][0]; e.matrix[2] = p_transform.basis.elements[2][0]; e.matrix[3] = 0; e.matrix[4] = p_transform.basis.elements[0][1]; e.matrix[5] = p_transform.basis.elements[1][1]; e.matrix[6] = p_transform.basis.elements[2][1]; e.matrix[7] = 0; e.matrix[8] = p_transform.basis.elements[0][2]; e.matrix[9] = p_transform.basis.elements[1][2]; e.matrix[10] = p_transform.basis.elements[2][2]; e.matrix[11] = 0; e.matrix[12] = p_transform.origin.x; e.matrix[13] = p_transform.origin.y; e.matrix[14] = p_transform.origin.z; e.matrix[15] = 1; if (!multimesh->dirty_list.in_list()) { _multimesh_dirty_list.add(&multimesh->dirty_list); } } void RasterizerGLES2::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh) ERR_FAIL_INDEX(p_index, multimesh->elements.size()); MultiMesh::Element &e = multimesh->elements[p_index]; e.color[0] = CLAMP(p_color.r * 255, 0, 255); e.color[1] = CLAMP(p_color.g * 255, 0, 255); e.color[2] = CLAMP(p_color.b * 255, 0, 255); e.color[3] = CLAMP(p_color.a * 255, 0, 255); if (!multimesh->dirty_list.in_list()) { _multimesh_dirty_list.add(&multimesh->dirty_list); } } RID RasterizerGLES2::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, RID()); return multimesh->mesh; } AABB RasterizerGLES2::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, AABB()); return multimesh->aabb; } Transform RasterizerGLES2::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform()); ERR_FAIL_INDEX_V(p_index, multimesh->elements.size(), Transform()); MultiMesh::Element &e = multimesh->elements[p_index]; Transform tr; tr.basis.elements[0][0] = e.matrix[0]; tr.basis.elements[1][0] = e.matrix[1]; tr.basis.elements[2][0] = e.matrix[2]; tr.basis.elements[0][1] = e.matrix[4]; tr.basis.elements[1][1] = e.matrix[5]; tr.basis.elements[2][1] = e.matrix[6]; tr.basis.elements[0][2] = e.matrix[8]; tr.basis.elements[1][2] = e.matrix[9]; tr.basis.elements[2][2] = e.matrix[10]; tr.origin.x = e.matrix[12]; tr.origin.y = e.matrix[13]; tr.origin.z = e.matrix[14]; return tr; } Color RasterizerGLES2::multimesh_instance_get_color(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->elements.size(), Color()); MultiMesh::Element &e = multimesh->elements[p_index]; Color c; c.r = e.color[0] / 255.0; c.g = e.color[1] / 255.0; c.b = e.color[2] / 255.0; c.a = e.color[3] / 255.0; return c; } void RasterizerGLES2::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->visible = p_visible; } int RasterizerGLES2::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh, -1); return multimesh->visible; } /* IMMEDIATE API */ RID RasterizerGLES2::immediate_create() { Immediate *im = memnew(Immediate); return immediate_owner.make_rid(im); } void RasterizerGLES2::immediate_begin(RID p_immediate, VS::PrimitiveType p_rimitive, RID p_texture) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(im->building); Immediate::Chunk ic; ic.texture = p_texture; ic.primitive = p_rimitive; im->chunks.push_back(ic); im->mask = 0; im->building = true; } void RasterizerGLES2::immediate_vertex(RID p_immediate, const Vector3 &p_vertex) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); Immediate::Chunk *c = &im->chunks.back()->get(); if (c->vertices.empty() && im->chunks.size() == 1) { im->aabb.pos = p_vertex; im->aabb.size = Vector3(); } else { im->aabb.expand_to(p_vertex); } if (im->mask & VS::ARRAY_FORMAT_NORMAL) c->normals.push_back(chunk_normal); if (im->mask & VS::ARRAY_FORMAT_TANGENT) c->tangents.push_back(chunk_tangent); if (im->mask & VS::ARRAY_FORMAT_COLOR) c->colors.push_back(chunk_color); if (im->mask & VS::ARRAY_FORMAT_TEX_UV) c->uvs.push_back(chunk_uv); if (im->mask & VS::ARRAY_FORMAT_TEX_UV2) c->uvs2.push_back(chunk_uv2); im->mask |= VS::ARRAY_FORMAT_VERTEX; c->vertices.push_back(p_vertex); } void RasterizerGLES2::immediate_normal(RID p_immediate, const Vector3 &p_normal) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_NORMAL; chunk_normal = p_normal; } void RasterizerGLES2::immediate_tangent(RID p_immediate, const Plane &p_tangent) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TANGENT; chunk_tangent = p_tangent; } void RasterizerGLES2::immediate_color(RID p_immediate, const Color &p_color) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_COLOR; chunk_color = p_color; } void RasterizerGLES2::immediate_uv(RID p_immediate, const Vector2 &tex_uv) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TEX_UV; chunk_uv = tex_uv; } void RasterizerGLES2::immediate_uv2(RID p_immediate, const Vector2 &tex_uv) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->mask |= VS::ARRAY_FORMAT_TEX_UV2; chunk_uv2 = tex_uv; } void RasterizerGLES2::immediate_end(RID p_immediate) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(!im->building); im->building = false; } void RasterizerGLES2::immediate_clear(RID p_immediate) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); ERR_FAIL_COND(im->building); im->chunks.clear(); } AABB RasterizerGLES2::immediate_get_aabb(RID p_immediate) const { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND_V(!im, AABB()); return im->aabb; } void RasterizerGLES2::immediate_set_material(RID p_immediate, RID p_material) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); im->material = p_material; } RID RasterizerGLES2::immediate_get_material(RID p_immediate) const { const Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND_V(!im, RID()); return im->material; } /* PARTICLES API */ RID RasterizerGLES2::particles_create() { Particles *particles = memnew(Particles); ERR_FAIL_COND_V(!particles, RID()); return particles_owner.make_rid(particles); } void RasterizerGLES2::particles_set_amount(RID p_particles, int p_amount) { ERR_FAIL_COND(p_amount < 1); Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.amount = p_amount; } int RasterizerGLES2::particles_get_amount(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.amount; } void RasterizerGLES2::particles_set_emitting(RID p_particles, bool p_emitting) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.emitting = p_emitting; } bool RasterizerGLES2::particles_is_emitting(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, false); return particles->data.emitting; } void RasterizerGLES2::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.visibility_aabb = p_visibility; } void RasterizerGLES2::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.emission_half_extents = p_half_extents; } Vector3 RasterizerGLES2::particles_get_emission_half_extents(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, Vector3()); return particles->data.emission_half_extents; } void RasterizerGLES2::particles_set_emission_base_velocity(RID p_particles, const Vector3 &p_base_velocity) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.emission_base_velocity = p_base_velocity; } Vector3 RasterizerGLES2::particles_get_emission_base_velocity(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, Vector3()); return particles->data.emission_base_velocity; } void RasterizerGLES2::particles_set_emission_points(RID p_particles, const PoolVector &p_points) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.emission_points = p_points; } PoolVector RasterizerGLES2::particles_get_emission_points(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, PoolVector()); return particles->data.emission_points; } void RasterizerGLES2::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.gravity_normal = p_normal; } Vector3 RasterizerGLES2::particles_get_gravity_normal(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, Vector3()); return particles->data.gravity_normal; } AABB RasterizerGLES2::particles_get_visibility_aabb(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, AABB()); return particles->data.visibility_aabb; } void RasterizerGLES2::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable, float p_value) { ERR_FAIL_INDEX(p_variable, VS::PARTICLE_VAR_MAX); Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.particle_vars[p_variable] = p_value; } float RasterizerGLES2::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.particle_vars[p_variable]; } void RasterizerGLES2::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable, float p_randomness) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.particle_randomness[p_variable] = p_randomness; } float RasterizerGLES2::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.particle_randomness[p_variable]; } void RasterizerGLES2::particles_set_color_phases(RID p_particles, int p_phases) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); ERR_FAIL_COND(p_phases < 0 || p_phases > VS::MAX_PARTICLE_COLOR_PHASES); particles->data.color_phase_count = p_phases; } int RasterizerGLES2::particles_get_color_phases(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.color_phase_count; } void RasterizerGLES2::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); if (p_pos < 0.0) p_pos = 0.0; if (p_pos > 1.0) p_pos = 1.0; Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].pos = p_pos; } float RasterizerGLES2::particles_get_color_phase_pos(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0); const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.color_phases[p_phase].pos; } void RasterizerGLES2::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].color = p_color; //update alpha particles->has_alpha = false; for (int i = 0; i < VS::MAX_PARTICLE_COLOR_PHASES; i++) { if (particles->data.color_phases[i].color.a < 0.99) particles->has_alpha = true; } } Color RasterizerGLES2::particles_get_color_phase_color(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color()); const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, Color()); return particles->data.color_phases[p_phase].color; } void RasterizerGLES2::particles_set_attractors(RID p_particles, int p_attractors) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); ERR_FAIL_COND(p_attractors < 0 || p_attractors > VisualServer::MAX_PARTICLE_ATTRACTORS); particles->data.attractor_count = p_attractors; } int RasterizerGLES2::particles_get_attractors(RID p_particles) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, -1); return particles->data.attractor_count; } void RasterizerGLES2::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor, particles->data.attractor_count); particles->data.attractors[p_attractor].pos = p_pos; } Vector3 RasterizerGLES2::particles_get_attractor_pos(RID p_particles, int p_attractor) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, Vector3()); ERR_FAIL_INDEX_V(p_attractor, particles->data.attractor_count, Vector3()); return particles->data.attractors[p_attractor].pos; } void RasterizerGLES2::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor, particles->data.attractor_count); particles->data.attractors[p_attractor].force = p_force; } float RasterizerGLES2::particles_get_attractor_strength(RID p_particles, int p_attractor) const { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, 0); ERR_FAIL_INDEX_V(p_attractor, particles->data.attractor_count, 0); return particles->data.attractors[p_attractor].force; } void RasterizerGLES2::particles_set_material(RID p_particles, RID p_material, bool p_owned) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); if (particles->material_owned && particles->material.is_valid()) free(particles->material); particles->material_owned = p_owned; particles->material = p_material; } RID RasterizerGLES2::particles_get_material(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, RID()); return particles->material; } void RasterizerGLES2::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.local_coordinates = p_enable; } bool RasterizerGLES2::particles_is_using_local_coordinates(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, false); return particles->data.local_coordinates; } bool RasterizerGLES2::particles_has_height_from_velocity(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, false); return particles->data.height_from_velocity; } void RasterizerGLES2::particles_set_height_from_velocity(RID p_particles, bool p_enable) { Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND(!particles); particles->data.height_from_velocity = p_enable; } AABB RasterizerGLES2::particles_get_aabb(RID p_particles) const { const Particles *particles = particles_owner.get(p_particles); ERR_FAIL_COND_V(!particles, AABB()); return particles->data.visibility_aabb; } /* SKELETON API */ RID RasterizerGLES2::skeleton_create() { Skeleton *skeleton = memnew(Skeleton); ERR_FAIL_COND_V(!skeleton, RID()); return skeleton_owner.make_rid(skeleton); } void RasterizerGLES2::skeleton_resize(RID p_skeleton, int p_bones) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND(!skeleton); if (p_bones == skeleton->bones.size()) { return; }; if (use_hw_skeleton_xform) { if (nearest_power_of_2(p_bones) != nearest_power_of_2(skeleton->bones.size())) { if (skeleton->tex_id) { glDeleteTextures(1, &skeleton->tex_id); skeleton->tex_id = 0; } if (p_bones) { glGenTextures(1, &skeleton->tex_id); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, skeleton->tex_id); int ps = nearest_power_of_2(p_bones * 3); #ifdef GLEW_ENABLED glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, ps, 1, 0, GL_RGBA, GL_FLOAT, skel_default.ptr()); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ps, 1, 0, GL_RGBA, GL_FLOAT, skel_default.ptr()); #endif glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); skeleton->pixel_size = 1.0 / ps; glBindTexture(GL_TEXTURE_2D, 0); } } if (!skeleton->dirty_list.in_list()) { _skeleton_dirty_list.add(&skeleton->dirty_list); } } skeleton->bones.resize(p_bones); } int RasterizerGLES2::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND_V(!skeleton, -1); return skeleton->bones.size(); } void RasterizerGLES2::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->bones.size()); Skeleton::Bone &b = skeleton->bones[p_bone]; b.mtx[0][0] = p_transform.basis[0][0]; b.mtx[0][1] = p_transform.basis[1][0]; b.mtx[0][2] = p_transform.basis[2][0]; b.mtx[1][0] = p_transform.basis[0][1]; b.mtx[1][1] = p_transform.basis[1][1]; b.mtx[1][2] = p_transform.basis[2][1]; b.mtx[2][0] = p_transform.basis[0][2]; b.mtx[2][1] = p_transform.basis[1][2]; b.mtx[2][2] = p_transform.basis[2][2]; b.mtx[3][0] = p_transform.origin[0]; b.mtx[3][1] = p_transform.origin[1]; b.mtx[3][2] = p_transform.origin[2]; if (skeleton->tex_id) { if (!skeleton->dirty_list.in_list()) { _skeleton_dirty_list.add(&skeleton->dirty_list); } } } Transform RasterizerGLES2::skeleton_bone_get_transform(RID p_skeleton, int p_bone) { Skeleton *skeleton = skeleton_owner.get(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V(p_bone, skeleton->bones.size(), Transform()); const Skeleton::Bone &b = skeleton->bones[p_bone]; Transform t; t.basis[0][0] = b.mtx[0][0]; t.basis[1][0] = b.mtx[0][1]; t.basis[2][0] = b.mtx[0][2]; t.basis[0][1] = b.mtx[1][0]; t.basis[1][1] = b.mtx[1][1]; t.basis[2][1] = b.mtx[1][2]; t.basis[0][2] = b.mtx[2][0]; t.basis[1][2] = b.mtx[2][1]; t.basis[2][2] = b.mtx[2][2]; t.origin[0] = b.mtx[3][0]; t.origin[1] = b.mtx[3][1]; t.origin[2] = b.mtx[3][2]; return t; } /* LIGHT API */ RID RasterizerGLES2::light_create(VS::LightType p_type) { Light *light = memnew(Light); light->type = p_type; return light_owner.make_rid(light); } VS::LightType RasterizerGLES2::light_get_type(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI); return light->type; } void RasterizerGLES2::light_set_color(RID p_light, VS::LightColor p_type, const Color &p_color) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_type, 3); light->colors[p_type] = p_color; } Color RasterizerGLES2::light_get_color(RID p_light, VS::LightColor p_type) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, Color()); ERR_FAIL_INDEX_V(p_type, 3, Color()); return light->colors[p_type]; } void RasterizerGLES2::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->shadow_enabled = p_enabled; } bool RasterizerGLES2::light_has_shadow(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, false); return light->shadow_enabled; } void RasterizerGLES2::light_set_volumetric(RID p_light, bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->volumetric_enabled = p_enabled; } bool RasterizerGLES2::light_is_volumetric(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, false); return light->volumetric_enabled; } void RasterizerGLES2::light_set_projector(RID p_light, RID p_texture) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->projector = p_texture; } RID RasterizerGLES2::light_get_projector(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, RID()); return light->projector; } void RasterizerGLES2::light_set_var(RID p_light, VS::LightParam p_var, float p_value) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_var, VS::LIGHT_PARAM_MAX); light->vars[p_var] = p_value; } float RasterizerGLES2::light_get_var(RID p_light, VS::LightParam p_var) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, 0); ERR_FAIL_INDEX_V(p_var, VS::LIGHT_PARAM_MAX, 0); return light->vars[p_var]; } void RasterizerGLES2::light_set_operator(RID p_light, VS::LightOp p_op){ }; VS::LightOp RasterizerGLES2::light_get_operator(RID p_light) const { return VS::LightOp(); }; void RasterizerGLES2::light_omni_set_shadow_mode(RID p_light, VS::LightOmniShadowMode p_mode) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->omni_shadow_mode = p_mode; } VS::LightOmniShadowMode RasterizerGLES2::light_omni_get_shadow_mode(RID p_light) const { const Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI_SHADOW_DEFAULT); return light->omni_shadow_mode; } void RasterizerGLES2::light_directional_set_shadow_mode(RID p_light, VS::LightDirectionalShadowMode p_mode) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->directional_shadow_mode = p_mode; } VS::LightDirectionalShadowMode RasterizerGLES2::light_directional_get_shadow_mode(RID p_light) const { const Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); return light->directional_shadow_mode; } void RasterizerGLES2::light_directional_set_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param, float p_value) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->directional_shadow_param[p_param] = p_value; } float RasterizerGLES2::light_directional_get_shadow_param(RID p_light, VS::LightDirectionalShadowParam p_param) const { const Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, 0); return light->directional_shadow_param[p_param]; } AABB RasterizerGLES2::light_get_aabb(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, AABB()); switch (light->type) { case VS::LIGHT_SPOT: { float len = light->vars[VS::LIGHT_PARAM_RADIUS]; float size = Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); } break; case VS::LIGHT_OMNI: { float r = light->vars[VS::LIGHT_PARAM_RADIUS]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); } break; case VS::LIGHT_DIRECTIONAL: { return AABB(); } break; default: {} } ERR_FAIL_V(AABB()); } RID RasterizerGLES2::light_instance_create(RID p_light) { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, RID()); LightInstance *light_instance = memnew(LightInstance); light_instance->light = p_light; light_instance->base = light; light_instance->last_pass = 0; return light_instance_owner.make_rid(light_instance); } void RasterizerGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!lighti); lighti->transform = p_transform; } Rasterizer::ShadowType RasterizerGLES2::light_instance_get_shadow_type(RID p_light_instance, bool p_far) const { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND_V(!lighti, Rasterizer::SHADOW_NONE); switch (lighti->base->type) { case VS::LIGHT_DIRECTIONAL: { switch (lighti->base->directional_shadow_mode) { case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: { return SHADOW_ORTHOGONAL; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PERSPECTIVE: { return SHADOW_PSM; } break; case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: { return SHADOW_PSSM; } break; } } break; case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break; case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break; } return Rasterizer::SHADOW_NONE; } int RasterizerGLES2::light_instance_get_shadow_passes(RID p_light_instance) const { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND_V(!lighti, 0); if (lighti->base->type == VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { return 4; // dp4 } else if (lighti->base->type == VS::LIGHT_OMNI || (lighti->base->type == VS::LIGHT_DIRECTIONAL && lighti->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS)) { return 2; // dp } else return 1; } bool RasterizerGLES2::light_instance_get_pssm_shadow_overlap(RID p_light_instance) const { return shadow_filter >= SHADOW_FILTER_ESM; } void RasterizerGLES2::light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix &p_camera, const Transform &p_transform, float p_split_near, float p_split_far) { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!lighti); ERR_FAIL_COND(lighti->base->type != VS::LIGHT_DIRECTIONAL); //ERR_FAIL_INDEX(p_index,1); lighti->custom_projection[p_index] = p_camera; lighti->custom_transform[p_index] = p_transform; lighti->shadow_split[p_index] = 1.0 / p_split_far; #if 0 if (p_index==0) { lighti->custom_projection=p_camera; lighti->custom_transform=p_transform; //Plane p(0,0,-p_split_far,1); //p=camera_projection.xform4(p); //lighti->shadow_split=p.normal.z/p.d; lighti->shadow_split=1.0/p_split_far; //lighti->shadow_split=-p_split_far; } else { lighti->custom_projection2=p_camera; lighti->custom_transform2=p_transform; lighti->shadow_split2=p_split_far; } #endif } int RasterizerGLES2::light_instance_get_shadow_size(RID p_light_instance, int p_index) const { LightInstance *lighti = light_instance_owner.get(p_light_instance); ERR_FAIL_COND_V(!lighti, 1); ERR_FAIL_COND_V(!lighti->near_shadow_buffer, 256); return lighti->near_shadow_buffer->size / 2; } void RasterizerGLES2::shadow_clear_near() { for (int i = 0; i < near_shadow_buffers.size(); i++) { if (near_shadow_buffers[i].owner) near_shadow_buffers[i].owner->clear_near_shadow_buffers(); } } bool RasterizerGLES2::shadow_allocate_near(RID p_light) { if (!use_shadow_mapping || !use_framebuffers) return false; LightInstance *li = light_instance_owner.get(p_light); ERR_FAIL_COND_V(!li, false); ERR_FAIL_COND_V(li->near_shadow_buffer, false); int skip = 0; if (framebuffer.active) { int sc = framebuffer.scale; while (sc > 1) { sc /= 2; skip++; } } for (int i = 0; i < near_shadow_buffers.size(); i++) { if (skip > 0) { skip--; continue; } if (near_shadow_buffers[i].owner != NULL) continue; near_shadow_buffers[i].owner = li; li->near_shadow_buffer = &near_shadow_buffers[i]; return true; } return false; } bool RasterizerGLES2::shadow_allocate_far(RID p_light) { return false; } /* PARTICLES INSTANCE */ RID RasterizerGLES2::particles_instance_create(RID p_particles) { ERR_FAIL_COND_V(!particles_owner.owns(p_particles), RID()); ParticlesInstance *particles_instance = memnew(ParticlesInstance); ERR_FAIL_COND_V(!particles_instance, RID()); particles_instance->particles = p_particles; return particles_instance_owner.make_rid(particles_instance); } void RasterizerGLES2::particles_instance_set_transform(RID p_particles_instance, const Transform &p_transform) { ParticlesInstance *particles_instance = particles_instance_owner.get(p_particles_instance); ERR_FAIL_COND(!particles_instance); particles_instance->transform = p_transform; } RID RasterizerGLES2::viewport_data_create() { ViewportData *vd = memnew(ViewportData); glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &vd->lum_fbo); glBindFramebuffer(GL_FRAMEBUFFER, vd->lum_fbo); GLuint format_luminance = use_fp16_fb ? _GL_RG_EXT : GL_RGBA; GLuint format_luminance_type = use_fp16_fb ? (full_float_fb_supported ? GL_FLOAT : _GL_HALF_FLOAT_OES) : GL_UNSIGNED_BYTE; GLuint format_luminance_components = use_fp16_fb ? _GL_RG_EXT : GL_RGBA; glGenTextures(1, &vd->lum_color); glBindTexture(GL_TEXTURE_2D, vd->lum_color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); /* glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); */ glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, 1, 1, 0, format_luminance_components, format_luminance_type, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, vd->lum_color, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); DEBUG_TEST_ERROR("Viewport Data Init"); if (status != GL_FRAMEBUFFER_COMPLETE) { WARN_PRINT("Can't create framebuffer for vd"); } return viewport_data_owner.make_rid(vd); } RID RasterizerGLES2::render_target_create() { RenderTarget *rt = memnew(RenderTarget); rt->fbo = 0; rt->width = 0; rt->height = 0; rt->last_pass = 0; Texture *texture = memnew(Texture); texture->active = false; texture->total_data_size = 0; texture->render_target = rt; texture->ignore_mipmaps = true; rt->texture_ptr = texture; rt->texture = texture_owner.make_rid(texture); rt->texture_ptr->active = false; return render_target_owner.make_rid(rt); } void RasterizerGLES2::render_target_set_size(RID p_render_target, int p_width, int p_height) { RenderTarget *rt = render_target_owner.get(p_render_target); if (p_width == rt->width && p_height == rt->height) return; if (rt->width != 0 && rt->height != 0) { glDeleteFramebuffers(1, &rt->fbo); glDeleteRenderbuffers(1, &rt->depth); glDeleteTextures(1, &rt->color); rt->fbo = 0; rt->depth = 0; rt->color = 0; rt->width = 0; rt->height = 0; rt->texture_ptr->tex_id = 0; rt->texture_ptr->active = false; } if (p_width == 0 || p_height == 0) return; rt->width = p_width; rt->height = p_height; //fbo glGenFramebuffers(1, &rt->fbo); glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); //depth if (!low_memory_2d) { glGenRenderbuffers(1, &rt->depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->depth); glRenderbufferStorage(GL_RENDERBUFFER, use_depth24 ? _DEPTH_COMPONENT24_OES : GL_DEPTH_COMPONENT16, rt->width, rt->height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->depth); } //color glGenTextures(1, &rt->color); glBindTexture(GL_TEXTURE_2D, rt->color); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->width, rt->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); if (rt->texture_ptr->flags & VS::TEXTURE_FLAG_FILTER) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0); rt->texture_ptr->tex_id = rt->color; rt->texture_ptr->active = true; rt->texture_ptr->width = p_width; rt->texture_ptr->height = p_height; # GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { glDeleteRenderbuffers(1, &rt->fbo); glDeleteTextures(1, &rt->depth); glDeleteTextures(1, &rt->color); rt->fbo = 0; rt->width = 0; rt->height = 0; rt->color = 0; rt->depth = 0; rt->texture_ptr->tex_id = 0; rt->texture_ptr->active = false; WARN_PRINT("Could not create framebuffer!!"); } glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); } RID RasterizerGLES2::render_target_get_texture(RID p_render_target) const { const RenderTarget *rt = render_target_owner.get(p_render_target); ERR_FAIL_COND_V(!rt, RID()); return rt->texture; } bool RasterizerGLES2::render_target_renedered_in_frame(RID p_render_target) { RenderTarget *rt = render_target_owner.get(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->last_pass == frame; } /* RENDER API */ /* all calls (inside begin/end shadow) are always warranted to be in the following order: */ void RasterizerGLES2::begin_frame() { _update_framebuffer(); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); //fragment_lighting=Globals::get_singleton()->get("rasterizer/use_fragment_lighting"); #ifdef TOOLS_ENABLED canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP, GLOBAL_DEF("display/use_2d_pixel_snap", false)); shadow_filter = ShadowFilterTechnique(int(GlobalConfig::get_singleton()->get("rasterizer/shadow_filter"))); #endif canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_PCF5, shadow_filter == SHADOW_FILTER_PCF5); canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_PCF13, shadow_filter == SHADOW_FILTER_PCF13); canvas_shader.set_conditional(CanvasShaderGLES2::SHADOW_ESM, shadow_filter == SHADOW_FILTER_ESM); window_size = Size2(OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height); double time = (OS::get_singleton()->get_ticks_usec() / 1000); // get msec time /= 1000.0; // make secs time_delta = time - last_time; last_time = time; frame++; _rinfo.vertex_count = 0; _rinfo.object_count = 0; _rinfo.mat_change_count = 0; _rinfo.shader_change_count = 0; _rinfo.ci_draw_commands = 0; _rinfo.surface_count = 0; _rinfo.draw_calls = 0; _update_fixed_materials(); while (_shader_dirty_list.first()) { _update_shader(_shader_dirty_list.first()->self()); } while (_skeleton_dirty_list.first()) { Skeleton *s = _skeleton_dirty_list.first()->self(); float *sk_float = (float *)skinned_buffer; for (int i = 0; i < s->bones.size(); i++) { float *m = &sk_float[i * 12]; const Skeleton::Bone &b = s->bones[i]; m[0] = b.mtx[0][0]; m[1] = b.mtx[1][0]; m[2] = b.mtx[2][0]; m[3] = b.mtx[3][0]; m[4] = b.mtx[0][1]; m[5] = b.mtx[1][1]; m[6] = b.mtx[2][1]; m[7] = b.mtx[3][1]; m[8] = b.mtx[0][2]; m[9] = b.mtx[1][2]; m[10] = b.mtx[2][2]; m[11] = b.mtx[3][2]; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, s->tex_id); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, nearest_power_of_2(s->bones.size() * 3), 1, GL_RGBA, GL_FLOAT, sk_float); _skeleton_dirty_list.remove(_skeleton_dirty_list.first()); } while (_multimesh_dirty_list.first()) { MultiMesh *s = _multimesh_dirty_list.first()->self(); float *sk_float = (float *)skinned_buffer; for (int i = 0; i < s->elements.size(); i++) { float *m = &sk_float[i * 16]; const float *im = s->elements[i].matrix; for (int j = 0; j < 16; j++) { m[j] = im[j]; } } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, s->tex_id); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, s->tw, s->th, GL_RGBA, GL_FLOAT, sk_float); _multimesh_dirty_list.remove(_multimesh_dirty_list.first()); } draw_next_frame = false; //material_shader.set_uniform_default(MaterialShaderGLES2::SCREENZ_SCALE, Math::fmod(time, 3600.0)); /* nehe ?*/ //glClearColor(0,0,1,1); //glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared.. } void RasterizerGLES2::capture_viewport(Image *r_capture) { #if 0 PoolVector pixels; pixels.resize(viewport.width*viewport.height*3); PoolVector::Write w = pixels.write(); #ifdef GLEW_ENABLED glReadBuffer(GL_COLOR_ATTACHMENT0); #endif glPixelStorei(GL_PACK_ALIGNMENT, 1); if (current_rt) glReadPixels( 0, 0, viewport.width, viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr() ); else glReadPixels( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height,GL_RGB,GL_UNSIGNED_BYTE,w.ptr()); glPixelStorei(GL_PACK_ALIGNMENT, 4); w=PoolVector::Write(); r_capture->create(viewport.width,viewport.height,0,Image::FORMAT_RGB8,pixels); #else PoolVector pixels; pixels.resize(viewport.width * viewport.height * 4); PoolVector::Write w = pixels.write(); glPixelStorei(GL_PACK_ALIGNMENT, 4); //uint64_t time = OS::get_singleton()->get_ticks_usec(); if (current_rt) { #ifdef GLEW_ENABLED glReadBuffer(GL_COLOR_ATTACHMENT0); #endif glReadPixels(0, 0, viewport.width, viewport.height, GL_RGBA, GL_UNSIGNED_BYTE, w.ptr()); } else { // back? glReadPixels(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height, GL_RGBA, GL_UNSIGNED_BYTE, w.ptr()); } bool flip = current_rt == NULL; if (flip) { uint32_t *imgptr = (uint32_t *)w.ptr(); for (int y = 0; y < (viewport.height / 2); y++) { uint32_t *ptr1 = &imgptr[y * viewport.width]; uint32_t *ptr2 = &imgptr[(viewport.height - y - 1) * viewport.width]; for (int x = 0; x < viewport.width; x++) { uint32_t tmp = ptr1[x]; ptr1[x] = ptr2[x]; ptr2[x] = tmp; } } } w = PoolVector::Write(); r_capture->create(viewport.width, viewport.height, 0, Image::FORMAT_RGBA8, pixels); //r_capture->flip_y(); #endif } void RasterizerGLES2::clear_viewport(const Color &p_color) { if (current_rt || using_canvas_bg) { glScissor(0, 0, viewport.width, viewport.height); } else { glScissor(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height); } glEnable(GL_SCISSOR_TEST); glClearColor(p_color.r, p_color.g, p_color.b, p_color.a); glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared.. glDisable(GL_SCISSOR_TEST); }; void RasterizerGLES2::set_render_target(RID p_render_target, bool p_transparent_bg, bool p_vflip) { if (!p_render_target.is_valid()) { glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); current_rt = NULL; current_rt_vflip = false; } else { RenderTarget *rt = render_target_owner.get(p_render_target); ERR_FAIL_COND(!rt); ERR_FAIL_COND(rt->fbo == 0); glBindFramebuffer(GL_FRAMEBUFFER, rt->fbo); current_rt = rt; current_rt_transparent = p_transparent_bg; current_rt_vflip = !p_vflip; } } void RasterizerGLES2::set_viewport(const VS::ViewportRect &p_viewport) { viewport = p_viewport; //viewport.width/=2; //viewport.height/=2; //print_line("viewport: "+itos(p_viewport.x)+","+itos(p_viewport.y)+","+itos(p_viewport.width)+","+itos(p_viewport.height)); if (current_rt) { glViewport(0, 0, viewport.width, viewport.height); } else { glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height); } } void RasterizerGLES2::begin_scene(RID p_viewport_data, RID p_env, VS::ScenarioDebugMode p_debug) { current_debug = p_debug; opaque_render_list.clear(); alpha_render_list.clear(); light_instance_count = 0; current_env = p_env.is_valid() ? environment_owner.get(p_env) : NULL; scene_pass++; last_light_id = 0; directional_light_count = 0; lights_use_shadow = false; texscreen_used = false; current_vd = viewport_data_owner.get(p_viewport_data); if (current_debug == VS::SCENARIO_DEBUG_WIREFRAME) { #ifdef GLEW_ENABLED glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif } //set state glCullFace(GL_FRONT); cull_front = true; }; void RasterizerGLES2::begin_shadow_map(RID p_light_instance, int p_shadow_pass) { ERR_FAIL_COND(shadow); shadow = light_instance_owner.get(p_light_instance); shadow_pass = p_shadow_pass; ERR_FAIL_COND(!shadow); opaque_render_list.clear(); alpha_render_list.clear(); //pre_zpass_render_list.clear(); light_instance_count = 0; glCullFace(GL_FRONT); cull_front = true; } void RasterizerGLES2::set_camera(const Transform &p_world, const CameraMatrix &p_projection, bool p_ortho_hint) { camera_transform = p_world; if (current_rt && current_rt_vflip) { camera_transform.basis.set_axis(1, -camera_transform.basis.get_axis(1)); } camera_transform_inverse = camera_transform.inverse(); camera_projection = p_projection; camera_plane = Plane(camera_transform.origin, -camera_transform.basis.get_axis(2)); camera_z_near = camera_projection.get_z_near(); camera_z_far = camera_projection.get_z_far(); camera_projection.get_viewport_size(camera_vp_size.x, camera_vp_size.y); camera_ortho = p_ortho_hint; } void RasterizerGLES2::add_light(RID p_light_instance) { #define LIGHT_FADE_TRESHOLD 0.05 ERR_FAIL_COND(light_instance_count >= MAX_SCENE_LIGHTS); LightInstance *li = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!li); switch (li->base->type) { case VS::LIGHT_DIRECTIONAL: { ERR_FAIL_COND(directional_light_count >= RenderList::MAX_LIGHTS); directional_lights[directional_light_count++] = li; if (li->base->shadow_enabled) { CameraMatrix bias; bias.set_light_bias(); int passes = light_instance_get_shadow_passes(p_light_instance); for (int i = 0; i < passes; i++) { Transform modelview = Transform(camera_transform_inverse * li->custom_transform[i]).inverse(); li->shadow_projection[i] = bias * li->custom_projection[i] * modelview; } lights_use_shadow = true; } } break; case VS::LIGHT_OMNI: { if (li->base->shadow_enabled) { li->shadow_projection[0] = Transform(camera_transform_inverse * li->transform).inverse(); lights_use_shadow = true; } } break; case VS::LIGHT_SPOT: { if (li->base->shadow_enabled) { CameraMatrix bias; bias.set_light_bias(); Transform modelview = Transform(camera_transform_inverse * li->transform).inverse(); li->shadow_projection[0] = bias * li->projection * modelview; lights_use_shadow = true; } } break; } /* make light hash */ // actually, not really a hash, but helps to sort the lights // and avoid recompiling redudant shader versions li->last_pass = scene_pass; li->sort_key = light_instance_count; light_instances[light_instance_count++] = li; } void RasterizerGLES2::_update_shader(Shader *p_shader) const { _shader_dirty_list.remove(&p_shader->dirty_list); p_shader->valid = false; p_shader->uniforms.clear(); Vector uniform_names; String vertex_code; String vertex_globals; ShaderCompilerGLES2::Flags vertex_flags; ShaderCompilerGLES2::Flags fragment_flags; ShaderCompilerGLES2::Flags light_flags; if (p_shader->mode == VS::SHADER_MATERIAL) { Error err = shader_precompiler.compile(p_shader->vertex_code, ShaderLanguage::SHADER_MATERIAL_VERTEX, vertex_code, vertex_globals, vertex_flags, &p_shader->uniforms); if (err) { return; //invalid } } else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) { Error err = shader_precompiler.compile(p_shader->vertex_code, ShaderLanguage::SHADER_CANVAS_ITEM_VERTEX, vertex_code, vertex_globals, vertex_flags, &p_shader->uniforms); if (err) { return; //invalid } } //print_line("compiled vertex: "+vertex_code); //print_line("compiled vertex globals: "+vertex_globals); //print_line("UCV: "+itos(p_shader->uniforms.size())); String fragment_code; String fragment_globals; if (p_shader->mode == VS::SHADER_MATERIAL) { Error err = shader_precompiler.compile(p_shader->fragment_code, ShaderLanguage::SHADER_MATERIAL_FRAGMENT, fragment_code, fragment_globals, fragment_flags, &p_shader->uniforms); if (err) { return; //invalid } } else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) { Error err = shader_precompiler.compile(p_shader->fragment_code, ShaderLanguage::SHADER_CANVAS_ITEM_FRAGMENT, fragment_code, fragment_globals, fragment_flags, &p_shader->uniforms); if (err) { return; //invalid } } String light_code; String light_globals; if (p_shader->mode == VS::SHADER_MATERIAL) { Error err = shader_precompiler.compile(p_shader->light_code, (ShaderLanguage::SHADER_MATERIAL_LIGHT), light_code, light_globals, light_flags, &p_shader->uniforms); if (err) { return; //invalid } } else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) { Error err = shader_precompiler.compile(p_shader->light_code, (ShaderLanguage::SHADER_CANVAS_ITEM_LIGHT), light_code, light_globals, light_flags, &p_shader->uniforms); if (err) { return; //invalid } } fragment_globals += light_globals; //both fragment anyway //print_line("compiled fragment: "+fragment_code); //("compiled fragment globals: "+fragment_globals); //print_line("UCF: "+itos(p_shader->uniforms.size())); int first_tex_index = 0xFFFFF; p_shader->first_texture = StringName(); for (Map::Element *E = p_shader->uniforms.front(); E; E = E->next()) { uniform_names.push_back("_" + String(E->key())); if (E->get().type == ShaderLanguage::TYPE_TEXTURE && E->get().order < first_tex_index) { p_shader->first_texture = E->key(); first_tex_index = E->get().order; } } bool uses_time = false; if (p_shader->mode == VS::SHADER_MATERIAL) { //print_line("setting code to id.. "+itos(p_shader->custom_code_id)); Vector enablers; if (fragment_flags.use_color_interp || vertex_flags.use_color_interp) enablers.push_back("#define ENABLE_COLOR_INTERP\n"); if (fragment_flags.use_uv_interp || vertex_flags.use_uv_interp) enablers.push_back("#define ENABLE_UV_INTERP\n"); if (fragment_flags.use_uv2_interp || vertex_flags.use_uv2_interp) enablers.push_back("#define ENABLE_UV2_INTERP\n"); if (fragment_flags.use_tangent_interp || vertex_flags.use_tangent_interp || fragment_flags.uses_normalmap) enablers.push_back("#define ENABLE_TANGENT_INTERP\n"); if (fragment_flags.use_var1_interp || vertex_flags.use_var1_interp) enablers.push_back("#define ENABLE_VAR1_INTERP\n"); if (fragment_flags.use_var2_interp || vertex_flags.use_var2_interp) enablers.push_back("#define ENABLE_VAR2_INTERP\n"); if (fragment_flags.uses_texscreen) { enablers.push_back("#define ENABLE_TEXSCREEN\n"); } if (fragment_flags.uses_screen_uv) { enablers.push_back("#define ENABLE_SCREEN_UV\n"); } if (fragment_flags.uses_discard) { enablers.push_back("#define ENABLE_DISCARD\n"); } if (fragment_flags.uses_normalmap) { enablers.push_back("#define ENABLE_NORMALMAP\n"); } if (light_flags.uses_light) { enablers.push_back("#define USE_LIGHT_SHADER_CODE\n"); } if (light_flags.uses_shadow_color) { enablers.push_back("#define USE_OUTPUT_SHADOW_COLOR\n"); } if (light_flags.uses_time || fragment_flags.uses_time || vertex_flags.uses_time) { enablers.push_back("#define USE_TIME\n"); uses_time = true; } if (vertex_flags.vertex_code_writes_position) { enablers.push_back("#define VERTEX_SHADER_WRITE_POSITION\n"); } material_shader.set_custom_shader_code(p_shader->custom_code_id, vertex_code, vertex_globals, fragment_code, light_code, fragment_globals, uniform_names, enablers); } else if (p_shader->mode == VS::SHADER_CANVAS_ITEM) { Vector enablers; if (light_flags.uses_time || fragment_flags.uses_time || vertex_flags.uses_time) { enablers.push_back("#define USE_TIME\n"); uses_time = true; } if (fragment_flags.uses_normal) { enablers.push_back("#define NORMAL_USED\n"); } if (fragment_flags.uses_normalmap) { enablers.push_back("#define USE_NORMALMAP\n"); } if (light_flags.uses_light) { enablers.push_back("#define USE_LIGHT_SHADER_CODE\n"); } if (fragment_flags.use_var1_interp || vertex_flags.use_var1_interp) enablers.push_back("#define ENABLE_VAR1_INTERP\n"); if (fragment_flags.use_var2_interp || vertex_flags.use_var2_interp) enablers.push_back("#define ENABLE_VAR2_INTERP\n"); if (fragment_flags.uses_texscreen) { enablers.push_back("#define ENABLE_TEXSCREEN\n"); } if (fragment_flags.uses_screen_uv) { enablers.push_back("#define ENABLE_SCREEN_UV\n"); } if (fragment_flags.uses_texpixel_size) { enablers.push_back("#define USE_TEXPIXEL_SIZE\n"); } if (light_flags.uses_shadow_color) { enablers.push_back("#define USE_OUTPUT_SHADOW_COLOR\n"); } if (vertex_flags.uses_worldvec) { enablers.push_back("#define USE_WORLD_VEC\n"); } canvas_shader.set_custom_shader_code(p_shader->custom_code_id, vertex_code, vertex_globals, fragment_code, light_code, fragment_globals, uniform_names, enablers); //postprocess_shader.set_custom_shader_code(p_shader->custom_code_id,vertex_code, vertex_globals,fragment_code, fragment_globals,uniform_names); } p_shader->valid = true; p_shader->has_alpha = fragment_flags.uses_alpha || fragment_flags.uses_texscreen; p_shader->writes_vertex = vertex_flags.vertex_code_writes_vertex; p_shader->uses_discard = fragment_flags.uses_discard; p_shader->has_texscreen = fragment_flags.uses_texscreen; p_shader->has_screen_uv = fragment_flags.uses_screen_uv; p_shader->can_zpass = !fragment_flags.uses_discard && !vertex_flags.vertex_code_writes_vertex; p_shader->uses_normal = fragment_flags.uses_normal || light_flags.uses_normal; p_shader->uses_time = uses_time; p_shader->uses_texpixel_size = fragment_flags.uses_texpixel_size; p_shader->version++; } void RasterizerGLES2::_add_geometry(const Geometry *p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner, int p_material) { Material *m = NULL; RID m_src = p_instance->material_override.is_valid() ? p_instance->material_override : (p_material >= 0 ? p_instance->materials[p_material] : p_geometry->material); #ifdef DEBUG_ENABLED if (current_debug == VS::SCENARIO_DEBUG_OVERDRAW) { m_src = overdraw_material; } #endif if (m_src) m = material_owner.get(m_src); if (!m) { m = material_owner.get(default_material); } ERR_FAIL_COND(!m); if (m->last_pass != frame) { if (m->shader.is_valid()) { m->shader_cache = shader_owner.get(m->shader); if (m->shader_cache) { if (!m->shader_cache->valid) { m->shader_cache = NULL; } else { if (m->shader_cache->has_texscreen) texscreen_used = true; } } else { m->shader = RID(); } } else { m->shader_cache = NULL; } m->last_pass = frame; } RenderList *render_list = NULL; bool has_base_alpha = (m->shader_cache && m->shader_cache->has_alpha); bool has_blend_alpha = m->blend_mode != VS::MATERIAL_BLEND_MODE_MIX || m->flags[VS::MATERIAL_FLAG_ONTOP]; bool has_alpha = has_base_alpha || has_blend_alpha; if (shadow) { if (has_blend_alpha || (has_base_alpha && m->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA)) return; //bye if (!m->shader_cache || (!m->shader_cache->writes_vertex && !m->shader_cache->uses_discard && m->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA)) { //shader does not use discard and does not write a vertex position, use generic material if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) m = shadow_mat_double_sided_ptr; else m = shadow_mat_ptr; if (m->last_pass != frame) { if (m->shader.is_valid()) { m->shader_cache = shader_owner.get(m->shader); if (m->shader_cache) { if (!m->shader_cache->valid) m->shader_cache = NULL; } else { m->shader = RID(); } } else { m->shader_cache = NULL; } m->last_pass = frame; } } render_list = &opaque_render_list; /* notyet if (!m->shader_cache || m->shader_cache->can_zpass) render_list = &alpha_render_list; } else { render_list = &opaque_render_list; }*/ } else { if (has_alpha) { render_list = &alpha_render_list; } else { render_list = &opaque_render_list; } } RenderList::Element *e = render_list->add_element(); if (!e) return; e->geometry = p_geometry; e->geometry_cmp = p_geometry_cmp; e->material = m; e->instance = p_instance; if (camera_ortho) { e->depth = camera_plane.distance_to(p_instance->transform.origin); } else { e->depth = camera_transform.origin.distance_to(p_instance->transform.origin); } e->owner = p_owner; e->light_type = 0; e->additive = false; e->additive_ptr = &e->additive; e->sort_flags = 0; if (p_instance->skeleton.is_valid()) { e->skeleton = skeleton_owner.get(p_instance->skeleton); if (!e->skeleton) const_cast(p_instance)->skeleton = RID(); else e->sort_flags |= RenderList::SORT_FLAG_SKELETON; } else { e->skeleton = NULL; } if (e->geometry->type == Geometry::GEOMETRY_MULTISURFACE) e->sort_flags |= RenderList::SORT_FLAG_INSTANCING; e->mirror = p_instance->mirror; if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES]) e->mirror = !e->mirror; //e->light_type=0xFF; // no lights! e->light_type = 3; //light type 3 is no light? e->light = 0xFFFF; if (!shadow && !has_blend_alpha && has_alpha && m->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA) { //if nothing exists, add this element as opaque too RenderList::Element *oe = opaque_render_list.add_element(); if (!oe) return; memcpy(oe, e, sizeof(RenderList::Element)); oe->additive_ptr = &oe->additive; } if (shadow || m->flags[VS::MATERIAL_FLAG_UNSHADED] || current_debug == VS::SCENARIO_DEBUG_SHADELESS) { e->light_type = 0x7F; //unshaded is zero } else { bool duplicate = false; for (int i = 0; i < directional_light_count; i++) { uint16_t sort_key = directional_lights[i]->sort_key; uint8_t light_type = VS::LIGHT_DIRECTIONAL; if (directional_lights[i]->base->shadow_enabled) { light_type |= 0x8; if (directional_lights[i]->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) light_type |= 0x10; else if (directional_lights[i]->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) light_type |= 0x30; } RenderList::Element *ec; if (duplicate) { ec = render_list->add_element(); memcpy(ec, e, sizeof(RenderList::Element)); } else { ec = e; duplicate = true; } ec->light_type = light_type; ec->light = sort_key; ec->additive_ptr = &e->additive; } const RID *liptr = p_instance->light_instances.ptr(); int ilc = p_instance->light_instances.size(); for (int i = 0; i < ilc; i++) { LightInstance *li = light_instance_owner.get(liptr[i]); if (!li || li->last_pass != scene_pass) //lit by light not in visible scene continue; uint8_t light_type = li->base->type | 0x40; //penalty to ensure directionals always go first if (li->base->shadow_enabled) { light_type |= 0x8; } uint16_t sort_key = li->sort_key; RenderList::Element *ec; if (duplicate) { ec = render_list->add_element(); memcpy(ec, e, sizeof(RenderList::Element)); } else { duplicate = true; ec = e; } ec->light_type = light_type; ec->light = sort_key; ec->additive_ptr = &e->additive; } } DEBUG_TEST_ERROR("Add Geometry"); } void RasterizerGLES2::add_mesh(const RID &p_mesh, const InstanceData *p_data) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); int ssize = mesh->surfaces.size(); for (int i = 0; i < ssize; i++) { int mat_idx = p_data->materials[i].is_valid() ? i : -1; Surface *s = mesh->surfaces[i]; _add_geometry(s, p_data, s, NULL, mat_idx); } mesh->last_pass = frame; } void RasterizerGLES2::add_multimesh(const RID &p_multimesh, const InstanceData *p_data) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); if (!multimesh->mesh.is_valid()) return; if (multimesh->elements.empty()) return; Mesh *mesh = mesh_owner.get(multimesh->mesh); ERR_FAIL_COND(!mesh); int surf_count = mesh->surfaces.size(); if (multimesh->last_pass != scene_pass) { multimesh->cache_surfaces.resize(surf_count); for (int i = 0; i < surf_count; i++) { multimesh->cache_surfaces[i].material = mesh->surfaces[i]->material; multimesh->cache_surfaces[i].has_alpha = mesh->surfaces[i]->has_alpha; multimesh->cache_surfaces[i].surface = mesh->surfaces[i]; } multimesh->last_pass = scene_pass; } for (int i = 0; i < surf_count; i++) { _add_geometry(&multimesh->cache_surfaces[i], p_data, multimesh->cache_surfaces[i].surface, multimesh); } } void RasterizerGLES2::add_immediate(const RID &p_immediate, const InstanceData *p_data) { Immediate *immediate = immediate_owner.get(p_immediate); ERR_FAIL_COND(!immediate); _add_geometry(immediate, p_data, immediate, NULL); } void RasterizerGLES2::add_particles(const RID &p_particle_instance, const InstanceData *p_data) { //print_line("adding particles"); ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance); ERR_FAIL_COND(!particles_instance); Particles *p = particles_owner.get(particles_instance->particles); ERR_FAIL_COND(!p); _add_geometry(p, p_data, p, particles_instance); draw_next_frame = true; } Color RasterizerGLES2::_convert_color(const Color &p_color) { if (current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]) return p_color.to_linear(); else return p_color; } void RasterizerGLES2::_set_cull(bool p_front, bool p_reverse_cull) { bool front = p_front; if (p_reverse_cull) front = !front; if (front != cull_front) { glCullFace(front ? GL_FRONT : GL_BACK); cull_front = front; } } _FORCE_INLINE_ void RasterizerGLES2::_update_material_shader_params(Material *p_material) const { Map old_mparams = p_material->shader_params; Map &mparams = p_material->shader_params; mparams.clear(); int idx = 0; for (Map::Element *E = p_material->shader_cache->uniforms.front(); E; E = E->next()) { Material::UniformData ud; bool keep = true; //keep material value Map::Element *OLD = old_mparams.find(E->key()); bool has_old = OLD; bool old_inuse = has_old && old_mparams[E->key()].inuse; ud.istexture = (E->get().type == ShaderLanguage::TYPE_TEXTURE || E->get().type == ShaderLanguage::TYPE_CUBEMAP); if (!has_old || !old_inuse) { keep = false; } else if (OLD->get().value.get_type() != E->value().default_value.get_type()) { if (OLD->get().value.get_type() == Variant::INT && E->get().type == ShaderLanguage::TYPE_FLOAT) { //handle common mistake using shaders (feeding ints instead of float) OLD->get().value = float(OLD->get().value); keep = true; } else if (!ud.istexture && E->value().default_value.get_type() != Variant::NIL) { keep = false; } //type changed between old and new /* if (old_mparams[E->key()].value.get_type()==Variant::OBJECT) { if (E->value().default_value.get_type()!=Variant::_RID) //hackfor textures keep=false; } else if (!old_mparams[E->key()].value.is_num() || !E->value().default_value.get_type()) keep=false;*/ //value is invalid because type differs and default is not null ; } if (keep) { ud.value = old_mparams[E->key()].value; //print_line("KEEP: "+String(E->key())); } else { if (ud.istexture && p_material->shader_cache->default_textures.has(E->key())) ud.value = p_material->shader_cache->default_textures[E->key()]; else ud.value = E->value().default_value; old_inuse = false; //if reverted to default, obviously did not work /* print_line("NEW: "+String(E->key())+" because: hasold-"+itos(old_mparams.has(E->key()))); if (old_mparams.has(E->key())) print_line(" told "+Variant::get_type_name(old_mparams[E->key()].value.get_type())+" tnew "+Variant::get_type_name(E->value().default_value.get_type())); */ } ud.index = idx++; ud.inuse = old_inuse; mparams[E->key()] = ud; } p_material->shader_version = p_material->shader_cache->version; } bool RasterizerGLES2::_setup_material(const Geometry *p_geometry, const Material *p_material, bool p_no_const_light, bool p_opaque_pass) { if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) { glDisable(GL_CULL_FACE); } else { glEnable(GL_CULL_FACE); } //glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); /* if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME]) glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); else glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); */ if (p_material->line_width) glLineWidth(p_material->line_width); //all goes to false by default material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PASS, shadow != NULL); material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF, shadow_filter == SHADOW_FILTER_PCF5 || shadow_filter == SHADOW_FILTER_PCF13); material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_PCF_HQ, shadow_filter == SHADOW_FILTER_PCF13); material_shader.set_conditional(MaterialShaderGLES2::USE_SHADOW_ESM, shadow_filter == SHADOW_FILTER_ESM); material_shader.set_conditional(MaterialShaderGLES2::USE_LIGHTMAP_ON_UV2, p_material->flags[VS::MATERIAL_FLAG_LIGHTMAP_ON_UV2]); material_shader.set_conditional(MaterialShaderGLES2::USE_COLOR_ATTRIB_SRGB_TO_LINEAR, p_material->flags[VS::MATERIAL_FLAG_COLOR_ARRAY_SRGB] && current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]); if (p_opaque_pass && p_material->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_OPAQUE_PRE_PASS_ALPHA && p_material->shader_cache && p_material->shader_cache->has_alpha) { material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA, true); } else { material_shader.set_conditional(MaterialShaderGLES2::ENABLE_CLIP_ALPHA, false); } if (!shadow) { bool depth_test = !p_material->flags[VS::MATERIAL_FLAG_ONTOP]; bool depth_write = p_material->depth_draw_mode != VS::MATERIAL_DEPTH_DRAW_NEVER && (p_opaque_pass || p_material->depth_draw_mode == VS::MATERIAL_DEPTH_DRAW_ALWAYS); //bool depth_write=!p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW] && (p_opaque_pass || !p_material->hints[VS::MATERIAL_HINT_NO_DEPTH_DRAW_FOR_ALPHA]); if (current_depth_mask != depth_write) { current_depth_mask = depth_write; glDepthMask(depth_write); } if (current_depth_test != depth_test) { current_depth_test = depth_test; if (depth_test) glEnable(GL_DEPTH_TEST); else glDisable(GL_DEPTH_TEST); } material_shader.set_conditional(MaterialShaderGLES2::USE_FOG, current_env && current_env->fx_enabled[VS::ENV_FX_FOG]); //glDepthMask( true ); } DEBUG_TEST_ERROR("Pre Shader Bind"); bool rebind = false; if (p_material->shader_cache && p_material->shader_cache->valid) { /* // reduce amount of conditional compilations for(int i=0;i<_tex_version_count;i++) material_shader.set_conditional((MaterialShaderGLES2::Conditionals)_tex_version[i],false); */ //material_shader.set_custom_shader(p_material->shader_cache->custom_code_id); if (p_material->shader_version != p_material->shader_cache->version) { //shader changed somehow, must update uniforms _update_material_shader_params((Material *)p_material); } material_shader.set_custom_shader(p_material->shader_cache->custom_code_id); rebind = material_shader.bind(); DEBUG_TEST_ERROR("Shader Bind"); //set uniforms! int texcoord = 0; for (Map::Element *E = p_material->shader_params.front(); E; E = E->next()) { if (E->get().index < 0) continue; //print_line(String(E->key())+": "+E->get().value); if (E->get().istexture) { //clearly a texture.. RID rid = E->get().value; int loc = material_shader.get_custom_uniform_location(E->get().index); //should be automatic.. Texture *t = NULL; if (rid.is_valid()) { t = texture_owner.get(rid); if (!t) { E->get().value = RID(); //nullify, invalid texture rid = RID(); } } glActiveTexture(GL_TEXTURE0 + texcoord); glUniform1i(loc, texcoord); //TODO - this could happen automatically on compile... if (t) { if (t->render_target) t->render_target->last_pass = frame; if (E->key() == p_material->shader_cache->first_texture) { tc0_idx = texcoord; tc0_id_cache = t->tex_id; } glBindTexture(t->target, t->tex_id); } else glBindTexture(GL_TEXTURE_2D, white_tex); //no texture texcoord++; } else if (E->get().value.get_type() == Variant::COLOR) { Color c = E->get().value; material_shader.set_custom_uniform(E->get().index, _convert_color(c)); } else { material_shader.set_custom_uniform(E->get().index, E->get().value); } } if (p_material->shader_cache->has_texscreen && framebuffer.active) { material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_SCREEN_MULT, Vector2(float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height)); material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(0, 0, float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height)); material_shader.set_uniform(MaterialShaderGLES2::TEXSCREEN_TEX, texcoord); glActiveTexture(GL_TEXTURE0 + texcoord); glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color); } if (p_material->shader_cache->has_screen_uv) { material_shader.set_uniform(MaterialShaderGLES2::SCREEN_UV_MULT, Vector2(1.0 / viewport.width, 1.0 / viewport.height)); } DEBUG_TEST_ERROR("Material arameters"); if (p_material->shader_cache->uses_time) { material_shader.set_uniform(MaterialShaderGLES2::TIME, Math::fmod(last_time, shader_time_rollback)); draw_next_frame = true; } //if uses TIME - draw_next_frame=true } else { material_shader.set_custom_shader(0); rebind = material_shader.bind(); DEBUG_TEST_ERROR("Shader bind2"); } if (shadow) { float zofs = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_OFFSET]; float zslope = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_Z_SLOPE_SCALE]; if (shadow_pass >= 1 && shadow->base->type == VS::LIGHT_DIRECTIONAL) { float m = Math::pow(shadow->base->directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_PSSM_ZOFFSET_SCALE], shadow_pass); zofs *= m; zslope *= m; } material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_OFFSET, zofs); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_Z_SLOPE_SCALE, zslope); if (shadow->base->type == VS::LIGHT_OMNI) material_shader.set_uniform(MaterialShaderGLES2::DUAL_PARABOLOID, shadow->dp); DEBUG_TEST_ERROR("Shadow uniforms"); } if (current_env && current_env->fx_enabled[VS::ENV_FX_FOG]) { Color col_begin = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN_COLOR]; Color col_end = current_env->fx_param[VS::ENV_FX_PARAM_FOG_END_COLOR]; col_begin = _convert_color(col_begin); col_end = _convert_color(col_end); float from = current_env->fx_param[VS::ENV_FX_PARAM_FOG_BEGIN]; float zf = camera_z_far; float curve = current_env->fx_param[VS::ENV_FX_PARAM_FOG_ATTENUATION]; material_shader.set_uniform(MaterialShaderGLES2::FOG_PARAMS, Vector3(from, zf, curve)); material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_BEGIN, Vector3(col_begin.r, col_begin.g, col_begin.b)); material_shader.set_uniform(MaterialShaderGLES2::FOG_COLOR_END, Vector3(col_end.r, col_end.g, col_end.b)); } //material_shader.set_uniform(MaterialShaderGLES2::TIME,Math::fmod(last_time,300.0)); //if uses TIME - draw_next_frame=true return rebind; } void RasterizerGLES2::_setup_light(uint16_t p_light) { if (shadow) return; if (p_light == 0xFFFF) return; enum { VL_LIGHT_POS, VL_LIGHT_DIR, VL_LIGHT_ATTENUATION, VL_LIGHT_SPOT_ATTENUATION, VL_LIGHT_DIFFUSE, VL_LIGHT_SPECULAR, VL_LIGHT_MAX }; static const MaterialShaderGLES2::Uniforms light_uniforms[VL_LIGHT_MAX] = { MaterialShaderGLES2::LIGHT_POS, MaterialShaderGLES2::LIGHT_DIRECTION, MaterialShaderGLES2::LIGHT_ATTENUATION, MaterialShaderGLES2::LIGHT_SPOT_ATTENUATION, MaterialShaderGLES2::LIGHT_DIFFUSE, MaterialShaderGLES2::LIGHT_SPECULAR, }; GLfloat light_data[VL_LIGHT_MAX][3]; memset(light_data, 0, (VL_LIGHT_MAX)*3 * sizeof(GLfloat)); LightInstance *li = light_instances[p_light]; Light *l = li->base; Color col_diffuse = _convert_color(l->colors[VS::LIGHT_COLOR_DIFFUSE]); Color col_specular = _convert_color(l->colors[VS::LIGHT_COLOR_SPECULAR]); for (int j = 0; j < 3; j++) { light_data[VL_LIGHT_DIFFUSE][j] = col_diffuse[j]; light_data[VL_LIGHT_SPECULAR][j] = col_specular[j]; } if (l->type != VS::LIGHT_OMNI) { Vector3 dir = -li->transform.get_basis().get_axis(2); dir = camera_transform_inverse.basis.xform(dir).normalized(); for (int j = 0; j < 3; j++) light_data[VL_LIGHT_DIR][j] = dir[j]; } if (l->type != VS::LIGHT_DIRECTIONAL) { Vector3 pos = li->transform.get_origin(); pos = camera_transform_inverse.xform(pos); for (int j = 0; j < 3; j++) light_data[VL_LIGHT_POS][j] = pos[j]; } if (li->near_shadow_buffer) { glActiveTexture(GL_TEXTURE0 + max_texture_units - 1); glBindTexture(GL_TEXTURE_2D, li->near_shadow_buffer->depth); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX, li->shadow_projection[0]); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXEL_SIZE, Vector2(1.0, 1.0) / li->near_shadow_buffer->size); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_TEXTURE, max_texture_units - 1); if (shadow_filter == SHADOW_FILTER_ESM) material_shader.set_uniform(MaterialShaderGLES2::ESM_MULTIPLIER, float(li->base->vars[VS::LIGHT_PARAM_SHADOW_ESM_MULTIPLIER])); if (li->base->type == VS::LIGHT_DIRECTIONAL) { if (li->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2, li->shadow_projection[1]); material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT, Vector3(li->shadow_split[0], li->shadow_split[1], li->shadow_split[2])); } else if (li->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX2, li->shadow_projection[1]); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX3, li->shadow_projection[2]); material_shader.set_uniform(MaterialShaderGLES2::SHADOW_MATRIX4, li->shadow_projection[3]); material_shader.set_uniform(MaterialShaderGLES2::LIGHT_PSSM_SPLIT, Vector3(li->shadow_split[0], li->shadow_split[1], li->shadow_split[2])); } //print_line("shadow split: "+rtos(li->shadow_split)); } material_shader.set_uniform(MaterialShaderGLES2::SHADOW_DARKENING, li->base->vars[VS::LIGHT_PARAM_SHADOW_DARKENING]); //matrix } light_data[VL_LIGHT_ATTENUATION][0] = l->vars[VS::LIGHT_PARAM_ENERGY]; if (l->type == VS::LIGHT_DIRECTIONAL) { light_data[VL_LIGHT_ATTENUATION][1] = l->directional_shadow_param[VS::LIGHT_DIRECTIONAL_SHADOW_PARAM_MAX_DISTANCE]; } else { light_data[VL_LIGHT_ATTENUATION][1] = l->vars[VS::LIGHT_PARAM_RADIUS]; } light_data[VL_LIGHT_ATTENUATION][2] = l->vars[VS::LIGHT_PARAM_ATTENUATION]; light_data[VL_LIGHT_SPOT_ATTENUATION][0] = Math::cos(Math::deg2rad(l->vars[VS::LIGHT_PARAM_SPOT_ANGLE])); light_data[VL_LIGHT_SPOT_ATTENUATION][1] = l->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]; //int uf = material_shader.get_uniform(MaterialShaderGLES2::LIGHT_PARAMS); for (int i = 0; i < VL_LIGHT_MAX; i++) { glUniform3f(material_shader.get_uniform(light_uniforms[i]), light_data[i][0], light_data[i][1], light_data[i][2]); } } template void RasterizerGLES2::_skeleton_xform(const uint8_t *p_src_array, int p_src_stride, uint8_t *p_dst_array, int p_dst_stride, int p_elements, const uint8_t *p_src_bones, const uint8_t *p_src_weights, const Skeleton::Bone *p_bone_xforms) { uint32_t basesize = 3; if (USE_NORMAL) basesize += 3; if (USE_TANGENT) basesize += 4; uint32_t extra = (p_dst_stride - basesize * 4); const int dstvec_size = 3 + (USE_NORMAL ? 3 : 0) + (USE_TANGENT ? 4 : 0); float dstcopy[dstvec_size]; for (int i = 0; i < p_elements; i++) { uint32_t ss = p_src_stride * i; uint32_t ds = p_dst_stride * i; const uint16_t *bi = (const uint16_t *)&p_src_bones[ss]; const float *bw = (const float *)&p_src_weights[ss]; const float *src_vec = (const float *)&p_src_array[ss]; float *dst_vec; if (INPLACE) dst_vec = dstcopy; else dst_vec = (float *)&p_dst_array[ds]; dst_vec[0] = 0.0; dst_vec[1] = 0.0; dst_vec[2] = 0.0; //conditionals simply removed by optimizer if (USE_NORMAL) { dst_vec[3] = 0.0; dst_vec[4] = 0.0; dst_vec[5] = 0.0; if (USE_TANGENT) { dst_vec[6] = 0.0; dst_vec[7] = 0.0; dst_vec[8] = 0.0; dst_vec[9] = src_vec[9]; } } else { if (USE_TANGENT) { dst_vec[3] = 0.0; dst_vec[4] = 0.0; dst_vec[5] = 0.0; dst_vec[6] = src_vec[6]; } } #define _XFORM_BONE(m_idx) \ if (bw[m_idx] == 0) \ goto end; \ p_bone_xforms[bi[m_idx]].transform_add_mul3(&src_vec[0], &dst_vec[0], bw[m_idx]); \ if (USE_NORMAL) { \ p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3], &dst_vec[3], bw[m_idx]); \ if (USE_TANGENT) { \ p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[6], &dst_vec[6], bw[m_idx]); \ } \ } else { \ if (USE_TANGENT) { \ p_bone_xforms[bi[m_idx]].transform3_add_mul3(&src_vec[3], &dst_vec[3], bw[m_idx]); \ } \ } _XFORM_BONE(0); _XFORM_BONE(1); _XFORM_BONE(2); _XFORM_BONE(3); end: if (INPLACE) { const uint8_t *esp = (const uint8_t *)dstcopy; uint8_t *edp = (uint8_t *)&p_dst_array[ds]; for (uint32_t j = 0; j < dstvec_size * 4; j++) { edp[j] = esp[j]; } } else { //copy extra stuff const uint8_t *esp = (const uint8_t *)&src_vec[basesize]; uint8_t *edp = (uint8_t *)&dst_vec[basesize]; for (uint32_t j = 0; j < extra; j++) { edp[j] = esp[j]; } } } } Error RasterizerGLES2::_setup_geometry(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const float *p_morphs) { switch (p_geometry->type) { case Geometry::GEOMETRY_MULTISURFACE: case Geometry::GEOMETRY_SURFACE: { const Surface *surf = NULL; if (p_geometry->type == Geometry::GEOMETRY_SURFACE) surf = static_cast(p_geometry); else if (p_geometry->type == Geometry::GEOMETRY_MULTISURFACE) surf = static_cast(p_geometry)->surface; if (surf->format != surf->configured_format) { if (OS::get_singleton()->is_stdout_verbose()) { print_line("has format: " + itos(surf->format)); print_line("configured format: " + itos(surf->configured_format)); } ERR_EXPLAIN("Missing arrays (not set) in surface"); } ERR_FAIL_COND_V(surf->format != surf->configured_format, ERR_UNCONFIGURED); uint8_t *base = 0; int stride = surf->stride; bool use_VBO = (surf->array_local == 0); _setup_geometry_vinfo = surf->array_len; bool skeleton_valid = p_skeleton && (surf->format & VS::ARRAY_FORMAT_BONES) && (surf->format & VS::ARRAY_FORMAT_WEIGHTS) && !p_skeleton->bones.empty() && p_skeleton->bones.size() > surf->max_bone; /* if (surf->packed) { float scales[4]={surf->vertex_scale,surf->uv_scale,surf->uv2_scale,0.0}; glVertexAttrib4fv( 7, scales ); } else { glVertexAttrib4f( 7, 1,1,1,1 ); }*/ if (!use_VBO) { DEBUG_TEST_ERROR("Draw NO VBO"); base = surf->array_local; glBindBuffer(GL_ARRAY_BUFFER, 0); bool can_copy_to_local = surf->local_stride * surf->array_len <= skinned_buffer_size; if (p_morphs && surf->stride * surf->array_len > skinned_buffer_size) can_copy_to_local = false; if (!can_copy_to_local) skeleton_valid = false; /* compute morphs */ if (p_morphs && surf->morph_target_count && can_copy_to_local) { base = skinned_buffer; stride = surf->local_stride; //copy all first float coef = 1.0; for (int i = 0; i < surf->morph_target_count; i++) { if (surf->mesh->morph_target_mode == VS::MORPH_MODE_NORMALIZED) coef -= p_morphs[i]; ERR_FAIL_COND_V(surf->morph_format != surf->morph_targets_local[i].configured_format, ERR_INVALID_DATA); } int16_t coeffp = CLAMP(coef * 255, 0, 255); for (int i = 0; i < VS::ARRAY_MAX - 1; i++) { const Surface::ArrayData &ad = surf->array[i]; if (ad.size == 0) continue; int ofs = ad.ofs; int src_stride = surf->stride; int dst_stride = skeleton_valid ? surf->stride : surf->local_stride; int count = surf->array_len; if (!skeleton_valid && i >= VS::ARRAY_MAX - 3) break; switch (i) { case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: case VS::ARRAY_TANGENT: { for (int k = 0; k < count; k++) { const float *src = (const float *)&surf->array_local[ofs + k * src_stride]; float *dst = (float *)&base[ofs + k * dst_stride]; dst[0] = src[0] * coef; dst[1] = src[1] * coef; dst[2] = src[2] * coef; }; } break; case VS::ARRAY_COLOR: { for (int k = 0; k < count; k++) { const uint8_t *src = (const uint8_t *)&surf->array_local[ofs + k * src_stride]; uint8_t *dst = (uint8_t *)&base[ofs + k * dst_stride]; dst[0] = (src[0] * coeffp) >> 8; dst[1] = (src[1] * coeffp) >> 8; dst[2] = (src[2] * coeffp) >> 8; dst[3] = (src[3] * coeffp) >> 8; } } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { for (int k = 0; k < count; k++) { const float *src = (const float *)&surf->array_local[ofs + k * src_stride]; float *dst = (float *)&base[ofs + k * dst_stride]; dst[0] = src[0] * coef; dst[1] = src[1] * coef; } } break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: { for (int k = 0; k < count; k++) { const float *src = (const float *)&surf->array_local[ofs + k * src_stride]; float *dst = (float *)&base[ofs + k * dst_stride]; dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; } } break; } } for (int j = 0; j < surf->morph_target_count; j++) { for (int i = 0; i < VS::ARRAY_MAX - 3; i++) { const Surface::ArrayData &ad = surf->array[i]; if (ad.size == 0) continue; int ofs = ad.ofs; int src_stride = surf->local_stride; int dst_stride = skeleton_valid ? surf->stride : surf->local_stride; int count = surf->array_len; const uint8_t *morph = surf->morph_targets_local[j].array; float w = p_morphs[j]; int16_t wfp = CLAMP(w * 255, 0, 255); switch (i) { case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: case VS::ARRAY_TANGENT: { for (int k = 0; k < count; k++) { const float *src_morph = (const float *)&morph[ofs + k * src_stride]; float *dst = (float *)&base[ofs + k * dst_stride]; dst[0] += src_morph[0] * w; dst[1] += src_morph[1] * w; dst[2] += src_morph[2] * w; } } break; case VS::ARRAY_COLOR: { for (int k = 0; k < count; k++) { const uint8_t *src = (const uint8_t *)&morph[ofs + k * src_stride]; uint8_t *dst = (uint8_t *)&base[ofs + k * dst_stride]; dst[0] = (src[0] * wfp) >> 8; dst[1] = (src[1] * wfp) >> 8; dst[2] = (src[2] * wfp) >> 8; dst[3] = (src[3] * wfp) >> 8; } } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { for (int k = 0; k < count; k++) { const float *src_morph = (const float *)&morph[ofs + k * src_stride]; float *dst = (float *)&base[ofs + k * dst_stride]; dst[0] += src_morph[0] * w; dst[1] += src_morph[1] * w; } } break; } } } if (skeleton_valid) { const uint8_t *src_weights = &surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs]; const uint8_t *src_bones = &surf->array_local[surf->array[VS::ARRAY_BONES].ofs]; const Skeleton::Bone *skeleton = &p_skeleton->bones[0]; if (surf->format & VS::ARRAY_FORMAT_NORMAL && surf->format & VS::ARRAY_FORMAT_TANGENT) _skeleton_xform(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton); else if (surf->format & (VS::ARRAY_FORMAT_NORMAL)) _skeleton_xform(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton); else if (surf->format & (VS::ARRAY_FORMAT_TANGENT)) _skeleton_xform(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton); else _skeleton_xform(base, surf->stride, base, surf->stride, surf->array_len, src_bones, src_weights, skeleton); } stride = skeleton_valid ? surf->stride : surf->local_stride; #if 0 { //in-place skeleton tansformation, only used for morphs, slow. //should uptimize some day.... const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs]; const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs]; int src_stride = surf->stride; int count = surf->array_len; const Transform *skeleton = &p_skeleton->bones[0]; for(int i=0;iarray[i]; if (ad.size==0) continue; int ofs = ad.ofs; switch(i) { case VS::ARRAY_VERTEX: { for(int k=0;k(&src_weights[k*src_stride]); const GLfloat *bones = reinterpret_cast(&src_bones[k*src_stride]); Vector3 src( ptr[0], ptr[1], ptr[2] ); Vector3 dst; for(int j=0;j(&src_weights[k*src_stride]); const GLfloat *bones = reinterpret_cast(&src_bones[k*src_stride]); Vector3 src( ptr[0], ptr[1], ptr[2] ); Vector3 dst; for(int j=0;jstride - (surf->array[VS::ARRAY_BONES].size + surf->array[VS::ARRAY_WEIGHTS].size); const uint8_t *src_weights = &surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs]; const uint8_t *src_bones = &surf->array_local[surf->array[VS::ARRAY_BONES].ofs]; const Skeleton::Bone *skeleton = &p_skeleton->bones[0]; if (surf->format & VS::ARRAY_FORMAT_NORMAL && surf->format & VS::ARRAY_FORMAT_TANGENT) _skeleton_xform(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton); else if (surf->format & (VS::ARRAY_FORMAT_NORMAL)) _skeleton_xform(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton); else if (surf->format & (VS::ARRAY_FORMAT_TANGENT)) _skeleton_xform(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton); else _skeleton_xform(surf->array_local, surf->stride, base, dst_stride, surf->array_len, src_bones, src_weights, skeleton); stride = dst_stride; } } else { glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id); }; for (int i = 0; i < (VS::ARRAY_MAX - 1); i++) { const Surface::ArrayData &ad = surf->array[i]; /* if (!gl_texcoord_shader[i]) continue; */ if (ad.size == 0 || !ad.bind) { glDisableVertexAttribArray(i); if (i == VS::ARRAY_COLOR) { _set_color_attrib(Color(1, 1, 1, 1)); }; //print_line("disable: "+itos(i)); continue; // this one is disabled. } glEnableVertexAttribArray(i); //print_line("set: "+itos(i)+" - count: "+itos(ad.count)+" datatype: "+itos(ad.datatype)+" ofs: "+itos(ad.ofs)+" stride: "+itos(stride)+" total len: "+itos(surf->array_len)); glVertexAttribPointer(i, ad.count, ad.datatype, ad.normalize, stride, &base[ad.ofs]); } #ifdef GLEW_ENABLED //"desktop" opengl needs this. if (surf->primitive == VS::PRIMITIVE_POINTS) { glEnable(GL_POINT_SPRITE); glEnable(GL_VERTEX_PROGRAM_POINT_SIZE); } else { glDisable(GL_POINT_SPRITE); glDisable(GL_VERTEX_PROGRAM_POINT_SIZE); } #endif } break; default: break; }; return OK; }; static const GLenum gl_primitive[] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; void RasterizerGLES2::_render(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton, const GeometryOwner *p_owner, const Transform &p_xform) { _rinfo.object_count++; switch (p_geometry->type) { case Geometry::GEOMETRY_SURFACE: { Surface *s = (Surface *)p_geometry; _rinfo.vertex_count += s->array_len; if (s->index_array_len > 0) { if (s->index_array_local) { //print_line("LOCAL F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, s->index_array_local); } else { //print_line("indices: "+itos(s->index_array_local) ); //print_line("VBO F: "+itos(s->format)+" C: "+itos(s->index_array_len)+" VC: "+itos(s->array_len)); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); } } else { glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); }; _rinfo.draw_calls++; } break; case Geometry::GEOMETRY_MULTISURFACE: { material_shader.bind_uniforms(); Surface *s = static_cast(p_geometry)->surface; const MultiMesh *mm = static_cast(p_owner); int element_count = mm->elements.size(); if (element_count == 0) return; if (mm->visible >= 0) { element_count = MIN(element_count, mm->visible); } const MultiMesh::Element *elements = &mm->elements[0]; _rinfo.vertex_count += s->array_len * element_count; _rinfo.draw_calls += element_count; if (use_texture_instancing) { //this is probably the fastest all around way if vertex texture fetch is supported float twd = (1.0 / mm->tw) * 4.0; float thd = 1.0 / mm->th; float parm[3] = { 0.0, 01.0, (1.0f / mm->tw) }; glActiveTexture(GL_TEXTURE0 + max_texture_units - 2); glDisableVertexAttribArray(6); glBindTexture(GL_TEXTURE_2D, mm->tex_id); material_shader.set_uniform(MaterialShaderGLES2::INSTANCE_MATRICES, GL_TEXTURE0 + max_texture_units - 2); if (s->index_array_len > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); for (int i = 0; i < element_count; i++) { parm[0] = (i % (mm->tw >> 2)) * twd; parm[1] = (i / (mm->tw >> 2)) * thd; glVertexAttrib3fv(6, parm); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); } } else { for (int i = 0; i < element_count; i++) { //parm[0]=(i%(mm->tw>>2))*twd; //parm[1]=(i/(mm->tw>>2))*thd; glVertexAttrib3fv(6, parm); glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); } }; } else if (use_attribute_instancing) { //if not, using attributes instead of uniforms can be really fast in forward rendering architectures if (s->index_array_len > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); for (int i = 0; i < element_count; i++) { glVertexAttrib4fv(8, &elements[i].matrix[0]); glVertexAttrib4fv(9, &elements[i].matrix[4]); glVertexAttrib4fv(10, &elements[i].matrix[8]); glVertexAttrib4fv(11, &elements[i].matrix[12]); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); } } else { for (int i = 0; i < element_count; i++) { glVertexAttrib4fv(8, &elements[i].matrix[0]); glVertexAttrib4fv(9, &elements[i].matrix[4]); glVertexAttrib4fv(10, &elements[i].matrix[8]); glVertexAttrib4fv(11, &elements[i].matrix[12]); glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); } }; } else { //nothing to do, slow path (hope no hardware has to use it... but you never know) if (s->index_array_len > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id); for (int i = 0; i < element_count; i++) { glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len > (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0); } } else { for (int i = 0; i < element_count; i++) { glUniformMatrix4fv(material_shader.get_uniform_location(MaterialShaderGLES2::INSTANCE_TRANSFORM), 1, false, elements[i].matrix); glDrawArrays(gl_primitive[s->primitive], 0, s->array_len); } }; } } break; case Geometry::GEOMETRY_IMMEDIATE: { bool restore_tex = false; const Immediate *im = static_cast(p_geometry); if (im->building) { return; } glBindBuffer(GL_ARRAY_BUFFER, 0); for (const List::Element *E = im->chunks.front(); E; E = E->next()) { const Immediate::Chunk &c = E->get(); if (c.vertices.empty()) { continue; } for (int i = 0; i < c.vertices.size(); i++) if (c.texture.is_valid() && texture_owner.owns(c.texture)) { const Texture *t = texture_owner.get(c.texture); glActiveTexture(GL_TEXTURE0 + tc0_idx); glBindTexture(t->target, t->tex_id); restore_tex = true; } else if (restore_tex) { glActiveTexture(GL_TEXTURE0 + tc0_idx); glBindTexture(GL_TEXTURE_2D, tc0_id_cache); restore_tex = false; } if (!c.normals.empty()) { glEnableVertexAttribArray(VS::ARRAY_NORMAL); glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, sizeof(Vector3), c.normals.ptr()); } else { glDisableVertexAttribArray(VS::ARRAY_NORMAL); } if (!c.tangents.empty()) { glEnableVertexAttribArray(VS::ARRAY_TANGENT); glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, sizeof(Plane), c.tangents.ptr()); } else { glDisableVertexAttribArray(VS::ARRAY_TANGENT); } if (!c.colors.empty()) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), c.colors.ptr()); } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); _set_color_attrib(Color(1, 1, 1, 1)); } if (!c.uvs.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), c.uvs.ptr()); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } if (!c.uvs2.empty()) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV2); glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), c.uvs2.ptr()); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV2); } glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, sizeof(Vector3), c.vertices.ptr()); glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size()); } if (restore_tex) { glActiveTexture(GL_TEXTURE0 + tc0_idx); glBindTexture(GL_TEXTURE_2D, tc0_id_cache); restore_tex = false; } } break; case Geometry::GEOMETRY_PARTICLES: { //print_line("particulinas"); const Particles *particles = static_cast(p_geometry); ERR_FAIL_COND(!p_owner); ParticlesInstance *particles_instance = (ParticlesInstance *)p_owner; ParticleSystemProcessSW &pp = particles_instance->particles_process; float td = time_delta; //MIN(time_delta,1.0/10.0); pp.process(&particles->data, particles_instance->transform, td); ERR_EXPLAIN("A parameter in the particle system is not correct."); ERR_FAIL_COND(!pp.valid); Transform camera; if (shadow) camera = shadow->transform; else camera = camera_transform; particle_draw_info.prepare(&particles->data, &pp, particles_instance->transform, camera); _rinfo.draw_calls += particles->data.amount; _rinfo.vertex_count += 4 * particles->data.amount; { static const Vector3 points[4] = { Vector3(-1.0, 1.0, 0), Vector3(1.0, 1.0, 0), Vector3(1.0, -1.0, 0), Vector3(-1.0, -1.0, 0) }; static const Vector3 uvs[4] = { Vector3(0.0, 0.0, 0.0), Vector3(1.0, 0.0, 0.0), Vector3(1.0, 1.0, 0.0), Vector3(0, 1.0, 0.0) }; static const Vector3 normals[4] = { Vector3(0, 0, 1), Vector3(0, 0, 1), Vector3(0, 0, 1), Vector3(0, 0, 1) }; static const Plane tangents[4] = { Plane(Vector3(1, 0, 0), 0), Plane(Vector3(1, 0, 0), 0), Plane(Vector3(1, 0, 0), 0), Plane(Vector3(1, 0, 0), 0) }; for (int i = 0; i < particles->data.amount; i++) { ParticleSystemDrawInfoSW::ParticleDrawInfo &pinfo = *particle_draw_info.draw_info_order[i]; if (!pinfo.data->active) continue; material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, pinfo.transform); _set_color_attrib(pinfo.color); _draw_primitive(4, points, normals, NULL, uvs, tangents); } } } break; default: break; }; }; void RasterizerGLES2::_setup_shader_params(const Material *p_material) { #if 0 int idx=0; int tex_idx=0; for(Map::Element *E=p_material->shader_cache->params.front();E;E=E->next(),idx++) { Variant v; // v = E->get(); const Map::Element *F=p_material->shader_params.find(E->key()); if (F) v=F->get(); switch(v.get_type() ) { case Variant::OBJECT: case Variant::_RID: { RID tex=v; if (!tex.is_valid()) break; Texture *texture = texture_owner.get(tex); if (!texture) break; glUniform1i( material_shader.get_custom_uniform_location(idx), tex_idx); glActiveTexture(tex_idx); glBindTexture(texture->target,texture->tex_id); } break; case Variant::COLOR: { Color c=v; material_shader.set_custom_uniform(idx,Vector3(c.r,c.g,c.b)); } break; default: { material_shader.set_custom_uniform(idx,v); } break; } } #endif } void RasterizerGLES2::_setup_skeleton(const Skeleton *p_skeleton) { material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON, p_skeleton != NULL); if (p_skeleton && p_skeleton->tex_id) { glActiveTexture(GL_TEXTURE0 + max_texture_units - 2); glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id); } } void RasterizerGLES2::_render_list_forward(RenderList *p_render_list, const Transform &p_view_transform, const Transform &p_view_transform_inverse, const CameraMatrix &p_projection, bool p_reverse_cull, bool p_fragment_light, bool p_alpha_pass) { if (current_rt && current_rt_vflip) { //p_reverse_cull=!p_reverse_cull; glFrontFace(GL_CCW); } const Material *prev_material = NULL; uint16_t prev_light = 0x777E; const Geometry *prev_geometry_cmp = NULL; uint8_t prev_light_type = 0xEF; const Skeleton *prev_skeleton = NULL; uint8_t prev_sort_flags = 0xFF; const BakedLightData *prev_baked_light = NULL; RID prev_baked_light_texture; const float *prev_morph_values = NULL; int prev_receive_shadows_state = -1; material_shader.set_conditional(MaterialShaderGLES2::USE_VERTEX_LIGHTING, !shadow && !p_fragment_light); material_shader.set_conditional(MaterialShaderGLES2::USE_FRAGMENT_LIGHTING, !shadow && p_fragment_light); material_shader.set_conditional(MaterialShaderGLES2::USE_SKELETON, false); if (shadow) { material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false); material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, false); material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, false); material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false); //material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_TEXTURE,false); } bool stores_glow = !shadow && (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) && !p_alpha_pass; float sampled_light_dp_multiplier = 1.0; bool prev_blend = false; glDisable(GL_BLEND); for (int i = 0; i < p_render_list->element_count; i++) { RenderList::Element *e = p_render_list->elements[i]; const Material *material = e->material; uint16_t light = e->light; uint8_t light_type = e->light_type; uint8_t sort_flags = e->sort_flags; const Skeleton *skeleton = e->skeleton; const Geometry *geometry_cmp = e->geometry_cmp; const BakedLightData *baked_light = e->instance->baked_light; const float *morph_values = e->instance->morph_values.ptr(); int receive_shadows_state = e->instance->receive_shadows == true ? 1 : 0; bool rebind = false; bool bind_baked_light_octree = false; bool bind_baked_lightmap = false; bool additive = false; bool bind_dp_sampler = false; if (!shadow) { if (texscreen_used && !texscreen_copied && material->shader_cache && material->shader_cache->valid && material->shader_cache->has_texscreen) { texscreen_copied = true; _copy_to_texscreen(); //force reset state prev_material = NULL; prev_light = 0x777E; prev_geometry_cmp = NULL; prev_light_type = 0xEF; prev_skeleton = NULL; prev_sort_flags = 0xFF; prev_morph_values = NULL; prev_receive_shadows_state = -1; glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); } if (light_type != prev_light_type || receive_shadows_state != prev_receive_shadows_state) { if (material->flags[VS::MATERIAL_FLAG_UNSHADED] || current_debug == VS::SCENARIO_DEBUG_SHADELESS) { material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false); material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, true); } else { material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_DIRECTIONAL, (light_type & 0x3) == VS::LIGHT_DIRECTIONAL); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_OMNI, (light_type & 0x3) == VS::LIGHT_OMNI); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_TYPE_SPOT, (light_type & 0x3) == VS::LIGHT_SPOT); if (receive_shadows_state == 1) { material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, (light_type & 0x8)); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, (light_type & 0x10)); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, (light_type & 0x20)); } else { material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_SHADOW, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM, false); material_shader.set_conditional(MaterialShaderGLES2::LIGHT_USE_PSSM4, false); } material_shader.set_conditional(MaterialShaderGLES2::SHADELESS, false); } rebind = true; } if (!*e->additive_ptr) { additive = false; *e->additive_ptr = true; } else { additive = true; } if (stores_glow) material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW, !additive); bool desired_blend = false; VS::MaterialBlendMode desired_blend_mode = VS::MATERIAL_BLEND_MODE_MIX; if (additive) { desired_blend = true; desired_blend_mode = VS::MATERIAL_BLEND_MODE_ADD; } else { desired_blend = p_alpha_pass; desired_blend_mode = material->blend_mode; } if (prev_blend != desired_blend) { if (desired_blend) { glEnable(GL_BLEND); if (!current_rt || !current_rt_transparent) glColorMask(1, 1, 1, 0); } else { glDisable(GL_BLEND); glColorMask(1, 1, 1, 1); } prev_blend = desired_blend; } if (desired_blend && desired_blend_mode != current_blend_mode) { switch (desired_blend_mode) { case VS::MATERIAL_BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case VS::MATERIAL_BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; } current_blend_mode = desired_blend_mode; } material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, false); material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false); material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_DP_SAMPLER, false); material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_COLOR, false); if (material->flags[VS::MATERIAL_FLAG_UNSHADED] == false && current_debug != VS::SCENARIO_DEBUG_SHADELESS) { if (baked_light != NULL) { if (baked_light->realtime_color_enabled) { float realtime_energy = baked_light->realtime_energy; material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_COLOR, true); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_COLOR, Vector3(baked_light->realtime_color.r * realtime_energy, baked_light->realtime_color.g * realtime_energy, baked_light->realtime_color.b * realtime_energy)); } } if (e->instance->sampled_light.is_valid()) { SampledLight *sl = sampled_light_owner.get(e->instance->sampled_light); if (sl) { baked_light = NULL; //can't mix material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_DP_SAMPLER, true); glActiveTexture(GL_TEXTURE0 + max_texture_units - 3); glBindTexture(GL_TEXTURE_2D, sl->texture); //bind the texture sampled_light_dp_multiplier = sl->multiplier; bind_dp_sampler = true; } } if (!additive && baked_light) { if (baked_light->mode == VS::BAKED_LIGHT_OCTREE && baked_light->octree_texture.is_valid() && e->instance->baked_light_octree_xform) { material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_OCTREE, true); bind_baked_light_octree = true; if (prev_baked_light != baked_light) { Texture *tex = texture_owner.get(baked_light->octree_texture); if (tex) { glActiveTexture(GL_TEXTURE0 + max_texture_units - 3); glBindTexture(tex->target, tex->tex_id); //bind the texture } if (baked_light->light_texture.is_valid()) { Texture *texl = texture_owner.get(baked_light->light_texture); if (texl) { glActiveTexture(GL_TEXTURE0 + max_texture_units - 4); glBindTexture(texl->target, texl->tex_id); //bind the light texture } } } } else if (baked_light->mode == VS::BAKED_LIGHT_LIGHTMAPS) { int lightmap_idx = e->instance->baked_lightmap_id; material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, false); bind_baked_lightmap = false; if (baked_light->lightmaps.has(lightmap_idx)) { RID texid = baked_light->lightmaps[lightmap_idx]; if (prev_baked_light != baked_light || texid != prev_baked_light_texture) { Texture *tex = texture_owner.get(texid); if (tex) { glActiveTexture(GL_TEXTURE0 + max_texture_units - 3); glBindTexture(tex->target, tex->tex_id); //bind the texture } prev_baked_light_texture = texid; } if (texid.is_valid()) { material_shader.set_conditional(MaterialShaderGLES2::ENABLE_AMBIENT_LIGHTMAP, true); bind_baked_lightmap = true; } } } } if (int(prev_baked_light != NULL) ^ int(baked_light != NULL)) { rebind = true; } } } if (sort_flags != prev_sort_flags) { if (sort_flags & RenderList::SORT_FLAG_INSTANCING) { material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING, !use_texture_instancing && !use_attribute_instancing); material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING, use_attribute_instancing); material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING, use_texture_instancing); } else { material_shader.set_conditional(MaterialShaderGLES2::USE_UNIFORM_INSTANCING, false); material_shader.set_conditional(MaterialShaderGLES2::USE_ATTRIBUTE_INSTANCING, false); material_shader.set_conditional(MaterialShaderGLES2::USE_TEXTURE_INSTANCING, false); } rebind = true; } if (use_hw_skeleton_xform && (skeleton != prev_skeleton || morph_values != prev_morph_values)) { if (!prev_skeleton || !skeleton) rebind = true; //went from skeleton <-> no skeleton, needs rebind if (morph_values == NULL) _setup_skeleton(skeleton); else _setup_skeleton(NULL); } if (material != prev_material || rebind) { rebind = _setup_material(e->geometry, material, additive, !p_alpha_pass); DEBUG_TEST_ERROR("Setup material"); _rinfo.mat_change_count++; //_setup_material_overrides(e->material,NULL,material_overrides); //_setup_material_skeleton(material,skeleton); } else { if (prev_skeleton != skeleton) { //_setup_material_skeleton(material,skeleton); }; } if (geometry_cmp != prev_geometry_cmp || prev_skeleton != skeleton) { _setup_geometry(e->geometry, material, e->skeleton, e->instance->morph_values.ptr()); _rinfo.surface_count++; DEBUG_TEST_ERROR("Setup geometry"); }; if (i == 0 || light != prev_light || rebind) { if (e->light != 0xFFFF) { _setup_light(e->light); } } if (bind_baked_light_octree && (baked_light != prev_baked_light || rebind)) { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_INVERSE_TRANSFORM, *e->instance->baked_light_octree_xform); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_SIZE, baked_light->octree_lattice_size); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LATTICE_DIVIDE, baked_light->octree_lattice_divide); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_STEPS, baked_light->octree_steps); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_TEX, max_texture_units - 3); if (baked_light->light_texture.is_valid()) { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_TEX, max_texture_units - 4); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_PIX_SIZE, baked_light->light_tex_pixel_size); } else { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_TEX, max_texture_units - 3); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_LIGHT_PIX_SIZE, baked_light->octree_tex_pixel_size); } material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_MULTIPLIER, baked_light->texture_multiplier); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_OCTREE_PIX_SIZE, baked_light->octree_tex_pixel_size); } if (bind_baked_lightmap && (baked_light != prev_baked_light || rebind)) { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP, max_texture_units - 3); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHTMAP_MULTIPLIER, baked_light->lightmap_multiplier); } if (bind_dp_sampler) { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_DP_SAMPLER_MULTIPLIER, sampled_light_dp_multiplier); material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_DP_SAMPLER, max_texture_units - 3); } _set_cull(e->mirror, p_reverse_cull); if (i == 0 || rebind) { material_shader.set_uniform(MaterialShaderGLES2::CAMERA_INVERSE_TRANSFORM, p_view_transform_inverse); material_shader.set_uniform(MaterialShaderGLES2::PROJECTION_TRANSFORM, p_projection); if (!shadow) { if (!additive && current_env && current_env->fx_enabled[VS::ENV_FX_AMBIENT_LIGHT]) { Color ambcolor = _convert_color(current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_COLOR]); float ambnrg = current_env->fx_param[VS::ENV_FX_PARAM_AMBIENT_LIGHT_ENERGY]; material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT, Vector3(ambcolor.r * ambnrg, ambcolor.g * ambnrg, ambcolor.b * ambnrg)); } else { material_shader.set_uniform(MaterialShaderGLES2::AMBIENT_LIGHT, Vector3()); } } _rinfo.shader_change_count++; } if (skeleton != prev_skeleton || rebind) { if (skeleton && morph_values == NULL) { material_shader.set_uniform(MaterialShaderGLES2::SKELETON_MATRICES, max_texture_units - 2); material_shader.set_uniform(MaterialShaderGLES2::SKELTEX_PIXEL_SIZE, skeleton->pixel_size); } } if (e->instance->billboard || e->instance->billboard_y || e->instance->depth_scale) { Transform xf = e->instance->transform; if (e->instance->depth_scale) { if (p_projection.matrix[3][3]) { //orthogonal matrix, try to do about the same //with viewport size //real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) ); real_t h = Math::abs(1.0 / (2.0 * p_projection.matrix[1][1])); float sc = (h * 2.0); //consistent with Y-fov xf.basis.scale(Vector3(sc, sc, sc)); } else { //just scale by depth real_t sc = -camera_plane.distance_to(xf.origin); xf.basis.scale(Vector3(sc, sc, sc)); } } if (e->instance->billboard) { Vector3 scale = xf.basis.get_scale(); if (current_rt && current_rt_vflip) { xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), -p_view_transform.get_basis().get_axis(1)); } else { xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), p_view_transform.get_basis().get_axis(1)); } xf.basis.scale(scale); } if (e->instance->billboard_y) { Vector3 scale = xf.basis.get_scale(); Vector3 look_at = p_view_transform.get_origin(); look_at.y = 0.0; Vector3 look_at_norm = look_at.normalized(); if (current_rt && current_rt_vflip) { xf.set_look_at(xf.origin, xf.origin + look_at_norm, Vector3(0.0, -1.0, 0.0)); } else { xf.set_look_at(xf.origin, xf.origin + look_at_norm, Vector3(0.0, 1.0, 0.0)); } xf.basis.scale(scale); } material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, xf); } else { material_shader.set_uniform(MaterialShaderGLES2::WORLD_TRANSFORM, e->instance->transform); } material_shader.set_uniform(MaterialShaderGLES2::NORMAL_MULT, e->mirror ? -1.0 : 1.0); material_shader.set_uniform(MaterialShaderGLES2::CONST_LIGHT_MULT, additive ? 0.0 : 1.0); _render(e->geometry, material, skeleton, e->owner, e->instance->transform); DEBUG_TEST_ERROR("Rendering"); prev_material = material; prev_skeleton = skeleton; prev_geometry_cmp = geometry_cmp; prev_light = e->light; prev_light_type = e->light_type; prev_sort_flags = sort_flags; prev_baked_light = baked_light; prev_morph_values = morph_values; prev_receive_shadows_state = receive_shadows_state; } //print_line("shaderchanges: "+itos(p_alpha_pass)+": "+itos(_rinfo.shader_change_count)); if (current_rt && current_rt_vflip) { glFrontFace(GL_CW); } }; void RasterizerGLES2::_copy_to_texscreen() { //what am i missing? glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); #ifdef GLEW_ENABLED glDisable(GL_POINT_SPRITE); glDisable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif glDisable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } //glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); for (int i = 0; i < VS::ARRAY_MAX; i++) { glDisableVertexAttribArray(i); } glActiveTexture(GL_TEXTURE0); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, framebuffer.color); copy_shader.bind(); _copy_screen_quad(); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo); } void RasterizerGLES2::_copy_screen_quad() { Vector2 dst_pos[4] = { Vector2(-1, 1), Vector2(1, 1), Vector2(1, -1), Vector2(-1, -1) }; Size2 uvscale( (viewport.width / float(framebuffer.scale)) / framebuffer.width, (viewport.height / float(framebuffer.scale)) / framebuffer.height); Vector2 src_uv[4] = { Vector2(0, 1) * uvscale, Vector2(1, 1) * uvscale, Vector2(1, 0) * uvscale, Vector2(0, 0) * uvscale }; Vector2 full_uv[4] = { Vector2(0, 1), Vector2(1, 1), Vector2(1, 0), Vector2(0, 0) }; _draw_gui_primitive2(4, dst_pos, NULL, src_uv, full_uv); } void RasterizerGLES2::_process_glow_bloom() { glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, framebuffer.color); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY, true); if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) { copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, true); } copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::BLOOM, float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM])); copy_shader.set_uniform(CopyShaderGLES2::BLOOM_TRESHOLD, float(current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLOOM_TRESHOLD])); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); if (current_vd && current_env->fx_enabled[VS::ENV_FX_HDR]) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, current_vd->lum_color); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE), 2); copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE])); copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE])); //copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,1.0); copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_TRESHOLD, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_TRESHOLD])); copy_shader.set_uniform(CopyShaderGLES2::HDR_GLOW_SCALE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_GLOW_SCALE])); glActiveTexture(GL_TEXTURE0); } glViewport(0, 0, framebuffer.blur_size, framebuffer.blur_size); _copy_screen_quad(); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_COPY, false); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false); int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES]; Vector2 psize(1.0 / framebuffer.blur_size, 1.0 / framebuffer.blur_size); float pscale = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_SCALE]; float pmag = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_STRENGTH]; for (int i = 0; i < passes; i++) { static const Vector2 src_uv[4] = { Vector2(0, 1), Vector2(1, 1), Vector2(1, 0), Vector2(0, 0) }; static const Vector2 dst_pos[4] = { Vector2(-1, 1), Vector2(1, 1), Vector2(1, -1), Vector2(-1, -1) }; glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[1].fbo); glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color); copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, true); copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, false); copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale); copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, pmag); _draw_gui_primitive(4, dst_pos, NULL, src_uv); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[0].fbo); glBindTexture(GL_TEXTURE_2D, framebuffer.blur[1].color); copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, false); copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, true); copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale); copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, pmag); _draw_gui_primitive(4, dst_pos, NULL, src_uv); } copy_shader.set_conditional(CopyShaderGLES2::BLUR_V_PASS, false); copy_shader.set_conditional(CopyShaderGLES2::BLUR_H_PASS, false); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false); //blur it } void RasterizerGLES2::_process_hdr() { if (framebuffer.luminance.empty()) { return; } glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[0].fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, framebuffer.color); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY, true); copy_shader.bind(); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); glViewport(0, 0, framebuffer.luminance[0].size, framebuffer.luminance[0].size); _copy_screen_quad(); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_COPY, false); //int passes = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_PASSES]; copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE, true); copy_shader.bind(); for (int i = 1; i < framebuffer.luminance.size(); i++) { static const Vector2 src_uv[4] = { Vector2(0, 1), Vector2(1, 1), Vector2(1, 0), Vector2(0, 0) }; static const Vector2 dst_pos[4] = { Vector2(-1, 1), Vector2(1, 1), Vector2(1, -1), Vector2(-1, -1) }; Vector2 psize(1.0 / framebuffer.luminance[i - 1].size, 1.0 / framebuffer.luminance[i - 1].size); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.luminance[i].fbo); glBindTexture(GL_TEXTURE_2D, framebuffer.luminance[i - 1].color); glViewport(0, 0, framebuffer.luminance[i].size, framebuffer.luminance[i].size); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); if (framebuffer.luminance[i].size == 1) { //last step copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE, true); copy_shader.bind(); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, current_vd->lum_color); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_VD_LUM), 1); copy_shader.set_uniform(CopyShaderGLES2::HDR_TIME_DELTA, time_delta); copy_shader.set_uniform(CopyShaderGLES2::HDR_EXP_ADJ_SPEED, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE_ADJUST_SPEED])); copy_shader.set_uniform(CopyShaderGLES2::MIN_LUMINANCE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MIN_LUMINANCE])); copy_shader.set_uniform(CopyShaderGLES2::MAX_LUMINANCE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_MAX_LUMINANCE])); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); //swap them SWAP(current_vd->lum_color, framebuffer.luminance[i].color); SWAP(current_vd->lum_fbo, framebuffer.luminance[i].fbo); } copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize); _draw_gui_primitive(4, dst_pos, NULL, src_uv); } copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_REDUCE, false); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR_STORE, false); draw_next_frame = true; } void RasterizerGLES2::_draw_tex_bg() { glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_BLEND); glColorMask(1, 1, 1, 1); RID texture; if (current_env->bg_mode == VS::ENV_BG_TEXTURE) { texture = current_env->bg_param[VS::ENV_BG_PARAM_TEXTURE]; } else { texture = current_env->bg_param[VS::ENV_BG_PARAM_CUBEMAP]; } if (!texture_owner.owns(texture)) { return; } Texture *t = texture_owner.get(texture); glActiveTexture(GL_TEXTURE0); glBindTexture(t->target, t->tex_id); copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY, true); if (current_env->bg_mode == VS::ENV_BG_TEXTURE) { copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); } else { copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, true); } copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, true); copy_shader.bind(); if (current_env->bg_mode == VS::ENV_BG_TEXTURE) { glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); } else { glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE_CUBE), 0); } float nrg = float(current_env->bg_param[VS::ENV_BG_PARAM_ENERGY]); if (current_env->fx_enabled[VS::ENV_FX_HDR] && !use_fp16_fb) nrg *= 0.25; //go down a quarter for hdr copy_shader.set_uniform(CopyShaderGLES2::ENERGY, nrg); copy_shader.set_uniform(CopyShaderGLES2::CUSTOM_ALPHA, float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW])); float flip_sign = (current_env->bg_mode == VS::ENV_BG_TEXTURE && current_rt && current_rt_vflip) ? -1 : 1; Vector3 vertices[4] = { Vector3(-1, -1 * flip_sign, 1), Vector3(1, -1 * flip_sign, 1), Vector3(1, 1 * flip_sign, 1), Vector3(-1, 1 * flip_sign, 1) }; Vector3 src_uv[4] = { Vector3(0, 1, 0), Vector3(1, 1, 0), Vector3(1, 0, 0), Vector3(0, 0, 0) }; if (current_env->bg_mode == VS::ENV_BG_TEXTURE) { //regular texture //adjust aspect float aspect_t = t->width / float(t->height); float aspect_v = viewport.width / float(viewport.height); if (aspect_v > aspect_t) { //wider than texture for (int i = 0; i < 4; i++) { src_uv[i].y = (src_uv[i].y - 0.5) * (aspect_t / aspect_v) + 0.5; } } else { //narrower than texture for (int i = 0; i < 4; i++) { src_uv[i].x = (src_uv[i].x - 0.5) * (aspect_v / aspect_t) + 0.5; } } float scale = current_env->bg_param[VS::ENV_BG_PARAM_SCALE]; for (int i = 0; i < 4; i++) { src_uv[i].x *= scale; src_uv[i].y *= scale; } } else { //skybox uv vectors float vw, vh, zn; camera_projection.get_viewport_size(vw, vh); zn = camera_projection.get_z_near(); float scale = current_env->bg_param[VS::ENV_BG_PARAM_SCALE]; for (int i = 0; i < 4; i++) { Vector3 uv = src_uv[i]; uv.x = (uv.x * 2.0 - 1.0) * vw * scale; uv.y = -(uv.y * 2.0 - 1.0) * vh * scale; uv.z = -zn; src_uv[i] = camera_transform.basis.xform(uv).normalized(); src_uv[i].z = -src_uv[i].z; } } _draw_primitive(4, vertices, NULL, NULL, src_uv); copy_shader.set_conditional(CopyShaderGLES2::USE_ENERGY, false); copy_shader.set_conditional(CopyShaderGLES2::USE_RGBE, false); copy_shader.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false); copy_shader.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false); } void RasterizerGLES2::end_scene() { glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); bool use_fb = false; if (framebuffer.active) { //detect when to use the framebuffer object if (using_canvas_bg || texscreen_used || framebuffer.scale != 1) { use_fb = true; } else if (current_env) { use_fb = false; for (int i = 0; i < VS::ENV_FX_MAX; i++) { if (i == VS::ENV_FX_FOG) //does not need fb continue; if (current_env->fx_enabled[i]) { use_fb = true; break; } } } } if (use_fb) { glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo); glViewport(0, 0, viewport.width / framebuffer.scale, viewport.height / framebuffer.scale); glScissor(0, 0, viewport.width / framebuffer.scale, viewport.height / framebuffer.scale); material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR, !use_fp16_fb && current_env && current_env->fx_enabled[VS::ENV_FX_HDR]); } else { if (current_rt) { glScissor(0, 0, viewport.width, viewport.height); } else { glScissor(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height); } } glEnable(GL_SCISSOR_TEST); _glClearDepth(1.0); bool draw_tex_background = false; if (current_debug == VS::SCENARIO_DEBUG_OVERDRAW) { glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } else if (current_rt && current_rt_transparent) { glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } else if (current_env) { switch (current_env->bg_mode) { case VS::ENV_BG_CANVAS: case VS::ENV_BG_KEEP: { //copy from framebuffer if framebuffer glClear(GL_DEPTH_BUFFER_BIT); } break; case VS::ENV_BG_DEFAULT_COLOR: case VS::ENV_BG_COLOR: { Color bgcolor; if (current_env->bg_mode == VS::ENV_BG_COLOR) bgcolor = current_env->bg_param[VS::ENV_BG_PARAM_COLOR]; else bgcolor = GlobalConfig::get_singleton()->get("render/default_clear_color"); bgcolor = _convert_color(bgcolor); float a = use_fb ? float(current_env->bg_param[VS::ENV_BG_PARAM_GLOW]) : 1.0; glClearColor(bgcolor.r, bgcolor.g, bgcolor.b, a); _glClearDepth(1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } break; case VS::ENV_BG_TEXTURE: case VS::ENV_BG_CUBEMAP: { glClear(GL_DEPTH_BUFFER_BIT); draw_tex_background = true; } break; } } else { Color c = _convert_color(Color(0.3, 0.3, 0.3)); glClearColor(c.r, c.g, c.b, 0.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } glDisable(GL_SCISSOR_TEST); //material_shader.set_uniform_camera(MaterialShaderGLES2::PROJECTION_MATRIX, camera_projection); /* printf("setting projection to "); for (int i=0; i<16; i++) { printf("%f, ", ((float*)camera_projection.matrix)[i]); }; printf("\n"); print_line(String("setting camera to ")+camera_transform_inverse); */ //material_shader.set_uniform_default(MaterialShaderGLES2::CAMERA_INVERSE, camera_transform_inverse); current_depth_test = true; current_depth_mask = true; texscreen_copied = false; glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } glDisable(GL_BLEND); current_blend_mode = VS::MATERIAL_BLEND_MODE_MIX; //material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]); opaque_render_list.sort_mat_light_type_flags(); _render_list_forward(&opaque_render_list, camera_transform, camera_transform_inverse, camera_projection, false, fragment_lighting); if (draw_tex_background) { //most 3D vendors recommend drawing a texture bg or skybox here, //after opaque geometry has been drawn //so the zbuffer can get rid of most pixels _draw_tex_bg(); } glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } glDisable(GL_BLEND); current_blend_mode = VS::MATERIAL_BLEND_MODE_MIX; material_shader.set_conditional(MaterialShaderGLES2::USE_GLOW, false); if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) { glColorMask(1, 1, 1, 0); //don't touch alpha } alpha_render_list.sort_z(); _render_list_forward(&alpha_render_list, camera_transform, camera_transform_inverse, camera_projection, false, fragment_lighting, true); glColorMask(1, 1, 1, 1); //material_shader.set_conditional( MaterialShaderGLES2::USE_FOG,false); DEBUG_TEST_ERROR("Drawing Scene"); #ifdef GLEW_ENABLED glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif if (use_fb) { for (int i = 0; i < VS::ARRAY_MAX; i++) { glDisableVertexAttribArray(i); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDisable(GL_CULL_FACE); glDisable(GL_SCISSOR_TEST); glDepthMask(false); if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) { int hdr_tm = current_env->fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER]; switch (hdr_tm) { case VS::ENV_FX_HDR_TONE_MAPPER_LINEAR: { } break; case VS::ENV_FX_HDR_TONE_MAPPER_LOG: { copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER, true); } break; case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT: { copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, true); } break; case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT_AUTOWHITE: { copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, true); copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE, true); } break; } _process_hdr(); } if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) { _process_glow_bloom(); int glow_transfer_mode = current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE]; if (glow_transfer_mode == 1) copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN, true); if (glow_transfer_mode == 2) copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT, true); } glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer); Size2 size; if (current_rt) { glBindFramebuffer(GL_FRAMEBUFFER, current_rt->fbo); glViewport(0, 0, viewport.width, viewport.height); size = Size2(viewport.width, viewport.height); } else { glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height); size = Size2(viewport.width, viewport.height); } //time to copy!!! copy_shader.set_conditional(CopyShaderGLES2::USE_BCS, current_env && current_env->fx_enabled[VS::ENV_FX_BCS]); copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB, current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW, current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, current_env && current_env->fx_enabled[VS::ENV_FX_HDR]); copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, true); copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA, current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]); copy_shader.bind(); //copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0); if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::GLOW_SOURCE), 1); } if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, current_vd->lum_color); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE), 2); copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE])); copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE, float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE])); } if (current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]) copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, Size2(1.0 / size.x, 1.0 / size.y)); if (current_env && current_env->fx_enabled[VS::ENV_FX_BCS]) { Vector3 bcs; bcs.x = current_env->fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS]; bcs.y = current_env->fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST]; bcs.z = current_env->fx_param[VS::ENV_FX_PARAM_BCS_SATURATION]; copy_shader.set_uniform(CopyShaderGLES2::BCS, bcs); } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, framebuffer.color); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); _copy_screen_quad(); copy_shader.set_conditional(CopyShaderGLES2::USE_BCS, false); copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB, false); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW, false); copy_shader.set_conditional(CopyShaderGLES2::USE_HDR, false); copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA, false); copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA, false); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN, false); copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT, false); copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER, false); copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE, false); copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER, false); material_shader.set_conditional(MaterialShaderGLES2::USE_8BIT_HDR, false); if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR] && GLOBAL_DEF("rasterizer/debug_hdr", false)) { _debug_luminances(); } } current_env = NULL; current_debug = VS::SCENARIO_DEBUG_DISABLED; if (GLOBAL_DEF("rasterizer/debug_shadow_maps", false)) { _debug_shadows(); } //_debug_luminances(); //_debug_samplers(); if (using_canvas_bg) { using_canvas_bg = false; glColorMask(1, 1, 1, 1); //don't touch alpha } } void RasterizerGLES2::end_shadow_map() { ERR_FAIL_COND(!shadow); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glDisable(GL_DITHER); glEnable(GL_DEPTH_TEST); glDepthMask(true); ShadowBuffer *sb = shadow->near_shadow_buffer; ERR_FAIL_COND(!sb); glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo); if (!use_rgba_shadowmaps) glColorMask(0, 0, 0, 0); //glEnable(GL_POLYGON_OFFSET_FILL); //glPolygonOffset( 8.0f, 16.0f); CameraMatrix cm; float z_near, z_far; Transform light_transform; float dp_direction = 0.0; bool flip_facing = false; Rect2 vp_rect; switch (shadow->base->type) { case VS::LIGHT_DIRECTIONAL: { if (shadow->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { cm = shadow->custom_projection[shadow_pass]; light_transform = shadow->custom_transform[shadow_pass]; if (shadow_pass == 0) { vp_rect = Rect2(0, sb->size / 2, sb->size / 2, sb->size / 2); glViewport(0, sb->size / 2, sb->size / 2, sb->size / 2); glScissor(0, sb->size / 2, sb->size / 2, sb->size / 2); } else if (shadow_pass == 1) { vp_rect = Rect2(0, 0, sb->size / 2, sb->size / 2); glViewport(0, 0, sb->size / 2, sb->size / 2); glScissor(0, 0, sb->size / 2, sb->size / 2); } else if (shadow_pass == 2) { vp_rect = Rect2(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2); glViewport(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2); glScissor(sb->size / 2, sb->size / 2, sb->size / 2, sb->size / 2); } else if (shadow_pass == 3) { vp_rect = Rect2(sb->size / 2, 0, sb->size / 2, sb->size / 2); glViewport(sb->size / 2, 0, sb->size / 2, sb->size / 2); glScissor(sb->size / 2, 0, sb->size / 2, sb->size / 2); } glEnable(GL_SCISSOR_TEST); } else if (shadow->base->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { if (shadow_pass == 0) { cm = shadow->custom_projection[0]; light_transform = shadow->custom_transform[0]; vp_rect = Rect2(0, sb->size / 2, sb->size, sb->size / 2); glViewport(0, sb->size / 2, sb->size, sb->size / 2); glScissor(0, sb->size / 2, sb->size, sb->size / 2); } else { cm = shadow->custom_projection[1]; light_transform = shadow->custom_transform[1]; vp_rect = Rect2(0, 0, sb->size, sb->size / 2); glViewport(0, 0, sb->size, sb->size / 2); glScissor(0, 0, sb->size, sb->size / 2); } glEnable(GL_SCISSOR_TEST); } else { cm = shadow->custom_projection[0]; light_transform = shadow->custom_transform[0]; vp_rect = Rect2(0, 0, sb->size, sb->size); glViewport(0, 0, sb->size, sb->size); } z_near = cm.get_z_near(); z_far = cm.get_z_far(); _glClearDepth(1.0f); glClearColor(1, 1, 1, 1); if (use_rgba_shadowmaps) glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); else glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); } break; case VS::LIGHT_OMNI: { material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID, true); dp_direction = shadow_pass ? 1.0 : -1.0; flip_facing = (shadow_pass == 1); light_transform = shadow->transform; z_near = 0; z_far = shadow->base->vars[VS::LIGHT_PARAM_RADIUS]; shadow->dp.x = 1.0 / z_far; shadow->dp.y = dp_direction; if (shadow_pass == 0) { vp_rect = Rect2(0, sb->size / 2, sb->size, sb->size / 2); glViewport(0, sb->size / 2, sb->size, sb->size / 2); glScissor(0, sb->size / 2, sb->size, sb->size / 2); } else { vp_rect = Rect2(0, 0, sb->size, sb->size / 2); glViewport(0, 0, sb->size, sb->size / 2); glScissor(0, 0, sb->size, sb->size / 2); } glEnable(GL_SCISSOR_TEST); shadow->projection = cm; glClearColor(1, 1, 1, 1); _glClearDepth(1.0f); if (use_rgba_shadowmaps) glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); else glClear(GL_DEPTH_BUFFER_BIT); glDisable(GL_SCISSOR_TEST); } break; case VS::LIGHT_SPOT: { float far = shadow->base->vars[VS::LIGHT_PARAM_RADIUS]; ERR_FAIL_COND(far <= 0); float near = far / 200.0; if (near < 0.05) near = 0.05; float angle = shadow->base->vars[VS::LIGHT_PARAM_SPOT_ANGLE]; cm.set_perspective(angle * 2.0, 1.0, near, far); shadow->projection = cm; // cache light_transform = shadow->transform; z_near = cm.get_z_near(); z_far = cm.get_z_far(); glViewport(0, 0, sb->size, sb->size); vp_rect = Rect2(0, 0, sb->size, sb->size); _glClearDepth(1.0f); glClearColor(1, 1, 1, 1); if (use_rgba_shadowmaps) glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); else glClear(GL_DEPTH_BUFFER_BIT); } break; } Transform light_transform_inverse = light_transform.affine_inverse(); opaque_render_list.sort_mat_geom(); _render_list_forward(&opaque_render_list, light_transform, light_transform_inverse, cm, flip_facing, false); material_shader.set_conditional(MaterialShaderGLES2::USE_DUAL_PARABOLOID, false); //if (!use_rgba_shadowmaps) if (shadow_filter == SHADOW_FILTER_ESM) { copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH, use_rgba_shadowmaps); copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE, !use_rgba_shadowmaps); Vector2 psize(1.0 / sb->size, 1.0 / sb->size); float pscale = 1.0; int passes = shadow->base->vars[VS::LIGHT_PARAM_SHADOW_BLUR_PASSES]; glDisable(GL_BLEND); glDisable(GL_CULL_FACE); #ifdef GLEW_ENABLED glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif for (int i = 0; i < VS::ARRAY_MAX; i++) { glDisableVertexAttribArray(i); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisable(GL_SCISSOR_TEST); if (!use_rgba_shadowmaps) { glEnable(GL_DEPTH_TEST); glDepthFunc(GL_ALWAYS); glDepthMask(true); } else { glDisable(GL_DEPTH_TEST); } for (int i = 0; i < passes; i++) { Vector2 src_sb_uv[4] = { (vp_rect.pos + Vector2(0, vp_rect.size.y)) / sb->size, (vp_rect.pos + vp_rect.size) / sb->size, (vp_rect.pos + Vector2(vp_rect.size.x, 0)) / sb->size, (vp_rect.pos) / sb->size }; /* Vector2 src_uv[4]={ Vector2( 0, 1), Vector2( 1, 1), Vector2( 1, 0), Vector2( 0, 0) }; */ static const Vector2 dst_pos[4] = { Vector2(-1, 1), Vector2(1, 1), Vector2(1, -1), Vector2(-1, -1) }; glBindFramebuffer(GL_FRAMEBUFFER, blur_shadow_buffer.fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, sb->depth); #ifdef GLEW_ENABLED //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); #endif copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, true); copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, false); copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale); copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, 1); //copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); _draw_gui_primitive(4, dst_pos, NULL, src_sb_uv); Vector2 src_bb_uv[4] = { (vp_rect.pos + Vector2(0, vp_rect.size.y)) / blur_shadow_buffer.size, (vp_rect.pos + vp_rect.size) / blur_shadow_buffer.size, (vp_rect.pos + Vector2(vp_rect.size.x, 0)) / blur_shadow_buffer.size, (vp_rect.pos) / blur_shadow_buffer.size, }; glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, blur_shadow_buffer.depth); #ifdef GLEW_ENABLED //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); #endif copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, false); copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, true); copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE, psize); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE, pscale); copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE, 1); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE), 0); _draw_gui_primitive(4, dst_pos, NULL, src_bb_uv); } glDepthFunc(GL_LEQUAL); copy_shader.set_conditional(CopyShaderGLES2::USE_RGBA_DEPTH, false); copy_shader.set_conditional(CopyShaderGLES2::USE_HIGHP_SOURCE, false); copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_V_PASS, false); copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS, false); } DEBUG_TEST_ERROR("Drawing Shadow"); shadow = NULL; glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer); glColorMask(1, 1, 1, 1); //glDisable(GL_POLYGON_OFFSET_FILL); } void RasterizerGLES2::_debug_draw_shadow(GLuint tex, const Rect2 &p_rect) { Transform2D modelview; modelview.translate(p_rect.pos.x, p_rect.pos.y); canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, modelview); glBindTexture(GL_TEXTURE_2D, tex); Vector3 coords[4] = { Vector3(p_rect.pos.x, p_rect.pos.y, 0), Vector3(p_rect.pos.x + p_rect.size.width, p_rect.pos.y, 0), Vector3(p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height, 0), Vector3(p_rect.pos.x, p_rect.pos.y + p_rect.size.height, 0) }; Vector3 texcoords[4] = { Vector3(0.0f, 0.0f, 0), Vector3(1.0f, 0.0f, 0), Vector3(1.0f, 1.0f, 0), Vector3(0.0f, 1.0f, 0), }; _draw_primitive(4, coords, 0, 0, texcoords); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE); } void RasterizerGLES2::_debug_draw_shadows_type(Vector &p_shadows, Point2 &ofs) { Size2 debug_size(128, 128); //Size2 debug_size(512,512); int useblur = shadow_filter == SHADOW_FILTER_ESM ? 1 : 0; for (int i = 0; i < p_shadows.size() + useblur; i++) { ShadowBuffer *sb = i == p_shadows.size() ? &blur_shadow_buffer : &p_shadows[i]; if (!sb->owner && i != p_shadows.size()) continue; _debug_draw_shadow(sb->depth, Rect2(ofs, debug_size)); ofs.x += debug_size.x; if ((ofs.x + debug_size.x) > viewport.width) { ofs.x = 0; ofs.y += debug_size.y; } } } void RasterizerGLES2::_debug_luminances() { canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, !use_fp16_fb); canvas_begin(); glDisable(GL_BLEND); canvas_shader.bind(); Size2 debug_size(128, 128); Size2 ofs; for (int i = 0; i <= framebuffer.luminance.size(); i++) { if (i == framebuffer.luminance.size()) { if (!current_vd) break; _debug_draw_shadow(current_vd->lum_color, Rect2(ofs, debug_size)); } else { _debug_draw_shadow(framebuffer.luminance[i].color, Rect2(ofs, debug_size)); } ofs.x += debug_size.x / 2; if ((ofs.x + debug_size.x) > viewport.width) { ofs.x = 0; ofs.y += debug_size.y; } } canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, false); } void RasterizerGLES2::_debug_samplers() { canvas_shader.set_conditional(CanvasShaderGLES2::DEBUG_ENCODED_32, false); canvas_begin(); glDisable(GL_BLEND); _set_color_attrib(Color(1, 1, 1, 1)); canvas_shader.bind(); List samplers; sampled_light_owner.get_owned_list(&samplers); Size2 debug_size(128, 128); Size2 ofs; for (List::Element *E = samplers.front(); E; E = E->next()) { SampledLight *sl = sampled_light_owner.get(E->get()); _debug_draw_shadow(sl->texture, Rect2(ofs, debug_size)); ofs.x += debug_size.x / 2; if ((ofs.x + debug_size.x) > viewport.width) { ofs.x = 0; ofs.y += debug_size.y; } } } void RasterizerGLES2::_debug_shadows() { canvas_begin(); glDisable(GL_BLEND); Size2 ofs; /* for(int i=0;i<16;i++) { glActiveTexture(GL_TEXTURE0+i); //glDisable(GL_TEXTURE_2D); } glActiveTexture(GL_TEXTURE0); //glEnable(GL_TEXTURE_2D); */ _debug_draw_shadows_type(near_shadow_buffers, ofs); //_debug_draw_shadows_type(far_shadow_buffers,ofs); } void RasterizerGLES2::end_frame() { //print_line("VTX: "+itos(_rinfo.vertex_count)+" OBJ: "+itos(_rinfo.object_count)+" MAT: "+itos(_rinfo.mat_change_count)+" SHD: "+itos(_rinfo.shader_change_count)+" CI: "+itos(_rinfo.ci_draw_commands)); //print_line("TOTAL VTX: "+itos(_rinfo.vertex_count)); OS::get_singleton()->swap_buffers(); } void RasterizerGLES2::flush_frame() { glFlush(); } /* CANVAS API */ void RasterizerGLES2::begin_canvas_bg() { if (framebuffer.active) { using_canvas_bg = true; glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo); glViewport(0, 0, viewport.width, viewport.height); } else { using_canvas_bg = false; } } void RasterizerGLES2::canvas_begin() { if (using_canvas_bg) { glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo); glColorMask(1, 1, 1, 0); //don't touch alpha } glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); #ifdef GLEW_ENABLED glDisable(GL_POINT_SPRITE); glDisable(GL_VERTEX_PROGRAM_POINT_SIZE); #endif glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } //glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); glLineWidth(1.0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); for (int i = 0; i < VS::ARRAY_MAX; i++) { glDisableVertexAttribArray(i); } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, white_tex); canvas_tex = RID(); //material_shader.unbind(); canvas_shader.unbind(); canvas_shader.set_custom_shader(0); canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, false); canvas_shader.bind(); canvas_shader.set_uniform(CanvasShaderGLES2::TEXTURE, 0); canvas_use_modulate = false; _set_color_attrib(Color(1, 1, 1)); canvas_transform = Transform(); canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f); float csy = 1.0; if (current_rt && current_rt_vflip) csy = -1.0; canvas_transform.scale(Vector3(2.0f / viewport.width, csy * -2.0f / viewport.height, 1.0f)); canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform); canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, Transform2D()); canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D()); canvas_opacity = 1.0; canvas_blend_mode = VS::MATERIAL_BLEND_MODE_MIX; canvas_texscreen_used = false; uses_texpixel_size = false; canvas_last_material = NULL; } void RasterizerGLES2::canvas_disable_blending() { glDisable(GL_BLEND); } void RasterizerGLES2::canvas_set_opacity(float p_opacity) { canvas_opacity = p_opacity; } void RasterizerGLES2::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) { if (p_mode == canvas_blend_mode) return; switch (p_mode) { case VS::MATERIAL_BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case VS::MATERIAL_BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_DST_COLOR, GL_ZERO); } break; case VS::MATERIAL_BLEND_MODE_PREMULT_ALPHA: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } break; } canvas_blend_mode = p_mode; } void RasterizerGLES2::canvas_begin_rect(const Transform2D &p_transform) { canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, p_transform); canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D()); } void RasterizerGLES2::canvas_set_clip(bool p_clip, const Rect2 &p_rect) { if (p_clip) { glEnable(GL_SCISSOR_TEST); //glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)), int x = p_rect.pos.x; int y = window_size.height - (p_rect.pos.y + p_rect.size.y); int w = p_rect.size.x; int h = p_rect.size.y; glScissor(x, y, w, h); } else { glDisable(GL_SCISSOR_TEST); } } void RasterizerGLES2::canvas_end_rect() { //glPopMatrix(); } RasterizerGLES2::Texture *RasterizerGLES2::_bind_canvas_texture(const RID &p_texture) { if (p_texture == canvas_tex && !rebind_texpixel_size) { if (canvas_tex.is_valid()) { Texture *texture = texture_owner.get(p_texture); return texture; } return NULL; } rebind_texpixel_size = false; if (p_texture.is_valid()) { Texture *texture = texture_owner.get(p_texture); if (!texture) { canvas_tex = RID(); glBindTexture(GL_TEXTURE_2D, white_tex); return NULL; } if (texture->render_target) texture->render_target->last_pass = frame; glBindTexture(GL_TEXTURE_2D, texture->tex_id); canvas_tex = p_texture; if (uses_texpixel_size) { canvas_shader.set_uniform(CanvasShaderGLES2::TEXPIXEL_SIZE, Size2(1.0 / texture->width, 1.0 / texture->height)); } return texture; } else { glBindTexture(GL_TEXTURE_2D, white_tex); canvas_tex = p_texture; } return NULL; } void RasterizerGLES2::canvas_draw_line(const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width, bool p_antialiased) { _bind_canvas_texture(RID()); Color c = p_color; c.a *= canvas_opacity; _set_color_attrib(c); Vector3 verts[2] = { Vector3(p_from.x, p_from.y, 0), Vector3(p_to.x, p_to.y, 0) }; #ifdef GLEW_ENABLED if (p_antialiased) glEnable(GL_LINE_SMOOTH); #endif glLineWidth(p_width); _draw_primitive(2, verts, 0, 0, 0); #ifdef GLEW_ENABLED if (p_antialiased) glDisable(GL_LINE_SMOOTH); #endif _rinfo.ci_draw_commands++; } void RasterizerGLES2::_draw_gui_primitive(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs) { static const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN }; //#define GLES_USE_PRIMITIVE_BUFFER #ifndef GLES_NO_CLIENT_ARRAYS glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices); if (p_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors); } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } glDrawArrays(prim[p_points], 0, p_points); #else glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer); float b[32]; int ofs = 0; glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs); for (int i = 0; i < p_points; i++) { b[ofs++] = p_vertices[i].x; b[ofs++] = p_vertices[i].y; } if (p_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(float) * 4, ((float *)0) + ofs); for (int i = 0; i < p_points; i++) { b[ofs++] = p_colors[i].r; b[ofs++] = p_colors[i].g; b[ofs++] = p_colors[i].b; b[ofs++] = p_colors[i].a; } } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs); for (int i = 0; i < p_points; i++) { b[ofs++] = p_uvs[i].x; b[ofs++] = p_uvs[i].y; } } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } glBufferSubData(GL_ARRAY_BUFFER, 0, ofs * 4, &b[0]); glDrawArrays(prim[p_points], 0, p_points); glBindBuffer(GL_ARRAY_BUFFER, 0); #endif _rinfo.ci_draw_commands++; } void RasterizerGLES2::_draw_gui_primitive2(int p_points, const Vector2 *p_vertices, const Color *p_colors, const Vector2 *p_uvs, const Vector2 *p_uvs2) { static const GLenum prim[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN }; glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices); if (p_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors); } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } if (p_uvs2) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV2); glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs2); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV2); } glDrawArrays(prim[p_points], 0, p_points); _rinfo.ci_draw_commands++; } void RasterizerGLES2::_draw_textured_quad(const Rect2 &p_rect, const Rect2 &p_src_region, const Size2 &p_tex_size, bool p_h_flip, bool p_v_flip, bool p_transpose) { Vector2 texcoords[4] = { Vector2(p_src_region.pos.x / p_tex_size.width, p_src_region.pos.y / p_tex_size.height), Vector2((p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width, p_src_region.pos.y / p_tex_size.height), Vector2((p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width, (p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height), Vector2(p_src_region.pos.x / p_tex_size.width, (p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height) }; if (p_transpose) { SWAP(texcoords[1], texcoords[3]); } if (p_h_flip) { SWAP(texcoords[0], texcoords[1]); SWAP(texcoords[2], texcoords[3]); } if (p_v_flip) { SWAP(texcoords[1], texcoords[2]); SWAP(texcoords[0], texcoords[3]); } Vector2 coords[4] = { Vector2(p_rect.pos.x, p_rect.pos.y), Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y), Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height), Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height) }; _draw_gui_primitive(4, coords, 0, texcoords); _rinfo.ci_draw_commands++; } void RasterizerGLES2::_draw_quad(const Rect2 &p_rect) { Vector2 coords[4] = { Vector2(p_rect.pos.x, p_rect.pos.y), Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y), Vector2(p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height), Vector2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height) }; _draw_gui_primitive(4, coords, 0, 0); _rinfo.ci_draw_commands++; } void RasterizerGLES2::canvas_draw_rect(const Rect2 &p_rect, int p_flags, const Rect2 &p_source, RID p_texture, const Color &p_modulate) { Color m = p_modulate; m.a *= canvas_opacity; _set_color_attrib(m); Texture *texture = _bind_canvas_texture(p_texture); if (texture) { bool untile = false; if (p_flags & CANVAS_RECT_TILE && !(texture->flags & VS::TEXTURE_FLAG_REPEAT)) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); untile = true; } if (!(p_flags & CANVAS_RECT_REGION)) { Rect2 region = Rect2(0, 0, texture->width, texture->height); _draw_textured_quad(p_rect, region, region.size, p_flags & CANVAS_RECT_FLIP_H, p_flags & CANVAS_RECT_FLIP_V, p_flags & CANVAS_RECT_TRANSPOSE); } else { _draw_textured_quad(p_rect, p_source, Size2(texture->width, texture->height), p_flags & CANVAS_RECT_FLIP_H, p_flags & CANVAS_RECT_FLIP_V, p_flags & CANVAS_RECT_TRANSPOSE); } if (untile) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } } else { //glDisable(GL_TEXTURE_2D); _draw_quad(p_rect); //print_line("rect: "+p_rect); } _rinfo.ci_draw_commands++; } void RasterizerGLES2::canvas_draw_style_box(const Rect2 &p_rect, const Rect2 &p_src_region, RID p_texture, const float *p_margin, bool p_draw_center, const Color &p_modulate) { Color m = p_modulate; m.a *= canvas_opacity; _set_color_attrib(m); Texture *texture = _bind_canvas_texture(p_texture); ERR_FAIL_COND(!texture); Rect2 region = p_src_region; if (region.size.width <= 0) region.size.width = texture->width; if (region.size.height <= 0) region.size.height = texture->height; /* CORNERS */ _draw_textured_quad( // top left Rect2(p_rect.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])), Rect2(region.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // top right Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])), Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom left Rect2(Point2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])), Rect2(Point2(region.pos.x, region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom right Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])), Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); Rect2 rect_center(p_rect.pos + Point2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2(p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM])); Rect2 src_center(Point2(region.pos.x + p_margin[MARGIN_LEFT], region.pos.y + p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM])); _draw_textured_quad( // top Rect2(Point2(rect_center.pos.x, p_rect.pos.y), Size2(rect_center.size.width, p_margin[MARGIN_TOP])), Rect2(Point2(src_center.pos.x, region.pos.y), Size2(src_center.size.width, p_margin[MARGIN_TOP])), Size2(texture->width, texture->height)); _draw_textured_quad( // bottom Rect2(Point2(rect_center.pos.x, rect_center.pos.y + rect_center.size.height), Size2(rect_center.size.width, p_margin[MARGIN_BOTTOM])), Rect2(Point2(src_center.pos.x, src_center.pos.y + src_center.size.height), Size2(src_center.size.width, p_margin[MARGIN_BOTTOM])), Size2(texture->width, texture->height)); _draw_textured_quad( // left Rect2(Point2(p_rect.pos.x, rect_center.pos.y), Size2(p_margin[MARGIN_LEFT], rect_center.size.height)), Rect2(Point2(region.pos.x, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT], src_center.size.height)), Size2(texture->width, texture->height)); _draw_textured_quad( // right Rect2(Point2(rect_center.pos.x + rect_center.size.width, rect_center.pos.y), Size2(p_margin[MARGIN_RIGHT], rect_center.size.height)), Rect2(Point2(src_center.pos.x + src_center.size.width, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT], src_center.size.height)), Size2(texture->width, texture->height)); if (p_draw_center) { _draw_textured_quad( rect_center, src_center, Size2(texture->width, texture->height)); } _rinfo.ci_draw_commands++; } void RasterizerGLES2::canvas_draw_primitive(const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, RID p_texture, float p_width) { ERR_FAIL_COND(p_points.size() < 1); _set_color_attrib(Color(1, 1, 1, canvas_opacity)); _bind_canvas_texture(p_texture); _draw_gui_primitive(p_points.size(), p_points.ptr(), p_colors.ptr(), p_uvs.ptr()); _rinfo.ci_draw_commands++; } void RasterizerGLES2::canvas_draw_polygon(int p_vertex_count, const int *p_indices, const Vector2 *p_vertices, const Vector2 *p_uvs, const Color *p_colors, const RID &p_texture, bool p_singlecolor) { bool do_colors = false; Color m; if (p_singlecolor) { m = *p_colors; m.a *= canvas_opacity; _set_color_attrib(m); } else if (!p_colors) { m = Color(1, 1, 1, canvas_opacity); _set_color_attrib(m); } else do_colors = true; Texture *texture = _bind_canvas_texture(p_texture); #ifndef GLES_NO_CLIENT_ARRAYS glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(Vector2), p_vertices); if (do_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), p_colors); } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (texture && p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), p_uvs); } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } if (p_indices) { #ifdef GLEW_ENABLED glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_INT, p_indices); #else static const int _max_draw_poly_indices = 16 * 1024; // change this size if needed!!! ERR_FAIL_COND(p_vertex_count > _max_draw_poly_indices); static uint16_t _draw_poly_indices[_max_draw_poly_indices]; for (int i = 0; i < p_vertex_count; i++) { _draw_poly_indices[i] = p_indices[i]; }; glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_SHORT, _draw_poly_indices); #endif } else { glDrawArrays(GL_TRIANGLES, 0, p_vertex_count); } #else //WebGL specific impl. glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer); float *b = GlobalVertexBuffer; int ofs = 0; if (p_vertex_count > MAX_POLYGON_VERTICES) { print_line("Too many vertices to render"); return; } glEnableVertexAttribArray(VS::ARRAY_VERTEX); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs); for (int i = 0; i < p_vertex_count; i++) { b[ofs++] = p_vertices[i].x; b[ofs++] = p_vertices[i].y; } if (p_colors && do_colors) { glEnableVertexAttribArray(VS::ARRAY_COLOR); glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(float) * 4, ((float *)0) + ofs); for (int i = 0; i < p_vertex_count; i++) { b[ofs++] = p_colors[i].r; b[ofs++] = p_colors[i].g; b[ofs++] = p_colors[i].b; b[ofs++] = p_colors[i].a; } } else { glDisableVertexAttribArray(VS::ARRAY_COLOR); } if (p_uvs) { glEnableVertexAttribArray(VS::ARRAY_TEX_UV); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(float) * 2, ((float *)0) + ofs); for (int i = 0; i < p_vertex_count; i++) { b[ofs++] = p_uvs[i].x; b[ofs++] = p_uvs[i].y; } } else { glDisableVertexAttribArray(VS::ARRAY_TEX_UV); } glBufferSubData(GL_ARRAY_BUFFER, 0, ofs * 4, &b[0]); //bind the indices buffer. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indices_buffer); static const int _max_draw_poly_indices = 16 * 1024; // change this size if needed!!! ERR_FAIL_COND(p_vertex_count > _max_draw_poly_indices); static uint16_t _draw_poly_indices[_max_draw_poly_indices]; for (int i = 0; i < p_vertex_count; i++) { _draw_poly_indices[i] = p_indices[i]; //OS::get_singleton()->print("ind: %d ", p_indices[i]); }; //copy the data to GPU. glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, p_vertex_count * sizeof(uint16_t), &_draw_poly_indices[0]); //draw the triangles. glDrawElements(GL_TRIANGLES, p_vertex_count, GL_UNSIGNED_SHORT, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); #endif _rinfo.ci_draw_commands++; }; void RasterizerGLES2::canvas_set_transform(const Transform2D &p_transform) { canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, p_transform); //canvas_transform = Variant(p_transform); } RID RasterizerGLES2::canvas_light_occluder_create() { CanvasOccluder *co = memnew(CanvasOccluder); co->index_id = 0; co->vertex_id = 0; co->len = 0; return canvas_occluder_owner.make_rid(co); } void RasterizerGLES2::canvas_light_occluder_set_polylines(RID p_occluder, const PoolVector &p_lines) { CanvasOccluder *co = canvas_occluder_owner.get(p_occluder); ERR_FAIL_COND(!co); co->lines = p_lines; if (p_lines.size() != co->len) { if (co->index_id) glDeleteBuffers(1, &co->index_id); if (co->vertex_id) glDeleteBuffers(1, &co->vertex_id); co->index_id = 0; co->vertex_id = 0; co->len = 0; } if (p_lines.size()) { PoolVector geometry; PoolVector indices; int lc = p_lines.size(); geometry.resize(lc * 6); indices.resize(lc * 3); PoolVector::Write vw = geometry.write(); PoolVector::Write iw = indices.write(); PoolVector::Read lr = p_lines.read(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vw[i * 12 + 0] = lr[i * 2 + 0].x; vw[i * 12 + 1] = lr[i * 2 + 0].y; vw[i * 12 + 2] = POLY_HEIGHT; vw[i * 12 + 3] = lr[i * 2 + 1].x; vw[i * 12 + 4] = lr[i * 2 + 1].y; vw[i * 12 + 5] = POLY_HEIGHT; vw[i * 12 + 6] = lr[i * 2 + 1].x; vw[i * 12 + 7] = lr[i * 2 + 1].y; vw[i * 12 + 8] = -POLY_HEIGHT; vw[i * 12 + 9] = lr[i * 2 + 0].x; vw[i * 12 + 10] = lr[i * 2 + 0].y; vw[i * 12 + 11] = -POLY_HEIGHT; iw[i * 6 + 0] = i * 4 + 0; iw[i * 6 + 1] = i * 4 + 1; iw[i * 6 + 2] = i * 4 + 2; iw[i * 6 + 3] = i * 4 + 2; iw[i * 6 + 4] = i * 4 + 3; iw[i * 6 + 5] = i * 4 + 0; } //if same buffer len is being set, just use BufferSubData to avoid a pipeline flush if (!co->vertex_id) { glGenBuffers(1, &co->vertex_id); glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(real_t), vw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ARRAY_BUFFER, co->vertex_id); glBufferSubData(GL_ARRAY_BUFFER, 0, lc * 6 * sizeof(real_t), vw.ptr()); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind if (!co->index_id) { glGenBuffers(1, &co->index_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, lc * 3 * sizeof(uint16_t), iw.ptr(), GL_STATIC_DRAW); } else { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, co->index_id); glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, 0, lc * 3 * sizeof(uint16_t), iw.ptr()); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind co->len = lc; } } RID RasterizerGLES2::canvas_light_shadow_buffer_create(int p_width) { CanvasLightShadow *cls = memnew(CanvasLightShadow); if (p_width > max_texture_size) p_width = max_texture_size; cls->size = p_width; glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &cls->fbo); glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo); // Create a render buffer glGenRenderbuffers(1, &cls->rbo); glBindRenderbuffer(GL_RENDERBUFFER, cls->rbo); // Create a texture for storing the depth glGenTextures(1, &cls->depth); glBindTexture(GL_TEXTURE_2D, cls->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Remove artifact on the edges of the shadowmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); cls->height = 16; //print_line("ERROR? "+itos(glGetError())); if (read_depth_supported) { // We'll use a depth texture to store the depths in the shadow map glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, cls->size, cls->height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); #ifdef GLEW_ENABLED glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #endif // Attach the depth texture to FBO depth attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, cls->depth, 0); #ifdef GLEW_ENABLED glDrawBuffer(GL_NONE); #endif } else { // We'll use a RGBA texture into which we pack the depth info glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, cls->size, cls->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); // Attach the RGBA texture to FBO color attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, cls->depth, 0); cls->rgba = cls->depth; // Allocate 16-bit depth buffer glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, cls->size, cls->height); // Attach the render buffer as depth buffer - will be ignored glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, cls->rbo); } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("errnum: %x\n",status); #ifdef GLEW_ENABLED if (read_depth_supported) { //glDrawBuffer(GL_BACK); } #endif glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); DEBUG_TEST_ERROR("2D Shadow Buffer Init"); ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, RID()); #ifdef GLEW_ENABLED if (read_depth_supported) { //glDrawBuffer(GL_BACK); } #endif return canvas_light_shadow_owner.make_rid(cls); } void RasterizerGLES2::canvas_light_shadow_buffer_update(RID p_buffer, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, CanvasLightOccluderInstance *p_occluders, CameraMatrix *p_xform_cache) { CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_buffer); ERR_FAIL_COND(!cls); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glDisable(GL_DITHER); glDisable(GL_CULL_FACE); glDepthFunc(GL_LEQUAL); glEnable(GL_DEPTH_TEST); glDepthMask(true); glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo); if (!use_rgba_shadowmaps) glColorMask(0, 0, 0, 0); glEnableVertexAttribArray(VS::ARRAY_VERTEX); canvas_shadow_shader.bind(); glViewport(0, 0, cls->size, cls->height); _glClearDepth(1.0f); glClearColor(1, 1, 1, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); VS::CanvasOccluderPolygonCullMode cull = VS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; for (int i = 0; i < 4; i++) { //make sure it remains orthogonal, makes easy to read angle later Transform light; light.origin[0] = p_light_xform[2][0]; light.origin[1] = p_light_xform[2][1]; light.basis[0][0] = p_light_xform[0][0]; light.basis[0][1] = p_light_xform[1][0]; light.basis[1][0] = p_light_xform[0][1]; light.basis[1][1] = p_light_xform[1][1]; //light.basis.scale(Vector3(to_light.elements[0].length(),to_light.elements[1].length(),1)); / //p_near=1; CameraMatrix projection; { real_t fov = 90; real_t near = p_near; real_t far = p_far; real_t aspect = 1.0; real_t ymax = near * Math::tan(Math::deg2rad(fov * 0.5)); real_t ymin = -ymax; real_t xmin = ymin * aspect; real_t xmax = ymax * aspect; projection.set_frustum(xmin, xmax, ymin, ymax, near, far); } Vector3 cam_target = Matrix3(Vector3(0, 0, Math_PI * 2 * (i / 4.0))).xform(Vector3(0, 1, 0)); projection = projection * CameraMatrix(Transform().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse()); canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::PROJECTION_MATRIX, projection); canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::LIGHT_MATRIX, light); if (i == 0) *p_xform_cache = projection; glViewport(0, (cls->height / 4) * i, cls->size, cls->height / 4); CanvasLightOccluderInstance *instance = p_occluders; while (instance) { CanvasOccluder *cc = canvas_occluder_owner.get(instance->polygon_buffer); if (!cc || cc->len == 0 || !(p_light_mask & instance->light_mask)) { instance = instance->next; continue; } canvas_shadow_shader.set_uniform(CanvasShadowShaderGLES2::WORLD_MATRIX, instance->xform_cache); if (cull != instance->cull_cache) { cull = instance->cull_cache; switch (cull) { case VS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED: { glDisable(GL_CULL_FACE); } break; case VS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE: { glEnable(GL_CULL_FACE); glCullFace(GL_FRONT); } break; case VS::CANVAS_OCCLUDER_POLYGON_CULL_COUNTER_CLOCKWISE: { glEnable(GL_CULL_FACE); glCullFace(GL_BACK); } break; } } /* if (i==0) { for(int i=0;ilines.size();i++) { Vector2 p = instance->xform_cache.xform(cc->lines.get(i)); Plane pp(Vector3(p.x,p.y,0),1); pp.normal = light.xform(pp.normal); pp = projection.xform4(pp); print_line(itos(i)+": "+pp.normal/pp.d); //pp=light_mat.xform4(pp); //print_line(itos(i)+": "+pp.normal/pp.d); } } */ glBindBuffer(GL_ARRAY_BUFFER, cc->vertex_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, cc->index_id); glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, 0, 0); glDrawElements(GL_TRIANGLES, cc->len * 3, GL_UNSIGNED_SHORT, 0); instance = instance->next; } } glDisableVertexAttribArray(VS::ARRAY_VERTEX); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); if (shadow_filter == SHADOW_FILTER_ESM) { //blur the buffer #if 0 //this is ignord, it did not make any difference.. if (read_depth_supported) { glDepthFunc(GL_ALWAYS); } else { glDisable(GL_DEPTH_TEST); glDepthMask(false); } glDisable(GL_CULL_FACE); glViewport(0, 0, cls->size,cls->height); int passes=1; CanvasLightShadow *blur = canvas_light_shadow_owner.get(canvas_shadow_blur); copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,true); copy_shader.bind(); copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SCALE,1); copy_shader.set_uniform(CopyShaderGLES2::BLUR_MAGNITUDE,1); glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0); for(int i=0;ifbo); glActiveTexture(GL_TEXTURE0); if (read_depth_supported) glBindTexture(GL_TEXTURE_2D,cls->depth); else glBindTexture(GL_TEXTURE_2D,cls->rgba); { Vector2 src_sb_uv[4]={ Vector2( 0, 1), Vector2( 1, 1), Vector2( 1, 0), Vector2( 0, 0) }; static const Vector2 dst_pos[4]={ Vector2(-1, 1), Vector2( 1, 1), Vector2( 1,-1), Vector2(-1,-1) }; copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Vector2(1.0,1.0)/cls->size); _draw_gui_primitive(4,dst_pos,NULL,src_sb_uv); } glActiveTexture(GL_TEXTURE0); if (read_depth_supported) glBindTexture(GL_TEXTURE_2D,blur->depth); else glBindTexture(GL_TEXTURE_2D,blur->rgba); glBindFramebuffer(GL_FRAMEBUFFER, cls->fbo); { float hlimit = float(cls->size) / blur->size; //hlimit*=2.0; Vector2 src_sb_uv[4]={ Vector2( 0, 1), Vector2( hlimit, 1), Vector2( hlimit, 0), Vector2( 0, 0) }; static const Vector2 dst_pos[4]={ Vector2(-1, 1), Vector2( 1, 1), Vector2( 1,-1), Vector2(-1,-1) }; copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Vector2(1.0,1.0)/blur->size); _draw_gui_primitive(4,dst_pos,NULL,src_sb_uv); } } copy_shader.set_conditional(CopyShaderGLES2::SHADOW_BLUR_H_PASS,false); glDepthFunc(GL_LEQUAL); #endif } glBindFramebuffer(GL_FRAMEBUFFER, current_rt ? current_rt->fbo : base_framebuffer); glColorMask(1, 1, 1, 1); } void RasterizerGLES2::canvas_debug_viewport_shadows(CanvasLight *p_lights_with_shadow) { CanvasLight *light = p_lights_with_shadow; canvas_begin(); //reset int h = 10; int w = viewport.width; int ofs = h; //print_line(" debug lights "); while (light) { //print_line("debug light"); if (light->shadow_buffer.is_valid()) { //print_line("sb is valid"); CanvasLightShadow *sb = canvas_light_shadow_owner.get(light->shadow_buffer); if (sb) { glActiveTexture(GL_TEXTURE0); if (read_depth_supported) glBindTexture(GL_TEXTURE_2D, sb->depth); else glBindTexture(GL_TEXTURE_2D, sb->rgba); _draw_textured_quad(Rect2(h, ofs, w - h * 2, h), Rect2(0, 0, sb->size, 10), Size2(sb->size, 10), false, false); ofs += h * 2; } } light = light->shadows_next_ptr; } } void RasterizerGLES2::_canvas_normal_set_flip(const Vector2 &p_flip) { if (p_flip == normal_flip) return; normal_flip = p_flip; canvas_shader.set_uniform(CanvasShaderGLES2::NORMAL_FLIP, normal_flip); } template void RasterizerGLES2::_canvas_item_render_commands(CanvasItem *p_item, CanvasItem *current_clip, bool &reclip) { int cc = p_item->commands.size(); CanvasItem::Command **commands = p_item->commands.ptr(); for (int i = 0; i < cc; i++) { CanvasItem::Command *c = commands[i]; switch (c->type) { case CanvasItem::Command::TYPE_LINE: { CanvasItem::CommandLine *line = static_cast(c); canvas_draw_line(line->from, line->to, line->color, line->width, line->antialiased); } break; case CanvasItem::Command::TYPE_RECT: { CanvasItem::CommandRect *rect = static_cast(c); //canvas_draw_rect(rect->rect,rect->region,rect->source,rect->flags&CanvasItem::CommandRect::FLAG_TILE,rect->flags&CanvasItem::CommandRect::FLAG_FLIP_H,rect->flags&CanvasItem::CommandRect::FLAG_FLIP_V,rect->texture,rect->modulate); #if 0 int flags=0; if (rect->flags&CanvasItem::CommandRect::FLAG_REGION) { flags|=Rasterizer::CANVAS_RECT_REGION; } if (rect->flags&CanvasItem::CommandRect::FLAG_TILE) { flags|=Rasterizer::CANVAS_RECT_TILE; } if (rect->flags&CanvasItem::CommandRect::FLAG_FLIP_H) { flags|=Rasterizer::CANVAS_RECT_FLIP_H; } if (rect->flags&CanvasItem::CommandRect::FLAG_FLIP_V) { flags|=Rasterizer::CANVAS_RECT_FLIP_V; } #else int flags = rect->flags; #endif if (use_normalmap) _canvas_normal_set_flip(Vector2((flags & CANVAS_RECT_FLIP_H) ? -1 : 1, (flags & CANVAS_RECT_FLIP_V) ? -1 : 1)); canvas_draw_rect(rect->rect, flags, rect->source, rect->texture, rect->modulate); } break; case CanvasItem::Command::TYPE_STYLE: { CanvasItem::CommandStyle *style = static_cast(c); if (use_normalmap) _canvas_normal_set_flip(Vector2(1, 1)); canvas_draw_style_box(style->rect, style->source, style->texture, style->margin, style->draw_center, style->color); } break; case CanvasItem::Command::TYPE_PRIMITIVE: { if (use_normalmap) _canvas_normal_set_flip(Vector2(1, 1)); CanvasItem::CommandPrimitive *primitive = static_cast(c); canvas_draw_primitive(primitive->points, primitive->colors, primitive->uvs, primitive->texture, primitive->width); } break; case CanvasItem::Command::TYPE_POLYGON: { if (use_normalmap) _canvas_normal_set_flip(Vector2(1, 1)); CanvasItem::CommandPolygon *polygon = static_cast(c); canvas_draw_polygon(polygon->count, polygon->indices.ptr(), polygon->points.ptr(), polygon->uvs.ptr(), polygon->colors.ptr(), polygon->texture, polygon->colors.size() == 1); } break; case CanvasItem::Command::TYPE_POLYGON_PTR: { if (use_normalmap) _canvas_normal_set_flip(Vector2(1, 1)); CanvasItem::CommandPolygonPtr *polygon = static_cast(c); canvas_draw_polygon(polygon->count, polygon->indices, polygon->points, polygon->uvs, polygon->colors, polygon->texture, false); } break; case CanvasItem::Command::TYPE_CIRCLE: { CanvasItem::CommandCircle *circle = static_cast(c); static const int numpoints = 32; Vector2 points[numpoints + 1]; points[numpoints] = circle->pos; int indices[numpoints * 3]; for (int i = 0; i < numpoints; i++) { points[i] = circle->pos + Vector2(Math::sin(i * Math_PI * 2.0 / numpoints), Math::cos(i * Math_PI * 2.0 / numpoints)) * circle->radius; indices[i * 3 + 0] = i; indices[i * 3 + 1] = (i + 1) % numpoints; indices[i * 3 + 2] = numpoints; } canvas_draw_polygon(numpoints * 3, indices, points, NULL, &circle->color, RID(), true); //canvas_draw_circle(circle->indices.size(),circle->indices.ptr(),circle->points.ptr(),circle->uvs.ptr(),circle->colors.ptr(),circle->texture,circle->colors.size()==1); } break; case CanvasItem::Command::TYPE_TRANSFORM: { CanvasItem::CommandTransform *transform = static_cast(c); canvas_set_transform(transform->xform); } break; case CanvasItem::Command::TYPE_BLEND_MODE: { CanvasItem::CommandBlendMode *bm = static_cast(c); canvas_set_blend_mode(bm->blend_mode); } break; case CanvasItem::Command::TYPE_CLIP_IGNORE: { CanvasItem::CommandClipIgnore *ci = static_cast(c); if (current_clip) { if (ci->ignore != reclip) { if (ci->ignore) { glDisable(GL_SCISSOR_TEST); reclip = true; } else { glEnable(GL_SCISSOR_TEST); //glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)), //current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height); int x; int y; int w; int h; if (current_rt) { x = current_clip->final_clip_rect.pos.x; y = current_clip->final_clip_rect.pos.y; w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } else { x = current_clip->final_clip_rect.pos.x; y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y); w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } glScissor(x, y, w, h); reclip = false; } } } } break; } } } void RasterizerGLES2::_canvas_item_setup_shader_params(CanvasItemMaterial *material, Shader *shader) { if (canvas_shader.bind()) rebind_texpixel_size = true; if (material->shader_version != shader->version) { //todo optimize uniforms material->shader_version = shader->version; } if (shader->has_texscreen && framebuffer.active) { int x = viewport.x; int y = window_size.height - (viewport.height + viewport.y); canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_MULT, Vector2(float(viewport.width) / framebuffer.width, float(viewport.height) / framebuffer.height)); canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(float(x) / framebuffer.width, float(y) / framebuffer.height, float(x + viewport.width) / framebuffer.width, float(y + viewport.height) / framebuffer.height)); canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_TEX, max_texture_units - 1); glActiveTexture(GL_TEXTURE0 + max_texture_units - 1); glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color); if (framebuffer.scale == 1 && !canvas_texscreen_used) { #ifdef GLEW_ENABLED if (current_rt) { glReadBuffer(GL_COLOR_ATTACHMENT0); } else { glReadBuffer(GL_BACK); } #endif if (current_rt) { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, viewport.x, viewport.y, viewport.x, viewport.y, viewport.width, viewport.height); canvas_shader.set_uniform(CanvasShaderGLES2::TEXSCREEN_SCREEN_CLAMP, Color(float(x) / framebuffer.width, float(viewport.y) / framebuffer.height, float(x + viewport.width) / framebuffer.width, float(y + viewport.height) / framebuffer.height)); //window_size.height-(viewport.height+viewport.y) } else { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, x, y, x, y, viewport.width, viewport.height); } canvas_texscreen_used = true; } glActiveTexture(GL_TEXTURE0); } if (shader->has_screen_uv) { canvas_shader.set_uniform(CanvasShaderGLES2::SCREEN_UV_MULT, Vector2(1.0 / viewport.width, 1.0 / viewport.height)); } uses_texpixel_size = shader->uses_texpixel_size; } void RasterizerGLES2::_canvas_item_setup_shader_uniforms(CanvasItemMaterial *material, Shader *shader) { //this can be optimized.. int tex_id = 1; int idx = 0; for (Map::Element *E = shader->uniforms.front(); E; E = E->next()) { Map::Element *F = material->shader_param.find(E->key()); if ((E->get().type == ShaderLanguage::TYPE_TEXTURE || E->get().type == ShaderLanguage::TYPE_CUBEMAP)) { RID rid; if (F) { rid = F->get(); } if (!rid.is_valid()) { Map::Element *DT = shader->default_textures.find(E->key()); if (DT) { rid = DT->get(); } } if (rid.is_valid()) { int loc = canvas_shader.get_custom_uniform_location(idx); //should be automatic.. glActiveTexture(GL_TEXTURE0 + tex_id); Texture *t = texture_owner.get(rid); if (!t) glBindTexture(GL_TEXTURE_2D, white_tex); else glBindTexture(t->target, t->tex_id); glUniform1i(loc, tex_id); tex_id++; } } else { Variant &v = F ? F->get() : E->get().default_value; canvas_shader.set_custom_uniform(idx, v); } idx++; } if (tex_id > 1) { glActiveTexture(GL_TEXTURE0); } if (shader->uses_time) { canvas_shader.set_uniform(CanvasShaderGLES2::TIME, Math::fmod(last_time, shader_time_rollback)); draw_next_frame = true; } //if uses TIME - draw_next_frame=true } void RasterizerGLES2::canvas_render_items(CanvasItem *p_item_list, int p_z, const Color &p_modulate, CanvasLight *p_light) { CanvasItem *current_clip = NULL; Shader *shader_cache = NULL; bool rebind_shader = true; canvas_opacity = 1.0; canvas_use_modulate = p_modulate != Color(1, 1, 1, 1); canvas_modulate = p_modulate; canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate); canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, false); bool reset_modulate = false; bool prev_distance_field = false; while (p_item_list) { CanvasItem *ci = p_item_list; if (ci->vp_render) { if (draw_viewport_func) { draw_viewport_func(ci->vp_render->owner, ci->vp_render->udata, ci->vp_render->rect); } memdelete(ci->vp_render); ci->vp_render = NULL; canvas_last_material = NULL; canvas_use_modulate = p_modulate != Color(1, 1, 1, 1); canvas_modulate = p_modulate; canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate); canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, false); prev_distance_field = false; rebind_shader = true; reset_modulate = true; } if (prev_distance_field != ci->distance_field) { canvas_shader.set_conditional(CanvasShaderGLES2::USE_DISTANCE_FIELD, ci->distance_field); prev_distance_field = ci->distance_field; rebind_shader = true; } if (current_clip != ci->final_clip_owner) { current_clip = ci->final_clip_owner; //setup clip if (current_clip) { glEnable(GL_SCISSOR_TEST); //glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)), //current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height); /* int x = viewport.x+current_clip->final_clip_rect.pos.x; int y = window_size.height-(viewport.y+current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.y); int w = current_clip->final_clip_rect.size.x; int h = current_clip->final_clip_rect.size.y; */ int x; int y; int w; int h; if (current_rt) { x = current_clip->final_clip_rect.pos.x; y = current_clip->final_clip_rect.pos.y; w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } else { x = current_clip->final_clip_rect.pos.x; y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y); w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } glScissor(x, y, w, h); } else { glDisable(GL_SCISSOR_TEST); } } if (ci->copy_back_buffer && framebuffer.active && framebuffer.scale == 1) { Rect2 rect; int x, y; if (ci->copy_back_buffer->full) { x = viewport.x; y = window_size.height - (viewport.height + viewport.y); } else { x = viewport.x + ci->copy_back_buffer->screen_rect.pos.x; y = window_size.height - (viewport.y + ci->copy_back_buffer->screen_rect.pos.y + ci->copy_back_buffer->screen_rect.size.y); } glActiveTexture(GL_TEXTURE0 + max_texture_units - 1); glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color); #ifdef GLEW_ENABLED if (current_rt) { glReadBuffer(GL_COLOR_ATTACHMENT0); } else { glReadBuffer(GL_BACK); } #endif if (current_rt) { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, viewport.x, viewport.y, viewport.x, viewport.y, viewport.width, viewport.height); //window_size.height-(viewport.height+viewport.y) } else { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, x, y, x, y, viewport.width, viewport.height); } canvas_texscreen_used = true; glActiveTexture(GL_TEXTURE0); } //begin rect CanvasItem *material_owner = ci->material_owner ? ci->material_owner : ci; CanvasItemMaterial *material = material_owner->material; if (material != canvas_last_material || rebind_shader) { Shader *shader = NULL; if (material && material->shader.is_valid()) { shader = shader_owner.get(material->shader); if (shader && !shader->valid) { shader = NULL; } } shader_cache = shader; if (shader) { canvas_shader.set_custom_shader(shader->custom_code_id); _canvas_item_setup_shader_params(material, shader); } else { shader_cache = NULL; canvas_shader.set_custom_shader(0); canvas_shader.bind(); uses_texpixel_size = false; } canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform); if (canvas_use_modulate) reset_modulate = true; canvas_last_material = material; rebind_shader = false; } if (material && shader_cache) { _canvas_item_setup_shader_uniforms(material, shader_cache); } bool unshaded = (material && material->shading_mode == VS::CANVAS_ITEM_SHADING_UNSHADED) || ci->blend_mode != VS::MATERIAL_BLEND_MODE_MIX; if (unshaded) { canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, Color(1, 1, 1, 1)); reset_modulate = true; } else if (reset_modulate) { canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate); reset_modulate = false; } canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform); canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D()); bool reclip = false; if (ci == p_item_list || ci->blend_mode != canvas_blend_mode) { switch (ci->blend_mode) { case VS::MATERIAL_BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } break; case VS::MATERIAL_BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_DST_COLOR, GL_ZERO); } break; case VS::MATERIAL_BLEND_MODE_PREMULT_ALPHA: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } break; } canvas_blend_mode = ci->blend_mode; } canvas_opacity = ci->final_opacity; if (unshaded || (p_modulate.a > 0.001 && (!material || material->shading_mode != VS::CANVAS_ITEM_SHADING_ONLY_LIGHT) && !ci->light_masked)) _canvas_item_render_commands(ci, current_clip, reclip); if (canvas_blend_mode == VS::MATERIAL_BLEND_MODE_MIX && p_light && !unshaded) { CanvasLight *light = p_light; bool light_used = false; VS::CanvasLightMode mode = VS::CANVAS_LIGHT_MODE_ADD; while (light) { if (ci->light_mask & light->item_mask && p_z >= light->z_min && p_z <= light->z_max && ci->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { //intersects this light if (!light_used || mode != light->mode) { mode = light->mode; switch (mode) { case VS::CANVAS_LIGHT_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::CANVAS_LIGHT_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case VS::CANVAS_LIGHT_MODE_MIX: case VS::CANVAS_LIGHT_MODE_MASK: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } break; } } if (!light_used) { canvas_shader.set_conditional(CanvasShaderGLES2::USE_LIGHTING, true); canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, false); light_used = true; normal_flip = Vector2(1, 1); } bool has_shadow = light->shadow_buffer.is_valid() && ci->light_mask & light->item_shadow_mask; canvas_shader.set_conditional(CanvasShaderGLES2::USE_SHADOWS, has_shadow); bool light_rebind = canvas_shader.bind(); if (light_rebind) { if (material && shader_cache) { _canvas_item_setup_shader_params(material, shader_cache); _canvas_item_setup_shader_uniforms(material, shader_cache); } canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform); canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D()); canvas_shader.set_uniform(CanvasShaderGLES2::PROJECTION_MATRIX, canvas_transform); if (canvas_use_modulate) canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate); canvas_shader.set_uniform(CanvasShaderGLES2::NORMAL_FLIP, Vector2(1, 1)); canvas_shader.set_uniform(CanvasShaderGLES2::SHADOWPIXEL_SIZE, 1.0 / light->shadow_buffer_size); } canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_MATRIX, light->light_shader_xform); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_POS, light->light_shader_pos); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_COLOR, Color(light->color.r * light->energy, light->color.g * light->energy, light->color.b * light->energy, light->color.a)); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_HEIGHT, light->height); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_LOCAL_MATRIX, light->xform_cache.affine_inverse()); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_OUTSIDE_ALPHA, light->mode == VS::CANVAS_LIGHT_MODE_MASK ? 1.0 : 0.0); if (has_shadow) { CanvasLightShadow *cls = canvas_light_shadow_owner.get(light->shadow_buffer); glActiveTexture(GL_TEXTURE0 + max_texture_units - 3); if (read_depth_supported) glBindTexture(GL_TEXTURE_2D, cls->depth); else glBindTexture(GL_TEXTURE_2D, cls->rgba); canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_TEXTURE, max_texture_units - 3); canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_MATRIX, light->shadow_matrix_cache); canvas_shader.set_uniform(CanvasShaderGLES2::SHADOW_ESM_MULTIPLIER, light->shadow_esm_mult); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_SHADOW_COLOR, light->shadow_color); } glActiveTexture(GL_TEXTURE0 + max_texture_units - 2); canvas_shader.set_uniform(CanvasShaderGLES2::LIGHT_TEXTURE, max_texture_units - 2); Texture *t = texture_owner.get(light->texture); if (!t) { glBindTexture(GL_TEXTURE_2D, white_tex); } else { glBindTexture(t->target, t->tex_id); } glActiveTexture(GL_TEXTURE0); _canvas_item_render_commands(ci, current_clip, reclip); //redraw using light } light = light->next_ptr; } if (light_used) { canvas_shader.set_conditional(CanvasShaderGLES2::USE_LIGHTING, false); canvas_shader.set_conditional(CanvasShaderGLES2::USE_MODULATE, canvas_use_modulate); canvas_shader.set_conditional(CanvasShaderGLES2::USE_SHADOWS, false); canvas_shader.bind(); if (material && shader_cache) { _canvas_item_setup_shader_params(material, shader_cache); _canvas_item_setup_shader_uniforms(material, shader_cache); } canvas_shader.set_uniform(CanvasShaderGLES2::MODELVIEW_MATRIX, ci->final_transform); canvas_shader.set_uniform(CanvasShaderGLES2::EXTRA_MATRIX, Transform2D()); if (canvas_use_modulate) canvas_shader.set_uniform(CanvasShaderGLES2::MODULATE, canvas_modulate); glBlendEquation(GL_FUNC_ADD); if (current_rt && current_rt_transparent) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } } if (reclip) { glEnable(GL_SCISSOR_TEST); //glScissor(viewport.x+current_clip->final_clip_rect.pos.x,viewport.y+ (viewport.height-(current_clip->final_clip_rect.pos.y+current_clip->final_clip_rect.size.height)), //current_clip->final_clip_rect.size.width,current_clip->final_clip_rect.size.height); int x; int y; int w; int h; if (current_rt) { x = current_clip->final_clip_rect.pos.x; y = current_clip->final_clip_rect.pos.y; w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } else { x = current_clip->final_clip_rect.pos.x; y = window_size.height - (current_clip->final_clip_rect.pos.y + current_clip->final_clip_rect.size.y); w = current_clip->final_clip_rect.size.x; h = current_clip->final_clip_rect.size.y; } glScissor(x, y, w, h); } p_item_list = p_item_list->next; } if (current_clip) { glDisable(GL_SCISSOR_TEST); } } /* ENVIRONMENT */ RID RasterizerGLES2::environment_create() { Environment *env = memnew(Environment); return environment_owner.make_rid(env); } void RasterizerGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) { ERR_FAIL_INDEX(p_bg, VS::ENV_BG_MAX); Environment *env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_mode = p_bg; } VS::EnvironmentBG RasterizerGLES2::environment_get_background(RID p_env) const { const Environment *env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX); return env->bg_mode; } void RasterizerGLES2::environment_set_background_param(RID p_env, VS::EnvironmentBGParam p_param, const Variant &p_value) { ERR_FAIL_INDEX(p_param, VS::ENV_BG_PARAM_MAX); Environment *env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_param[p_param] = p_value; } Variant RasterizerGLES2::environment_get_background_param(RID p_env, VS::EnvironmentBGParam p_param) const { ERR_FAIL_INDEX_V(p_param, VS::ENV_BG_PARAM_MAX, Variant()); const Environment *env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env, Variant()); return env->bg_param[p_param]; } void RasterizerGLES2::environment_set_enable_fx(RID p_env, VS::EnvironmentFx p_effect, bool p_enabled) { ERR_FAIL_INDEX(p_effect, VS::ENV_FX_MAX); Environment *env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_enabled[p_effect] = p_enabled; } bool RasterizerGLES2::environment_is_fx_enabled(RID p_env, VS::EnvironmentFx p_effect) const { ERR_FAIL_INDEX_V(p_effect, VS::ENV_FX_MAX, false); const Environment *env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env, false); return env->fx_enabled[p_effect]; } void RasterizerGLES2::environment_fx_set_param(RID p_env, VS::EnvironmentFxParam p_param, const Variant &p_value) { ERR_FAIL_INDEX(p_param, VS::ENV_FX_PARAM_MAX); Environment *env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_param[p_param] = p_value; } Variant RasterizerGLES2::environment_fx_get_param(RID p_env, VS::EnvironmentFxParam p_param) const { ERR_FAIL_INDEX_V(p_param, VS::ENV_FX_PARAM_MAX, Variant()); const Environment *env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env, Variant()); return env->fx_param[p_param]; } RID RasterizerGLES2::sampled_light_dp_create(int p_width, int p_height) { SampledLight *slight = memnew(SampledLight); slight->w = p_width; slight->h = p_height; slight->multiplier = 1.0; slight->is_float = float_linear_supported; glActiveTexture(GL_TEXTURE0); glGenTextures(1, &slight->texture); glBindTexture(GL_TEXTURE_2D, slight->texture); // for debug, but glitchy //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Remove artifact on the edges of the shadowmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (slight->is_float) { #ifdef GLEW_ENABLED glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, p_width, p_height, 0, GL_RGBA, GL_FLOAT, NULL); #else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_width, p_height, 0, GL_RGBA, GL_FLOAT, NULL); #endif } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, p_width, p_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); } return sampled_light_owner.make_rid(slight); } void RasterizerGLES2::sampled_light_dp_update(RID p_sampled_light, const Color *p_data, float p_multiplier) { SampledLight *slight = sampled_light_owner.get(p_sampled_light); ERR_FAIL_COND(!slight); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, slight->texture); if (slight->is_float) { #ifdef GLEW_ENABLED glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_FLOAT, p_data); #else glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_FLOAT, p_data); #endif } else { //convert to bytes uint8_t *tex8 = (uint8_t *)alloca(slight->w * slight->h * 4); const float *src = (const float *)p_data; for (int i = 0; i < slight->w * slight->h * 4; i++) { tex8[i] = Math::fast_ftoi(CLAMP(src[i] * 255.0, 0.0, 255.0)); } glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, slight->w, slight->h, GL_RGBA, GL_UNSIGNED_BYTE, p_data); } slight->multiplier = p_multiplier; } /*MISC*/ bool RasterizerGLES2::is_texture(const RID &p_rid) const { return texture_owner.owns(p_rid); } bool RasterizerGLES2::is_material(const RID &p_rid) const { return material_owner.owns(p_rid); } bool RasterizerGLES2::is_mesh(const RID &p_rid) const { return mesh_owner.owns(p_rid); } bool RasterizerGLES2::is_immediate(const RID &p_rid) const { return immediate_owner.owns(p_rid); } bool RasterizerGLES2::is_multimesh(const RID &p_rid) const { return multimesh_owner.owns(p_rid); } bool RasterizerGLES2::is_particles(const RID &p_beam) const { return particles_owner.owns(p_beam); } bool RasterizerGLES2::is_light(const RID &p_rid) const { return light_owner.owns(p_rid); } bool RasterizerGLES2::is_light_instance(const RID &p_rid) const { return light_instance_owner.owns(p_rid); } bool RasterizerGLES2::is_particles_instance(const RID &p_rid) const { return particles_instance_owner.owns(p_rid); } bool RasterizerGLES2::is_skeleton(const RID &p_rid) const { return skeleton_owner.owns(p_rid); } bool RasterizerGLES2::is_environment(const RID &p_rid) const { return environment_owner.owns(p_rid); } bool RasterizerGLES2::is_shader(const RID &p_rid) const { return shader_owner.owns(p_rid); } bool RasterizerGLES2::is_canvas_light_occluder(const RID &p_rid) const { return false; } void RasterizerGLES2::free(const RID &p_rid) { if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); //glDeleteTextures( 1,&texture->tex_id ); _rinfo.texture_mem -= texture->total_data_size; texture_owner.free(p_rid); memdelete(texture); } else if (shader_owner.owns(p_rid)) { // delete the texture Shader *shader = shader_owner.get(p_rid); switch (shader->mode) { case VS::SHADER_MATERIAL: { material_shader.free_custom_shader(shader->custom_code_id); } break; case VS::SHADER_POST_PROCESS: { //postprocess_shader.free_custom_shader(shader->custom_code_id); } break; } if (shader->dirty_list.in_list()) _shader_dirty_list.remove(&shader->dirty_list); //material_shader.free_custom_shader(shader->custom_code_id); shader_owner.free(p_rid); memdelete(shader); } else if (material_owner.owns(p_rid)) { Material *material = material_owner.get(p_rid); ERR_FAIL_COND(!material); _free_fixed_material(p_rid); //just in case material_owner.free(p_rid); memdelete(material); } else if (mesh_owner.owns(p_rid)) { Mesh *mesh = mesh_owner.get(p_rid); ERR_FAIL_COND(!mesh); for (int i = 0; i < mesh->surfaces.size(); i++) { Surface *surface = mesh->surfaces[i]; if (surface->array_local != 0) { memfree(surface->array_local); }; if (surface->index_array_local != 0) { memfree(surface->index_array_local); }; if (mesh->morph_target_count > 0) { for (int i = 0; i < mesh->morph_target_count; i++) { memdelete_arr(surface->morph_targets_local[i].array); } memdelete_arr(surface->morph_targets_local); surface->morph_targets_local = NULL; } if (surface->vertex_id) glDeleteBuffers(1, &surface->vertex_id); if (surface->index_id) glDeleteBuffers(1, &surface->index_id); memdelete(surface); }; mesh->surfaces.clear(); mesh_owner.free(p_rid); memdelete(mesh); } else if (multimesh_owner.owns(p_rid)) { MultiMesh *multimesh = multimesh_owner.get(p_rid); ERR_FAIL_COND(!multimesh); if (multimesh->tex_id) { glDeleteTextures(1, &multimesh->tex_id); } multimesh_owner.free(p_rid); memdelete(multimesh); } else if (immediate_owner.owns(p_rid)) { Immediate *immediate = immediate_owner.get(p_rid); ERR_FAIL_COND(!immediate); immediate_owner.free(p_rid); memdelete(immediate); } else if (particles_owner.owns(p_rid)) { Particles *particles = particles_owner.get(p_rid); ERR_FAIL_COND(!particles); particles_owner.free(p_rid); memdelete(particles); } else if (particles_instance_owner.owns(p_rid)) { ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid); ERR_FAIL_COND(!particles_isntance); particles_instance_owner.free(p_rid); memdelete(particles_isntance); } else if (skeleton_owner.owns(p_rid)) { Skeleton *skeleton = skeleton_owner.get(p_rid); ERR_FAIL_COND(!skeleton); if (skeleton->dirty_list.in_list()) _skeleton_dirty_list.remove(&skeleton->dirty_list); if (skeleton->tex_id) { glDeleteTextures(1, &skeleton->tex_id); } skeleton_owner.free(p_rid); memdelete(skeleton); } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get(p_rid); ERR_FAIL_COND(!light) light_owner.free(p_rid); memdelete(light); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get(p_rid); ERR_FAIL_COND(!light_instance); light_instance->clear_shadow_buffers(); light_instance_owner.free(p_rid); memdelete(light_instance); } else if (environment_owner.owns(p_rid)) { Environment *env = environment_owner.get(p_rid); ERR_FAIL_COND(!env); environment_owner.free(p_rid); memdelete(env); } else if (viewport_data_owner.owns(p_rid)) { ViewportData *viewport_data = viewport_data_owner.get(p_rid); ERR_FAIL_COND(!viewport_data); glDeleteFramebuffers(1, &viewport_data->lum_fbo); glDeleteTextures(1, &viewport_data->lum_color); viewport_data_owner.free(p_rid); memdelete(viewport_data); } else if (render_target_owner.owns(p_rid)) { RenderTarget *render_target = render_target_owner.get(p_rid); ERR_FAIL_COND(!render_target); render_target_set_size(p_rid, 0, 0); //clears framebuffer texture_owner.free(render_target->texture); memdelete(render_target->texture_ptr); render_target_owner.free(p_rid); memdelete(render_target); } else if (sampled_light_owner.owns(p_rid)) { SampledLight *sampled_light = sampled_light_owner.get(p_rid); ERR_FAIL_COND(!sampled_light); glDeleteTextures(1, &sampled_light->texture); sampled_light_owner.free(p_rid); memdelete(sampled_light); } else if (canvas_occluder_owner.owns(p_rid)) { CanvasOccluder *co = canvas_occluder_owner.get(p_rid); if (co->index_id) glDeleteBuffers(1, &co->index_id); if (co->vertex_id) glDeleteBuffers(1, &co->vertex_id); canvas_occluder_owner.free(p_rid); memdelete(co); } else if (canvas_light_shadow_owner.owns(p_rid)) { CanvasLightShadow *cls = canvas_light_shadow_owner.get(p_rid); glDeleteFramebuffers(1, &cls->fbo); glDeleteRenderbuffers(1, &cls->rbo); glDeleteTextures(1, &cls->depth); /* if (!read_depth_supported) { glDeleteTextures(1,&cls->rgba); } */ canvas_light_shadow_owner.free(p_rid); memdelete(cls); }; } bool RasterizerGLES2::ShadowBuffer::init(int p_size, bool p_use_depth) { size = p_size; // Create a framebuffer object glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); // Create a render buffer glGenRenderbuffers(1, &rbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); // Create a texture for storing the depth glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Remove artifact on the edges of the shadowmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //print_line("ERROR? "+itos(glGetError())); if (p_use_depth) { // We'll use a depth texture to store the depths in the shadow map glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); #ifdef GLEW_ENABLED glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #endif // Attach the depth texture to FBO depth attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); #ifdef GLEW_ENABLED glDrawBuffer(GL_NONE); #endif } else { // We'll use a RGBA texture into which we pack the depth info glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); // Attach the RGBA texture to FBO color attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, depth, 0); // Allocate 16-bit depth buffer glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size); // Attach the render buffer as depth buffer - will be ignored glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo); } #if 0 if (!p_use_depth) { print_line("try no depth!"); glGenTextures(1, &rgba); glBindTexture(GL_TEXTURE_2D, rgba); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rgba, 0); /* glGenRenderbuffers(1, &depth); glBindRenderbuffer(GL_RENDERBUFFER, depth); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, p_size, p_size); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depth); */ glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); } else { //glGenRenderbuffers(1, &rbo); //glBindRenderbuffer(GL_RENDERBUFFER, rbo); glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); } #endif GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); //printf("errnum: %x\n",status); #ifdef GLEW_ENABLED if (p_use_depth) { //glDrawBuffer(GL_BACK); } #endif glBindFramebuffer(GL_FRAMEBUFFER, 0); DEBUG_TEST_ERROR("Shadow Buffer Init"); ERR_FAIL_COND_V(status != GL_FRAMEBUFFER_COMPLETE, false); #ifdef GLEW_ENABLED if (p_use_depth) { //glDrawBuffer(GL_BACK); } #endif #if 0 glGenFramebuffers(1, &fbo_blur); glBindFramebuffer(GL_FRAMEBUFFER, fbo_blur); glGenRenderbuffers(1, &rbo_blur); glBindRenderbuffer(GL_RENDERBUFFER, rbo_blur); glGenTextures(1, &blur); glBindTexture(GL_TEXTURE_2D, blur); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); //glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, size, size, 0, //GL_DEPTH_COMPONENT16, GL_UNSIGNED_SHORT, NULL); // Attach the RGBA texture to FBO color attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, blur, 0); // Allocate 16-bit depth buffer /* glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, size, size); // Attach the render buffer as depth buffer - will be ignored glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rbo_blur); */ status = glCheckFramebufferStatus(GL_FRAMEBUFFER); OS::get_singleton()->print("Status: %x\n",status); glBindFramebuffer(GL_FRAMEBUFFER, 0); DEBUG_TEST_ERROR("Shadow Blur Buffer Init"); ERR_FAIL_COND_V( status != GL_FRAMEBUFFER_COMPLETE,false ); #endif return true; } void RasterizerGLES2::_update_framebuffer() { if (!use_framebuffers) return; int scale = GLOBAL_DEF("rasterizer/framebuffer_shrink", 1); if (scale < 1) scale = 1; int dwidth = OS::get_singleton()->get_video_mode().width / scale; int dheight = OS::get_singleton()->get_video_mode().height / scale; if (framebuffer.fbo && dwidth == framebuffer.width && dheight == framebuffer.height) return; bool use_fbo = true; if (framebuffer.fbo != 0) { glDeleteFramebuffers(1, &framebuffer.fbo); #if 0 glDeleteTextures(1,&framebuffer.depth); #else glDeleteRenderbuffers(1, &framebuffer.depth); #endif glDeleteTextures(1, &framebuffer.color); for (int i = 0; i < framebuffer.luminance.size(); i++) { glDeleteTextures(1, &framebuffer.luminance[i].color); glDeleteFramebuffers(1, &framebuffer.luminance[i].fbo); } for (int i = 0; i < 3; i++) { glDeleteTextures(1, &framebuffer.blur[i].color); glDeleteFramebuffers(1, &framebuffer.blur[i].fbo); } glDeleteTextures(1, &framebuffer.sample_color); glDeleteFramebuffers(1, &framebuffer.sample_fbo); framebuffer.luminance.clear(); framebuffer.blur_size = 0; framebuffer.fbo = 0; } #ifdef TOOLS_ENABLED framebuffer.active = use_fbo; #else framebuffer.active = use_fbo && !low_memory_2d; #endif framebuffer.width = dwidth; framebuffer.height = dheight; framebuffer.scale = scale; if (!framebuffer.active) return; glGenFramebuffers(1, &framebuffer.fbo); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.fbo); //print_line("generating fbo, id: "+itos(framebuffer.fbo)); //depth // Create a render buffer #if 0 glGenTextures(1, &framebuffer.depth); glBindTexture(GL_TEXTURE_2D, framebuffer.depth); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, framebuffer.width, framebuffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE ); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, framebuffer.depth, 0); #else glGenRenderbuffers(1, &framebuffer.depth); glBindRenderbuffer(GL_RENDERBUFFER, framebuffer.depth); glRenderbufferStorage(GL_RENDERBUFFER, use_depth24 ? _DEPTH_COMPONENT24_OES : GL_DEPTH_COMPONENT16, framebuffer.width, framebuffer.height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, framebuffer.depth); #endif //color //GLuint format_rgba = use_fp16_fb?_GL_RGBA16F_EXT:GL_RGBA; GLuint format_rgba = GL_RGBA; GLuint format_type = use_fp16_fb ? _GL_HALF_FLOAT_OES : GL_UNSIGNED_BYTE; GLuint format_internal = GL_RGBA; if (use_16bits_fbo) { format_type = GL_UNSIGNED_SHORT_5_6_5; format_rgba = GL_RGB; format_internal = GL_RGB; } /*GLuint format_luminance = use_fp16_fb?GL_RGB16F:GL_RGBA; GLuint format_luminance_type = use_fp16_fb?(use_fu_GL_HALF_FLOAT_OES):GL_UNSIGNED_BYTE; GLuint format_luminance_components = use_fp16_fb?GL_RGB:GL_RGBA;*/ GLuint format_luminance = use_fp16_fb ? _GL_RG_EXT : GL_RGBA; GLuint format_luminance_type = use_fp16_fb ? (full_float_fb_supported ? GL_FLOAT : _GL_HALF_FLOAT_OES) : GL_UNSIGNED_BYTE; GLuint format_luminance_components = use_fp16_fb ? _GL_RG_EXT : GL_RGBA; glGenTextures(1, &framebuffer.color); glBindTexture(GL_TEXTURE_2D, framebuffer.color); glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, format_internal, format_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.color, 0); # GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); if (status != GL_FRAMEBUFFER_COMPLETE) { glDeleteFramebuffers(1, &framebuffer.fbo); #if 0 glDeleteTextures(1,&framebuffer.depth); #else glDeleteRenderbuffers(1, &framebuffer.depth); #endif glDeleteTextures(1, &framebuffer.color); framebuffer.fbo = 0; framebuffer.active = false; //print_line("**************** NO FAMEBUFFEEEERRRR????"); WARN_PRINT(String("Could not create framebuffer!!, code: " + itos(status)).ascii().get_data()); } //sample glGenFramebuffers(1, &framebuffer.sample_fbo); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.sample_fbo); glGenTextures(1, &framebuffer.sample_color); glBindTexture(GL_TEXTURE_2D, framebuffer.sample_color); glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, framebuffer.width, framebuffer.height, 0, format_internal, format_type, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.sample_color, 0); # status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); if (status != GL_FRAMEBUFFER_COMPLETE) { glDeleteFramebuffers(1, &framebuffer.fbo); #if 0 glDeleteTextures(1,&framebuffer.depth); #else glDeleteRenderbuffers(1, &framebuffer.depth); #endif glDeleteTextures(1, &framebuffer.color); glDeleteTextures(1, &framebuffer.sample_color); glDeleteFramebuffers(1, &framebuffer.sample_fbo); framebuffer.fbo = 0; framebuffer.active = false; //print_line("**************** NO FAMEBUFFEEEERRRR????"); WARN_PRINT("Could not create framebuffer!!"); } //blur int size = GLOBAL_DEF("rasterizer/blur_buffer_size", 256); if (size != framebuffer.blur_size) { for (int i = 0; i < 3; i++) { if (framebuffer.blur[i].fbo) { glDeleteFramebuffers(1, &framebuffer.blur[i].fbo); glDeleteTextures(1, &framebuffer.blur[i].color); framebuffer.blur[i].fbo = 0; framebuffer.blur[i].color = 0; } } framebuffer.blur_size = size; for (int i = 0; i < 3; i++) { glGenFramebuffers(1, &framebuffer.blur[i].fbo); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo); glGenTextures(1, &framebuffer.blur[i].color); glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, format_rgba, size, size, 0, format_internal, format_type, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.blur[i].color, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); DEBUG_TEST_ERROR("Shadow Buffer Init"); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); } } // luminance int base_size = GLOBAL_DEF("rasterizer/luminance_buffer_size", 81); if (framebuffer.luminance.empty() || framebuffer.luminance[0].size != base_size) { for (int i = 0; i < framebuffer.luminance.size(); i++) { glDeleteFramebuffers(1, &framebuffer.luminance[i].fbo); glDeleteTextures(1, &framebuffer.luminance[i].color); } framebuffer.luminance.clear(); while (base_size > 0) { FrameBuffer::Luminance lb; lb.size = base_size; glGenFramebuffers(1, &lb.fbo); glBindFramebuffer(GL_FRAMEBUFFER, lb.fbo); glGenTextures(1, &lb.color); glBindTexture(GL_TEXTURE_2D, lb.color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, format_luminance, lb.size, lb.size, 0, format_luminance_components, format_luminance_type, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, lb.color, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); base_size /= 3; DEBUG_TEST_ERROR("Shadow Buffer Init"); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); framebuffer.luminance.push_back(lb); } } } void RasterizerGLES2::set_base_framebuffer(GLuint p_id, Vector2 p_size) { base_framebuffer = p_id; if (p_size.x != 0) { window_size = p_size; }; } #if 0 void RasterizerGLES2::_update_blur_buffer() { int size = GLOBAL_DEF("rasterizer/blur_buffer_size",256); if (size!=framebuffer.blur_size) { for(int i=0;i<3;i++) { if (framebuffer.blur[i].fbo) { glDeleteFramebuffers(1,&framebuffer.blur[i].fbo); glDeleteTextures(1,&framebuffer.blur[i].color); framebuffer.blur[i].fbo=0; framebuffer.blur[i].color=0; } } framebuffer.blur_size=size; for(int i=0;i<3;i++) { glGenFramebuffers(1, &framebuffer.blur[i].fbo); glBindFramebuffer(GL_FRAMEBUFFER, framebuffer.blur[i].fbo); glGenTextures(1, &framebuffer.blur[i].color); glBindTexture(GL_TEXTURE_2D, framebuffer.blur[i].color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size, size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, framebuffer.blur[i].color, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindFramebuffer(GL_FRAMEBUFFER, 0); DEBUG_TEST_ERROR("Shadow Buffer Init"); ERR_CONTINUE( status != GL_FRAMEBUFFER_COMPLETE ); } } } #endif bool RasterizerGLES2::_test_depth_shadow_buffer() { int size = 16; GLuint fbo; GLuint rbo; GLuint depth; glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); // Create a render buffer glGenRenderbuffers(1, &rbo); glBindRenderbuffer(GL_RENDERBUFFER, rbo); // Create a texture for storing the depth glGenTextures(1, &depth); glBindTexture(GL_TEXTURE_2D, depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Remove artifact on the edges of the shadowmap glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // We'll use a depth texture to store the depths in the shadow map glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); #ifdef GLEW_ENABLED glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); #endif // Attach the depth texture to FBO depth attachment point glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glDeleteFramebuffers(1, &fbo); glDeleteRenderbuffers(1, &rbo); glDeleteTextures(1, &depth); return status == GL_FRAMEBUFFER_COMPLETE; } void RasterizerGLES2::init() { if (OS::get_singleton()->is_stdout_verbose()) { print_line("Using GLES2 video driver"); } #ifdef GLEW_ENABLED GLuint res = glewInit(); ERR_FAIL_COND(res != GLEW_OK); if (OS::get_singleton()->is_stdout_verbose()) { print_line(String("GLES2: Using GLEW ") + (const char *)glewGetString(GLEW_VERSION)); } // Godot makes use of functions from ARB_framebuffer_object extension which is not implemented by all drivers. // On the other hand, these drivers might implement the older EXT_framebuffer_object extension // with which current source code is backward compatible. bool framebuffer_object_is_supported = glewIsSupported("GL_ARB_framebuffer_object"); if (!framebuffer_object_is_supported) { WARN_PRINT("GL_ARB_framebuffer_object not supported by your graphics card."); if (glewIsSupported("GL_EXT_framebuffer_object")) { // falling-back to the older EXT function if present WARN_PRINT("Falling-back to GL_EXT_framebuffer_object."); glIsRenderbuffer = glIsRenderbufferEXT; glBindRenderbuffer = glBindRenderbufferEXT; glDeleteRenderbuffers = glDeleteRenderbuffersEXT; glGenRenderbuffers = glGenRenderbuffersEXT; glRenderbufferStorage = glRenderbufferStorageEXT; glGetRenderbufferParameteriv = glGetRenderbufferParameterivEXT; glIsFramebuffer = glIsFramebufferEXT; glBindFramebuffer = glBindFramebufferEXT; glDeleteFramebuffers = glDeleteFramebuffersEXT; glGenFramebuffers = glGenFramebuffersEXT; glCheckFramebufferStatus = glCheckFramebufferStatusEXT; glFramebufferTexture1D = glFramebufferTexture1DEXT; glFramebufferTexture2D = glFramebufferTexture2DEXT; glFramebufferTexture3D = glFramebufferTexture3DEXT; glFramebufferRenderbuffer = glFramebufferRenderbufferEXT; glGetFramebufferAttachmentParameteriv = glGetFramebufferAttachmentParameterivEXT; glGenerateMipmap = glGenerateMipmapEXT; framebuffer_object_is_supported = true; } else { ERR_PRINT("Framebuffer Object is not supported by your graphics card."); } } // Check for GL 2.1 compatibility, if not bail out if (!(glewIsSupported("GL_VERSION_2_1") && framebuffer_object_is_supported)) { ERR_PRINT("Your system's graphic drivers seem not to support OpenGL 2.1 / GLES 2.0, sorry :(\n" "Try a drivers update, buy a new GPU or try software rendering on Linux; Godot is now going to terminate."); OS::get_singleton()->alert("Your system's graphic drivers seem not to support OpenGL 2.1 / GLES 2.0, sorry :(\n" "Godot Engine will self-destruct as soon as you acknowledge this error message.", "Fatal error: Insufficient OpenGL / GLES drivers"); exit(1); } #endif scene_pass = 1; if (extensions.size() == 0) { set_extensions((const char *)glGetString(GL_EXTENSIONS)); } GLint tmp = 0; glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &tmp); //print_line("GL_MAX_VERTEX_ATTRIBS "+itos(tmp)); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); //glEnable(GL_TEXTURE_2D); default_material = create_default_material(); material_shader.init(); canvas_shader.init(); copy_shader.init(); canvas_shadow_shader.init(); #ifdef GLEW_ENABLED material_shader.set_conditional(MaterialShaderGLES2::USE_GLES_OVER_GL, true); canvas_shader.set_conditional(CanvasShaderGLES2::USE_GLES_OVER_GL, true); canvas_shadow_shader.set_conditional(CanvasShadowShaderGLES2::USE_GLES_OVER_GL, true); copy_shader.set_conditional(CopyShaderGLES2::USE_GLES_OVER_GL, true); #endif #ifdef ANGLE_ENABLED // Fix for ANGLE material_shader.set_conditional(MaterialShaderGLES2::DISABLE_FRONT_FACING, true); #endif shadow = NULL; shadow_pass = 0; framebuffer.fbo = 0; framebuffer.width = 0; framebuffer.height = 0; //framebuffer.buff16=false; //framebuffer.blur[0].fbo=false; //framebuffer.blur[1].fbo=false; framebuffer.active = false; //do a single initial clear glClearColor(0, 0, 0, 1); //glClearDepth(1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glGenTextures(1, &white_tex); unsigned char whitetexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { whitetexdata[i] = 255; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, white_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #ifdef GLEW_ENABLED pvr_supported = false; etc_supported = false; use_depth24 = true; s3tc_supported = true; atitc_supported = false; //use_texture_instancing=false; //use_attribute_instancing=true; use_texture_instancing = false; use_attribute_instancing = true; full_float_fb_supported = true; srgb_supported = true; latc_supported = true; s3tc_srgb_supported = true; use_anisotropic_filter = true; float_linear_supported = true; GLint vtf; glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &vtf); float_supported = extensions.has("GL_OES_texture_float") || extensions.has("GL_ARB_texture_float"); use_hw_skeleton_xform = vtf > 0 && float_supported; read_depth_supported = _test_depth_shadow_buffer(); use_rgba_shadowmaps = !read_depth_supported; //print_line("read depth support? "+itos(read_depth_supported)); glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisotropic_level); anisotropic_level = MIN(anisotropic_level, float(GLOBAL_DEF("rasterizer/anisotropic_filter_level", 4.0))); #ifdef OSX_ENABLED use_rgba_shadowmaps = true; use_fp16_fb = false; #else #endif use_half_float = true; #else for (Set::Element *E = extensions.front(); E; E = E->next()) { print_line(E->get()); } read_depth_supported = extensions.has("GL_OES_depth_texture"); use_rgba_shadowmaps = !read_depth_supported; if (shadow_filter >= SHADOW_FILTER_ESM && !extensions.has("GL_EXT_frag_depth")) { use_rgba_shadowmaps = true; //no other way, go back to rgba } pvr_supported = extensions.has("GL_IMG_texture_compression_pvrtc"); pvr_srgb_supported = extensions.has("GL_EXT_pvrtc_sRGB"); etc_supported = extensions.has("GL_OES_compressed_ETC1_RGB8_texture"); use_depth24 = extensions.has("GL_OES_depth24"); s3tc_supported = extensions.has("GL_EXT_texture_compression_dxt1") || extensions.has("GL_EXT_texture_compression_s3tc") || extensions.has("WEBGL_compressed_texture_s3tc"); use_half_float = extensions.has("GL_OES_vertex_half_float"); atitc_supported = extensions.has("GL_AMD_compressed_ATC_texture"); srgb_supported = extensions.has("GL_EXT_sRGB"); #ifndef ANGLE_ENABLED s3tc_srgb_supported = s3tc_supported && extensions.has("GL_EXT_texture_compression_s3tc"); #else s3tc_srgb_supported = s3tc_supported; #endif latc_supported = extensions.has("GL_EXT_texture_compression_latc"); anisotropic_level = 1.0; use_anisotropic_filter = extensions.has("GL_EXT_texture_filter_anisotropic"); if (use_anisotropic_filter) { glGetFloatv(_GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisotropic_level); anisotropic_level = MIN(anisotropic_level, float(GLOBAL_DEF("rasterizer/anisotropic_filter_level", 4.0))); } print_line("S3TC: " + itos(s3tc_supported) + " ATITC: " + itos(atitc_supported)); GLint vtf; glGetIntegerv(GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, &vtf); float_supported = extensions.has("GL_OES_texture_float") || extensions.has("GL_ARB_texture_float"); use_hw_skeleton_xform = vtf > 0 && float_supported; float_linear_supported = extensions.has("GL_OES_texture_float_linear"); /* if (extensions.has("GL_QCOM_tiled_rendering")) use_hw_skeleton_xform=false; */ GLint mva; glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &mva); if (vtf == 0 && mva > 8) { //tegra 3, mali 400 use_attribute_instancing = true; use_texture_instancing = false; } else if (vtf > 0 && extensions.has("GL_OES_texture_float")) { //use_texture_instancing=true; use_texture_instancing = false; // i don't get it, uniforms are faster. use_attribute_instancing = false; } else { use_texture_instancing = false; use_attribute_instancing = false; } if (use_fp16_fb) { use_fp16_fb = extensions.has("GL_OES_texture_half_float") && extensions.has("GL_EXT_color_buffer_half_float") && extensions.has("GL_EXT_texture_rg"); } full_float_fb_supported = extensions.has("GL_EXT_color_buffer_float"); //etc_supported=false; #endif //use_rgba_shadowmaps=true; glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &max_texture_units); glGetIntegerv(GL_MAX_TEXTURE_SIZE, &max_texture_size); //read_depth_supported=false; canvas_shadow_blur = canvas_light_shadow_buffer_create(max_texture_size); { //shadowmaps //don't use a shadowbuffer too big in GLES, this should be the maximum int max_shadow_size = GLOBAL_DEF("rasterizer/max_shadow_buffer_size", 1024); int smsize = max_shadow_size; while (smsize >= 16) { ShadowBuffer sb; bool s = sb.init(smsize, !use_rgba_shadowmaps); if (s) near_shadow_buffers.push_back(sb); smsize /= 2; } blur_shadow_buffer.init(max_shadow_size, !use_rgba_shadowmaps); //material_shader material_shader.set_conditional(MaterialShaderGLES2::USE_DEPTH_SHADOWS, !use_rgba_shadowmaps); canvas_shadow_shader.set_conditional(CanvasShadowShaderGLES2::USE_DEPTH_SHADOWS, !use_rgba_shadowmaps); } shadow_material = material_create(); //empty with nothing shadow_mat_ptr = material_owner.get(shadow_material); // Now create a second shadow material for double-sided shadow instances shadow_material_double_sided = material_create(); shadow_mat_double_sided_ptr = material_owner.get(shadow_material_double_sided); shadow_mat_double_sided_ptr->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED] = true; overdraw_material = create_overdraw_debug_material(); copy_shader.set_conditional(CopyShaderGLES2::USE_8BIT_HDR, !use_fp16_fb); canvas_shader.set_conditional(CanvasShaderGLES2::USE_DEPTH_SHADOWS, read_depth_supported); canvas_shader.set_conditional(CanvasShaderGLES2::USE_PIXEL_SNAP, GLOBAL_DEF("display/use_2d_pixel_snap", false)); npo2_textures_available = true; //fragment_lighting=false; _rinfo.texture_mem = 0; current_env = NULL; current_rt = NULL; current_vd = NULL; current_debug = VS::SCENARIO_DEBUG_DISABLED; camera_ortho = false; glGenBuffers(1, &gui_quad_buffer); glBindBuffer(GL_ARRAY_BUFFER, gui_quad_buffer); #ifdef GLES_NO_CLIENT_ARRAYS //WebGL specific implementation. glBufferData(GL_ARRAY_BUFFER, 8 * MAX_POLYGON_VERTICES, NULL, GL_DYNAMIC_DRAW); #else glBufferData(GL_ARRAY_BUFFER, 128, NULL, GL_DYNAMIC_DRAW); #endif glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind #ifdef GLES_NO_CLIENT_ARRAYS //webgl indices buffer glGenBuffers(1, &indices_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indices_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, 16 * 1024, NULL, GL_DYNAMIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // unbind #endif shader_time_rollback = GLOBAL_DEF("rasterizer/shader_time_rollback", 300); using_canvas_bg = false; _update_framebuffer(); DEBUG_TEST_ERROR("Initializing"); } void RasterizerGLES2::finish() { free(default_material); free(shadow_material); free(shadow_material_double_sided); free(canvas_shadow_blur); free(overdraw_material); } int RasterizerGLES2::get_render_info(VS::RenderInfo p_info) { switch (p_info) { case VS::INFO_OBJECTS_IN_FRAME: { return _rinfo.object_count; } break; case VS::INFO_VERTICES_IN_FRAME: { return _rinfo.vertex_count; } break; case VS::INFO_MATERIAL_CHANGES_IN_FRAME: { return _rinfo.mat_change_count; } break; case VS::INFO_SHADER_CHANGES_IN_FRAME: { return _rinfo.shader_change_count; } break; case VS::INFO_DRAW_CALLS_IN_FRAME: { return _rinfo.draw_calls; } break; case VS::INFO_SURFACE_CHANGES_IN_FRAME: { return _rinfo.surface_count; } break; case VS::INFO_USAGE_VIDEO_MEM_TOTAL: { return 0; } break; case VS::INFO_VIDEO_MEM_USED: { return get_render_info(VS::INFO_TEXTURE_MEM_USED) + get_render_info(VS::INFO_VERTEX_MEM_USED); } break; case VS::INFO_TEXTURE_MEM_USED: { return _rinfo.texture_mem; } break; case VS::INFO_VERTEX_MEM_USED: { return 0; } break; } return 0; } void RasterizerGLES2::set_extensions(const char *p_strings) { Vector strings = String(p_strings).split(" ", false); for (int i = 0; i < strings.size(); i++) { extensions.insert(strings[i]); //print_line(strings[i]); } } bool RasterizerGLES2::needs_to_draw_next_frame() const { return draw_next_frame; } bool RasterizerGLES2::has_feature(VS::Features p_feature) const { switch (p_feature) { case VS::FEATURE_SHADERS: return true; case VS::FEATURE_NEEDS_RELOAD_HOOK: return use_reload_hooks; default: return false; } } void RasterizerGLES2::reload_vram() { glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glFrontFace(GL_CW); //do a single initial clear glClearColor(0, 0, 0, 1); //glClearDepth(1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glGenTextures(1, &white_tex); unsigned char whitetexdata[8 * 8 * 3]; for (int i = 0; i < 8 * 8 * 3; i++) { whitetexdata[i] = 255; } glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, white_tex); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 8, 8, 0, GL_RGB, GL_UNSIGNED_BYTE, whitetexdata); glGenerateMipmap(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); List textures; texture_owner.get_owned_list(&textures); keep_copies = false; for (List::Element *E = textures.front(); E; E = E->next()) { RID tid = E->get(); Texture *t = texture_owner.get(tid); ERR_CONTINUE(!t); t->tex_id = 0; t->data_size = 0; glGenTextures(1, &t->tex_id); t->active = false; if (t->render_target) continue; texture_allocate(tid, t->width, t->height, t->format, t->flags); bool had_image = false; for (int i = 0; i < 6; i++) { if (!t->image[i].empty()) { texture_set_data(tid, t->image[i], VS::CubeMapSide(i)); had_image = true; } } if (!had_image && t->reloader) { Object *rl = ObjectDB::get_instance(t->reloader); if (rl) rl->call(t->reloader_func, tid); } } keep_copies = true; List render_targets; render_target_owner.get_owned_list(&render_targets); for (List::Element *E = render_targets.front(); E; E = E->next()) { RenderTarget *rt = render_target_owner.get(E->get()); int w = rt->width; int h = rt->height; rt->width = 0; rt->height = 0; render_target_set_size(E->get(), w, h); } List meshes; mesh_owner.get_owned_list(&meshes); for (List::Element *E = meshes.front(); E; E = E->next()) { Mesh *mesh = mesh_owner.get(E->get()); Vector surfaces = mesh->surfaces; mesh->surfaces.clear(); for (int i = 0; i < surfaces.size(); i++) { mesh_add_surface(E->get(), surfaces[i]->primitive, surfaces[i]->data, surfaces[i]->morph_data, surfaces[i]->alpha_sort); mesh_surface_set_material(E->get(), i, surfaces[i]->material); if (surfaces[i]->array_local != 0) { memfree(surfaces[i]->array_local); }; if (surfaces[i]->index_array_local != 0) { memfree(surfaces[i]->index_array_local); }; memdelete(surfaces[i]); } } List skeletons; skeleton_owner.get_owned_list(&skeletons); for (List::Element *E = skeletons.front(); E; E = E->next()) { Skeleton *sk = skeleton_owner.get(E->get()); if (!sk->tex_id) continue; //does not use hw transform, leave alone Vector bones = sk->bones; sk->bones.clear(); sk->tex_id = 0; sk->pixel_size = 1.0; skeleton_resize(E->get(), bones.size()); sk->bones = bones; } List multimeshes; multimesh_owner.get_owned_list(&multimeshes); for (List::Element *E = multimeshes.front(); E; E = E->next()) { MultiMesh *mm = multimesh_owner.get(E->get()); if (!mm->tex_id) continue; //does not use hw transform, leave alone Vector elements = mm->elements; mm->elements.clear(); mm->tw = 1; mm->th = 1; mm->tex_id = 0; mm->last_pass = 0; mm->visible = -1; multimesh_set_instance_count(E->get(), elements.size()); mm->elements = elements; } if (framebuffer.fbo != 0) { framebuffer.fbo = 0; framebuffer.depth = 0; framebuffer.color = 0; for (int i = 0; i < 3; i++) { framebuffer.blur[i].fbo = 0; framebuffer.blur[i].color = 0; } framebuffer.luminance.clear(); } for (int i = 0; i < near_shadow_buffers.size(); i++) { near_shadow_buffers[i].init(near_shadow_buffers[i].size, !use_rgba_shadowmaps); } blur_shadow_buffer.init(near_shadow_buffers[0].size, !use_rgba_shadowmaps); canvas_shader.clear_caches(); material_shader.clear_caches(); blur_shader.clear_caches(); copy_shader.clear_caches(); List shaders; shader_owner.get_owned_list(&shaders); for (List::Element *E = shaders.front(); E; E = E->next()) { Shader *s = shader_owner.get(E->get()); s->custom_code_id = 0; s->version = 1; s->valid = false; shader_set_mode(E->get(), s->mode); } List materials; material_owner.get_owned_list(&materials); for (List::Element *E = materials.front(); E; E = E->next()) { Material *m = material_owner.get(E->get()); RID shader = m->shader; m->shader_version = 0; material_set_shader(E->get(), shader); } } void RasterizerGLES2::set_use_framebuffers(bool p_use) { use_framebuffers = p_use; } RasterizerGLES2 *RasterizerGLES2::get_singleton() { return _singleton; }; int RasterizerGLES2::RenderList::max_elements = RenderList::DEFAULT_MAX_ELEMENTS; void RasterizerGLES2::set_force_16_bits_fbo(bool p_force) { use_16bits_fbo = p_force; } RasterizerGLES2::RasterizerGLES2(bool p_compress_arrays, bool p_keep_ram_copy, bool p_default_fragment_lighting, bool p_use_reload_hooks) { _singleton = this; shrink_textures_x2 = false; RenderList::max_elements = GLOBAL_DEF("rasterizer/max_render_elements", (int)RenderList::DEFAULT_MAX_ELEMENTS); if (RenderList::max_elements > 64000) RenderList::max_elements = 64000; if (RenderList::max_elements < 1024) RenderList::max_elements = 1024; opaque_render_list.init(); alpha_render_list.init(); skinned_buffer_size = GLOBAL_DEF("rasterizer/skeleton_buffer_size_kb", DEFAULT_SKINNED_BUFFER_SIZE); if (skinned_buffer_size < 256) skinned_buffer_size = 256; if (skinned_buffer_size > 16384) skinned_buffer_size = 16384; skinned_buffer_size *= 1024; skinned_buffer = memnew_arr(uint8_t, skinned_buffer_size); keep_copies = p_keep_ram_copy; use_reload_hooks = p_use_reload_hooks; pack_arrays = p_compress_arrays; p_default_fragment_lighting = false; fragment_lighting = GLOBAL_DEF("rasterizer/use_fragment_lighting", true); read_depth_supported = true; //todo check for extension shadow_filter = ShadowFilterTechnique((int)(GLOBAL_DEF("rasterizer/shadow_filter", SHADOW_FILTER_PCF5))); GlobalConfig::get_singleton()->set_custom_property_info("rasterizer/shadow_filter", PropertyInfo(Variant::INT, "rasterizer/shadow_filter", PROPERTY_HINT_ENUM, "None,PCF5,PCF13,ESM")); use_fp16_fb = bool(GLOBAL_DEF("rasterizer/fp16_framebuffer", true)); use_shadow_mapping = true; use_fast_texture_filter = !bool(GLOBAL_DEF("rasterizer/trilinear_mipmap_filter", true)); low_memory_2d = bool(GLOBAL_DEF("rasterizer/low_memory_2d_mode", false)); skel_default.resize(1024 * 4); for (int i = 0; i < 1024 / 3; i++) { float *ptr = skel_default.ptr(); ptr += i * 4 * 4; ptr[0] = 1.0; ptr[1] = 0.0; ptr[2] = 0.0; ptr[3] = 0.0; ptr[4] = 0.0; ptr[5] = 1.0; ptr[6] = 0.0; ptr[7] = 0.0; ptr[8] = 0.0; ptr[9] = 0.0; ptr[10] = 1.0; ptr[12] = 0.0; } base_framebuffer = 0; frame = 0; draw_next_frame = false; use_framebuffers = true; framebuffer.active = false; tc0_id_cache = 0; tc0_idx = 0; use_16bits_fbo = false; }; void RasterizerGLES2::restore_framebuffer() { glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer); } RasterizerGLES2::~RasterizerGLES2() { memdelete_arr(skinned_buffer); }; #endif