/*************************************************************************/ /* rasterizer_gles1.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifdef GLES1_ENABLED #include "rasterizer_gles1.h" #include "os/os.h" #include "globals.h" #include #include "drivers/gl_context/context_gl.h" #include "servers/visual/shader_language.h" #include "servers/visual/particle_system_sw.h" #include "gl_context/context_gl.h" #include _FORCE_INLINE_ static void _gl_load_transform(const Transform& tr) { GLfloat matrix[16]={ /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glLoadMatrixf(matrix); }; _FORCE_INLINE_ static void _gl_mult_transform(const Transform& tr) { GLfloat matrix[16]={ /* build a 16x16 matrix */ tr.basis.elements[0][0], tr.basis.elements[1][0], tr.basis.elements[2][0], 0, tr.basis.elements[0][1], tr.basis.elements[1][1], tr.basis.elements[2][1], 0, tr.basis.elements[0][2], tr.basis.elements[1][2], tr.basis.elements[2][2], 0, tr.origin.x, tr.origin.y, tr.origin.z, 1 }; glMultMatrixf(matrix); }; _FORCE_INLINE_ static void _gl_mult_transform(const Matrix32& tr) { GLfloat matrix[16]={ /* build a 16x16 matrix */ tr.elements[0][0], tr.elements[0][1], 0, 0, tr.elements[1][0], tr.elements[1][1], 0, 0, 0, 0, 1, 0, tr.elements[2][0], tr.elements[2][1], 0, 1 }; glMultMatrixf(matrix); }; RasterizerGLES1::FX::FX() { bgcolor_active=false; bgcolor=Color(0,1,0,1); skybox_active=false; glow_active=false; glow_passes=4; glow_attenuation=0.7; glow_bloom=0.0; antialias_active=true; antialias_tolerance=15; ssao_active=true; ssao_attenuation=0.7; ssao_radius=0.18; ssao_max_distance=1.0; ssao_range_min=0.25; ssao_range_max=0.48; ssao_only=false; fog_active=false; fog_near=5; fog_far=100; fog_attenuation=1.0; fog_color_near=Color(1,1,1,1); fog_color_far=Color(1,1,1,1); fog_bg=false; toon_active=false; toon_treshold=0.4; toon_soft=0.001; edge_active=false; edge_color=Color(0,0,0,1); edge_size=1.0; } static const GLenum prim_type[]={GL_POINTS,GL_LINES,GL_TRIANGLES,GL_TRIANGLE_FAN}; static void _draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color* p_colors, const Vector3 *p_uvs,const Plane *p_tangents=NULL,int p_instanced=1) { ERR_FAIL_COND(!p_vertices); ERR_FAIL_COND(p_points <1 || p_points>4); GLenum type = prim_type[p_points - 1]; //if (!p_colors) { // glColor4f(1, 1, 1, 1); //}; glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)p_vertices); if (p_normals) { glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, 0, (GLvoid*)p_normals); }; if (p_colors) { glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4,GL_FLOAT, 0, p_colors); }; if (p_uvs) { glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(3, GL_FLOAT, 0, p_uvs); }; glDrawArrays( type, 0, p_points); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); }; /* TEXTURE API */ #define _EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #define _EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG 0x8C01 #define _EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #define _EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG 0x8C03 #define _EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #define _EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #define _EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define _EXT_COMPRESSED_RED_RGTC1_EXT 0x8DBB #define _EXT_COMPRESSED_RED_RGTC1 0x8DBB #define _EXT_COMPRESSED_SIGNED_RED_RGTC1 0x8DBC #define _EXT_COMPRESSED_RG_RGTC2 0x8DBD #define _EXT_COMPRESSED_SIGNED_RG_RGTC2 0x8DBE #define _EXT_COMPRESSED_SIGNED_RED_RGTC1_EXT 0x8DBC #define _EXT_COMPRESSED_RED_GREEN_RGTC2_EXT 0x8DBD #define _EXT_COMPRESSED_SIGNED_RED_GREEN_RGTC2_EXT 0x8DBE #define _EXT_ETC1_RGB8_OES 0x8D64 /* TEXTURE API */ Image RasterizerGLES1::_get_gl_image_and_format(const Image& p_image, Image::Format p_format, uint32_t p_flags,GLenum& r_gl_format,int &r_gl_components,bool &r_has_alpha_cache,bool &r_compressed) { r_has_alpha_cache=false; r_compressed=false; Image image=p_image; switch(p_format) { case Image::FORMAT_GRAYSCALE: { r_gl_components=1; r_gl_format=GL_LUMINANCE; } break; case Image::FORMAT_INTENSITY: { if (!image.empty()) image.convert(Image::FORMAT_RGBA); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; case Image::FORMAT_GRAYSCALE_ALPHA: { //image.convert(Image::FORMAT_RGBA); r_gl_components=2; r_gl_format=GL_LUMINANCE_ALPHA; r_has_alpha_cache=true; } break; case Image::FORMAT_INDEXED: { if (!image.empty()) image.convert(Image::FORMAT_RGB); r_gl_components=3; r_gl_format=GL_RGB; } break; case Image::FORMAT_INDEXED_ALPHA: { if (!image.empty()) image.convert(Image::FORMAT_RGBA); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; case Image::FORMAT_RGB: { r_gl_components=3; r_gl_format=GL_RGB; } break; case Image::FORMAT_RGBA: { r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; } break; case Image::FORMAT_BC1: { r_gl_components=1; //doesn't matter much r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT1_EXT; r_compressed=true; } break; case Image::FORMAT_BC2: { r_gl_components=1; //doesn't matter much r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT3_EXT; r_has_alpha_cache=true; r_compressed=true; } break; case Image::FORMAT_BC3: { r_gl_components=1; //doesn't matter much r_gl_format=_EXT_COMPRESSED_RGBA_S3TC_DXT5_EXT; r_has_alpha_cache=true; r_compressed=true; } break; case Image::FORMAT_BC4: { r_gl_format=_EXT_COMPRESSED_RED_RGTC1; r_gl_components=1; //doesn't matter much r_compressed=true; } break; case Image::FORMAT_BC5: { r_gl_format=_EXT_COMPRESSED_RG_RGTC2; r_gl_components=1; //doesn't matter much r_compressed=true; } break; case Image::FORMAT_PVRTC2: { if (!pvr_supported) { if (!image.empty()) image.decompress(); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; print_line("Load Compat PVRTC2"); } else { r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_2BPPV1_IMG; r_gl_components=1; //doesn't matter much r_compressed=true; print_line("Load Normal PVRTC2"); } } break; case Image::FORMAT_PVRTC2_ALPHA: { if (!pvr_supported) { if (!image.empty()) image.decompress(); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; print_line("Load Compat PVRTC2A"); } else { r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG; r_gl_components=1; //doesn't matter much r_compressed=true; print_line("Load Normal PVRTC2A"); } } break; case Image::FORMAT_PVRTC4: { if (!pvr_supported) { if (!image.empty()) image.decompress(); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; print_line("Load Compat PVRTC4"); } else { r_gl_format=_EXT_COMPRESSED_RGB_PVRTC_4BPPV1_IMG; r_gl_components=1; //doesn't matter much r_compressed=true; print_line("Load Normal PVRTC4"); } } break; case Image::FORMAT_PVRTC4_ALPHA: { if (!pvr_supported) { if (!image.empty()) image.decompress(); r_gl_components=4; r_gl_format=GL_RGBA; r_has_alpha_cache=true; print_line("Load Compat PVRTC4A"); } else { r_gl_format=_EXT_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG; r_gl_components=1; //doesn't matter much r_compressed=true; print_line("Load Normal PVRTC4A"); } } break; case Image::FORMAT_ETC: { if (!pvr_supported) { if (!image.empty()) image.decompress(); } else { r_gl_format=_EXT_ETC1_RGB8_OES; r_gl_components=1; //doesn't matter much r_compressed=true; } } break; case Image::FORMAT_YUV_422: case Image::FORMAT_YUV_444: { if (!image.empty()) image.convert(Image::FORMAT_RGB); r_gl_format=GL_RGB; r_gl_components=3; } break; default: { ERR_FAIL_V(Image()); } } return image; } RID RasterizerGLES1::texture_create() { Texture *texture = memnew(Texture); ERR_FAIL_COND_V(!texture,RID()); glGenTextures(1, &texture->tex_id); texture->active=false; texture->total_data_size=0; return texture_owner.make_rid( texture ); } void RasterizerGLES1::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags) { bool has_alpha_cache; int components; GLenum format; bool compressed; int po2_width = nearest_power_of_2(p_width); int po2_height = nearest_power_of_2(p_height); Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); texture->width=p_width; texture->height=p_height; texture->format=p_format; texture->flags=p_flags; texture->target = /*(p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP :*/ GL_TEXTURE_2D; bool scale_textures = (!npo2_textures_available || p_format&VS::TEXTURE_FLAG_MIPMAPS); if (scale_textures) { texture->alloc_width = po2_width; texture->alloc_height = po2_height; } else { texture->alloc_width = texture->width; texture->alloc_height = texture->height; }; _get_gl_image_and_format(Image(),texture->format,texture->flags,format,components,has_alpha_cache,compressed); texture->gl_components_cache=components; texture->gl_format_cache=format; texture->format_has_alpha=has_alpha_cache; texture->compressed=compressed; texture->data_size=0; glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); if (compressed) { glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_FALSE ); } else { if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) { glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_TRUE ); } else { glTexParameteri( texture->target, GL_GENERATE_MIPMAP, GL_FALSE ); } } if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); else glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR); if (texture->flags&VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // raw Filtering } bool force_clamp_to_edge = !(p_flags&VS::TEXTURE_FLAG_MIPMAPS) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width); if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT) { glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ); } texture->active=true; } void RasterizerGLES1::texture_set_data(RID p_texture,const Image& p_image,VS::CubeMapSide p_cube_side) { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(!texture->active); ERR_FAIL_COND(texture->format != p_image.get_format() ); int components; GLenum format; bool alpha; bool compressed; if (keep_copies && !(texture->flags&VS::TEXTURE_FLAG_VIDEO_SURFACE) && !(use_reload_hooks && texture->reloader)) { texture->image[p_cube_side]=p_image; } Image img = _get_gl_image_and_format(p_image, p_image.get_format(),texture->flags,format,components,alpha,compressed); if (texture->alloc_width != img.get_width() || texture->alloc_height != img.get_height()) { img.resize(texture->alloc_width, texture->alloc_height, Image::INTERPOLATE_BILINEAR); }; GLenum blit_target = /*(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:*/GL_TEXTURE_2D; texture->data_size=img.get_data().size(); DVector::Read read = img.get_data().read(); glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); int mipmaps=(texture->flags&VS::TEXTURE_FLAG_MIPMAPS && img.get_mipmaps()>0) ? img.get_mipmaps() +1 : 1; int w=img.get_width(); int h=img.get_height(); int tsize=0; for(int i=0;icompressed) { glPixelStorei(GL_UNPACK_ALIGNMENT, 4); glCompressedTexImage2D( blit_target, i, format,w,h,0,size,&read[ofs] ); } else { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); // glTexImage2D(blit_target, i, format==GL_RGB?GL_RGB8:format, w, h, 0, format, GL_UNSIGNED_BYTE,&read[ofs]); glTexImage2D(blit_target, i, format, w, h, 0, format, GL_UNSIGNED_BYTE,&read[ofs]); //glTexSubImage2D( blit_target, i, 0,0,w,h,format,GL_UNSIGNED_BYTE,&read[ofs] ); } tsize+=size; w = MAX(1,w>>1); h = MAX(1,h>>1); } _rinfo.texture_mem-=texture->total_data_size; texture->total_data_size=tsize; _rinfo.texture_mem+=texture->total_data_size; printf("texture: %i x %i - size: %i - total: %i\n",texture->width,texture->height,tsize,_rinfo.texture_mem); if (mipmaps==1 && texture->flags&VS::TEXTURE_FLAG_MIPMAPS) { glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE ); } else { glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_FALSE ); } if (mipmaps>1) { //glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmaps-1 ); - assumed to have all, always } //texture_set_flags(p_texture,texture->flags); } Image RasterizerGLES1::texture_get_data(RID p_texture,VS::CubeMapSide p_cube_side) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image()); ERR_FAIL_COND_V(!texture->active,Image()); return texture->image[p_cube_side]; #if 0 Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image()); ERR_FAIL_COND_V(!texture->active,Image()); ERR_FAIL_COND_V(texture->data_size==0,Image()); DVector data; GLenum format,type=GL_UNSIGNED_BYTE; Image::Format fmt; int pixelsize=0; int pixelshift=0; int minw=1,minh=1; bool compressed=false; fmt=texture->format; switch(texture->format) { case Image::FORMAT_GRAYSCALE: { format=GL_LUMINANCE; type=GL_UNSIGNED_BYTE; data.resize(texture->alloc_width*texture->alloc_height); pixelsize=1; } break; case Image::FORMAT_INTENSITY: { return Image(); } break; case Image::FORMAT_GRAYSCALE_ALPHA: { format=GL_LUMINANCE_ALPHA; type=GL_UNSIGNED_BYTE; pixelsize=2; } break; case Image::FORMAT_RGB: { format=GL_RGB; type=GL_UNSIGNED_BYTE; pixelsize=3; } break; case Image::FORMAT_RGBA: { format=GL_RGBA; type=GL_UNSIGNED_BYTE; pixelsize=4; } break; case Image::FORMAT_INDEXED: { format=GL_RGB; type=GL_UNSIGNED_BYTE; fmt=Image::FORMAT_RGB; pixelsize=3; } break; case Image::FORMAT_INDEXED_ALPHA: { format=GL_RGBA; type=GL_UNSIGNED_BYTE; fmt=Image::FORMAT_RGBA; pixelsize=4; } break; case Image::FORMAT_BC1: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; compressed=true; pixelshift=1; minw=minh=4; } break; case Image::FORMAT_BC2: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; compressed=true; minw=minh=4; } break; case Image::FORMAT_BC3: { pixelsize=1; //doesn't matter much format=GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; compressed=true; minw=minh=4; } break; case Image::FORMAT_BC4: { format=GL_COMPRESSED_RED_RGTC1; pixelsize=1; //doesn't matter much compressed=true; pixelshift=1; minw=minh=4; } break; case Image::FORMAT_BC5: { format=GL_COMPRESSED_RG_RGTC2; pixelsize=1; //doesn't matter much compressed=true; minw=minh=4; } break; default:{} } data.resize(texture->data_size); DVector::Write wb = data.write(); glActiveTexture(GL_TEXTURE0); int ofs=0; glBindTexture(texture->target,texture->tex_id); int w=texture->alloc_width; int h=texture->alloc_height; for(int i=0;imipmaps+1;i++) { if (compressed) { glPixelStorei(GL_PACK_ALIGNMENT, 4); glGetCompressedTexImage(texture->target,i,&wb[ofs]); } else { glPixelStorei(GL_PACK_ALIGNMENT, 1); glGetTexImage(texture->target,i,format,type,&wb[ofs]); } int size = (w*h*pixelsize)>>pixelshift; ofs+=size; w=MAX(minw,w>>1); h=MAX(minh,h>>1); } wb=DVector::Write(); Image img(texture->alloc_width,texture->alloc_height,texture->mipmaps,fmt,data); if (texture->formatalloc_width!=texture->width || texture->alloc_height!=texture->height)) img.resize(texture->width,texture->height); return img; #endif } void RasterizerGLES1::texture_set_flags(RID p_texture,uint32_t p_flags) { Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glBindTexture(texture->target, texture->tex_id); uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP; texture->flags=p_flags|cube; // can't remove a cube from being a cube bool force_clamp_to_edge = !(p_flags&VS::TEXTURE_FLAG_MIPMAPS) && (nearest_power_of_2(texture->alloc_height)!=texture->alloc_height || nearest_power_of_2(texture->alloc_width)!=texture->alloc_width); if (!force_clamp_to_edge && texture->flags&VS::TEXTURE_FLAG_REPEAT) { glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); } else { //glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ); glTexParameterf( texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ); } if (texture->flags&VS::TEXTURE_FLAG_FILTER) { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering if (texture->flags&VS::TEXTURE_FLAG_MIPMAPS) glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR); else glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR); // Linear Filtering } else { glTexParameteri(texture->target,GL_TEXTURE_MAG_FILTER,GL_NEAREST); // nearest } } uint32_t RasterizerGLES1::texture_get_flags(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->flags; } Image::Format RasterizerGLES1::texture_get_format(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image::FORMAT_GRAYSCALE); return texture->format; } uint32_t RasterizerGLES1::texture_get_width(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->width; } uint32_t RasterizerGLES1::texture_get_height(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->height; } bool RasterizerGLES1::texture_has_alpha(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return false; } void RasterizerGLES1::texture_set_size_override(RID p_texture,int p_width, int p_height) { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(p_width<=0 || p_width>4096); ERR_FAIL_COND(p_height<=0 || p_height>4096); //real texture size is in alloc width and height texture->width=p_width; texture->height=p_height; } void RasterizerGLES1::texture_set_reload_hook(RID p_texture,ObjectID p_owner,const StringName& p_function) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); texture->reloader=p_owner; texture->reloader_func=p_function; if (use_reload_hooks && p_owner && keep_copies) { for(int i=0;i<6;i++) texture->image[i]=Image(); } } /* SHADER API */ /* SHADER API */ RID RasterizerGLES1::shader_create(VS::ShaderMode p_mode) { Shader *shader = memnew( Shader ); shader->mode=p_mode; shader->valid=false; shader->has_alpha=false; shader->fragment_line=0; shader->vertex_line=0; shader->light_line=0; RID rid = shader_owner.make_rid(shader); shader_set_mode(rid,p_mode); // _shader_make_dirty(shader); return rid; } void RasterizerGLES1::shader_set_mode(RID p_shader,VS::ShaderMode p_mode) { ERR_FAIL_INDEX(p_mode,3); Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND(!shader); // if (shader->custom_code_id && p_mode==shader->mode) // return; shader->mode=p_mode; } VS::ShaderMode RasterizerGLES1::shader_get_mode(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,VS::SHADER_MATERIAL); return shader->mode; } void RasterizerGLES1::shader_set_code(RID p_shader, const String& p_vertex, const String& p_fragment,const String& p_light,int p_vertex_ofs,int p_fragment_ofs,int p_light_ofs) { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND(!shader); #ifdef DEBUG_ENABLED if (shader->vertex_code==p_vertex && shader->fragment_code==p_fragment && shader->light_code==p_light) return; #endif shader->fragment_code=p_fragment; shader->vertex_code=p_vertex; shader->light_code=p_light; shader->fragment_line=p_fragment_ofs; shader->vertex_line=p_vertex_ofs; shader->light_line=p_light_ofs; } String RasterizerGLES1::shader_get_vertex_code(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,String()); return shader->vertex_code; } String RasterizerGLES1::shader_get_fragment_code(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,String()); return shader->fragment_code; } String RasterizerGLES1::shader_get_light_code(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,String()); return shader->light_code; } void RasterizerGLES1::shader_get_param_list(RID p_shader, List *p_param_list) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND(!shader); #if 0 if (shader->dirty_list.in_list()) _update_shader(shader); // ok should be not anymore dirty Map order; for(Map::Element *E=shader->uniforms.front();E;E=E->next()) { order[E->get().order]=E->key(); } for(Map::Element *E=order.front();E;E=E->next()) { PropertyInfo pi; ShaderLanguage::Uniform &u=shader->uniforms[E->get()]; pi.name=E->get(); switch(u.type) { case ShaderLanguage::TYPE_VOID: case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_FLOAT: case ShaderLanguage::TYPE_VEC2: case ShaderLanguage::TYPE_VEC3: case ShaderLanguage::TYPE_MAT3: case ShaderLanguage::TYPE_MAT4: case ShaderLanguage::TYPE_VEC4: pi.type=u.default_value.get_type(); break; case ShaderLanguage::TYPE_TEXTURE: pi.type=Variant::_RID; pi.hint=PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string="Texture"; break; case ShaderLanguage::TYPE_CUBEMAP: pi.type=Variant::_RID; pi.hint=PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string="Texture"; break; }; p_param_list->push_back(pi); } #endif } /* COMMON MATERIAL API */ RID RasterizerGLES1::material_create() { return material_owner.make_rid( memnew( Material ) ); } void RasterizerGLES1::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->shader=p_shader; } RID RasterizerGLES1::material_get_shader(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,RID()); return material->shader; } #if 0 void RasterizerGLES1::_material_check_alpha(Material *p_material) { p_material->has_alpha=false; Color diffuse=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE]; if (diffuse.a<0.98) { p_material->has_alpha=true; return; } if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE].is_valid()) { Texture *tex = texture_owner.get(p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]); if (!tex) return; if (tex->has_alpha) { p_material->has_alpha=true; return; } } } #endif void RasterizerGLES1::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); if (p_value.get_type()==Variant::NIL) material->shader_params.erase(p_param); else material->shader_params[p_param]=p_value; } Variant RasterizerGLES1::material_get_param(RID p_material, const StringName& p_param) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,Variant()); if (material->shader_params.has(p_param)) return material->shader_params[p_param]; else return Variant(); } void RasterizerGLES1::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); ERR_FAIL_INDEX(p_flag,VS::MATERIAL_FLAG_MAX); material->flags[p_flag]=p_enabled; } bool RasterizerGLES1::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,false); ERR_FAIL_INDEX_V(p_flag,VS::MATERIAL_FLAG_MAX,false); return material->flags[p_flag]; } void RasterizerGLES1::material_set_depth_draw_mode(RID p_material, VS::MaterialDepthDrawMode p_mode) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->depth_draw_mode=p_mode; } VS::MaterialDepthDrawMode RasterizerGLES1::material_get_depth_draw_mode(RID p_material) const{ Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,VS::MATERIAL_DEPTH_DRAW_ALWAYS); return material->depth_draw_mode; } void RasterizerGLES1::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->blend_mode=p_mode; } VS::MaterialBlendMode RasterizerGLES1::material_get_blend_mode(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,VS::MATERIAL_BLEND_MODE_ADD); return material->blend_mode; } void RasterizerGLES1::material_set_line_width(RID p_material,float p_line_width) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->line_width=p_line_width; } float RasterizerGLES1::material_get_line_width(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,0); return material->line_width; } /* FIXED MATERIAL */ RID RasterizerGLES1::fixed_material_create() { return material_create(); } void RasterizerGLES1::fixed_material_set_flag(RID p_material, VS::FixedMaterialFlags p_flag, bool p_enabled) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_flag, 3); m->fixed_flags[p_flag]=p_enabled; } bool RasterizerGLES1::fixed_material_get_flag(RID p_material, VS::FixedMaterialFlags p_flag) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m,false); ERR_FAIL_INDEX_V(p_flag,VS::FIXED_MATERIAL_FLAG_MAX, false); return m->fixed_flags[p_flag]; } void RasterizerGLES1::fixed_material_set_parameter(RID p_material, VS::FixedMaterialParam p_parameter, const Variant& p_value) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->parameters[p_parameter] = p_value; } Variant RasterizerGLES1::fixed_material_get_parameter(RID p_material,VS::FixedMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, Variant()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->parameters[p_parameter]; } void RasterizerGLES1::fixed_material_set_texture(RID p_material,VS::FixedMaterialParam p_parameter, RID p_texture) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); m->textures[p_parameter] = p_texture; } RID RasterizerGLES1::fixed_material_get_texture(RID p_material,VS::FixedMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, RID()); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant()); return m->textures[p_parameter]; } void RasterizerGLES1::fixed_material_set_texcoord_mode(RID p_material,VS::FixedMaterialParam p_parameter, VS::FixedMaterialTexCoordMode p_mode) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX); ERR_FAIL_INDEX(p_mode,4); m->texcoord_mode[p_parameter] = p_mode; } VS::FixedMaterialTexCoordMode RasterizerGLES1::fixed_material_get_texcoord_mode(RID p_material,VS::FixedMaterialParam p_parameter) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_UV); ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV); return m->texcoord_mode[p_parameter]; // for now } void RasterizerGLES1::fixed_material_set_uv_transform(RID p_material,const Transform& p_transform) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); m->uv_transform = p_transform; } Transform RasterizerGLES1::fixed_material_get_uv_transform(RID p_material) const { Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, Transform()); return m->uv_transform; } void RasterizerGLES1::fixed_material_set_point_size(RID p_material,float p_size) { Material *m=material_owner.get( p_material ); ERR_FAIL_COND(!m); m->point_size=p_size; } float RasterizerGLES1::fixed_material_get_point_size(RID p_material) const { const Material *m=material_owner.get( p_material ); ERR_FAIL_COND_V(!m, 0); return m->point_size; } /* MESH API */ RID RasterizerGLES1::mesh_create() { return mesh_owner.make_rid( memnew( Mesh ) ); } void RasterizerGLES1::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes,bool p_alpha_sort) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX( p_primitive, VS::PRIMITIVE_MAX ); ERR_FAIL_COND(p_arrays.size()!=VS::ARRAY_MAX); uint32_t format=0; // validation int index_array_len=0; int array_len=0; for(int i=0;imorph_target_count>0) { use_VBO=false; } surface->packed=pack_arrays && use_VBO; int total_elem_size=0; for (int i=0;iarray[i]; ad.size=0; ad.ofs=0; int elem_size=0; int elem_count=0; bool valid_local=true; GLenum datatype; bool normalize=false; bool bind=false; if (!(format&(1<packed) { elem_size=3*sizeof(int16_t); // vertex datatype=GL_SHORT; normalize=true; } else { elem_size=3*sizeof(GLfloat); // vertex datatype=GL_FLOAT; } bind=true; elem_count=3; } break; case VS::ARRAY_NORMAL: { if (surface->packed) { elem_size=3*sizeof(int8_t); // vertex datatype=GL_BYTE; normalize=true; } else { elem_size=3*sizeof(GLfloat); // vertex datatype=GL_FLOAT; } bind=true; elem_count=3; } break; case VS::ARRAY_TANGENT: { if (surface->packed) { elem_size=4*sizeof(int8_t); // vertex datatype=GL_BYTE; normalize=true; } else { elem_size=4*sizeof(GLfloat); // vertex datatype=GL_FLOAT; } bind=true; elem_count=4; } break; case VS::ARRAY_COLOR: { elem_size=4*sizeof(uint8_t); /* RGBA */ datatype=GL_UNSIGNED_BYTE; elem_count=4; bind=true; normalize=true; } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { if (surface->packed) { elem_size=2*sizeof(int16_t); // vertex datatype=GL_SHORT; normalize=true; } else { elem_size=2*sizeof(GLfloat); // vertex datatype=GL_FLOAT; } bind=true; elem_count=2; } break; case VS::ARRAY_WEIGHTS: { elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLfloat); elem_count=VS::ARRAY_WEIGHTS_SIZE; valid_local=false; datatype=GL_FLOAT; } break; case VS::ARRAY_BONES: { elem_size=VS::ARRAY_WEIGHTS_SIZE*sizeof(GLuint); elem_count=VS::ARRAY_WEIGHTS_SIZE; valid_local=false; datatype=GL_FLOAT; } break; case VS::ARRAY_INDEX: { if (index_array_len<=0) { ERR_PRINT("index_array_len==NO_INDEX_ARRAY"); break; } /* determine wether using 16 or 32 bits indices */ elem_size=2; datatype=GL_UNSIGNED_SHORT; /* if (use_VBO) { glGenBuffers(1,&surface->index_id); ERR_FAIL_COND(surface->index_id==0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*elem_size,NULL,GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind } else { surface->index_array_local = (uint8_t*)memalloc(index_array_len*elem_size); }; */ surface->index_array_len=index_array_len; // only way it can exist ad.ofs=0; ad.size=elem_size; continue; } break; default: { ERR_FAIL( ); } } ad.ofs=total_elem_size; ad.size=elem_size; ad.datatype=datatype; ad.normalize=normalize; ad.bind=bind; ad.count=elem_count; total_elem_size+=elem_size; if (valid_local) { surface->local_stride+=elem_size; surface->morph_format|=(1<stride=total_elem_size; surface->array_len=array_len; surface->format=format; surface->primitive=p_primitive; surface->configured_format=0; if (keep_copies) { surface->data=p_arrays; surface->morph_data=p_blend_shapes; } uint8_t *array_ptr=NULL; uint8_t *index_array_ptr=NULL; DVector array_pre_vbo; DVector::Write vaw; DVector index_array_pre_vbo; DVector::Write iaw; /* create pointers */ if (use_VBO) { array_pre_vbo.resize(surface->array_len*surface->stride); vaw = array_pre_vbo.write(); array_ptr=vaw.ptr(); if (surface->index_array_len) { index_array_pre_vbo.resize(surface->index_array_len*surface->array[VS::ARRAY_INDEX].size); iaw = index_array_pre_vbo.write(); index_array_ptr=iaw.ptr(); } } else { surface->array_local = (uint8_t*)memalloc(surface->array_len*surface->stride); array_ptr=(uint8_t*)surface->array_local; if (surface->index_array_len) { surface->index_array_local = (uint8_t*)memalloc(index_array_len*surface->array[VS::ARRAY_INDEX].size); index_array_ptr=(uint8_t*)surface->index_array_local; } } _surface_set_arrays(surface,array_ptr,index_array_ptr,p_arrays,true); /* create buffers!! */ if (use_VBO) { glGenBuffers(1,&surface->vertex_id); ERR_FAIL_COND(surface->vertex_id==0); glBindBuffer(GL_ARRAY_BUFFER,surface->vertex_id); glBufferData(GL_ARRAY_BUFFER,surface->array_len*surface->stride,array_ptr,GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER,0); //unbind if (surface->index_array_len) { glGenBuffers(1,&surface->index_id); ERR_FAIL_COND(surface->index_id==0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,surface->index_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER,index_array_len*surface->array[VS::ARRAY_INDEX].size,index_array_ptr,GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind } } mesh->surfaces.push_back(surface); } Error RasterizerGLES1::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem,uint8_t *p_index_mem,const Array& p_arrays,bool p_main) { uint32_t stride = p_main ? p_surface->stride : p_surface->local_stride; for(int ai=0;ai=p_arrays.size()) break; if (p_arrays[ai].get_type()==Variant::NIL) continue; Surface::ArrayData &a=p_surface->array[ai]; switch(ai) { case VS::ARRAY_VERTEX: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER ); DVector::Read read = array.read(); const Vector3* src=read.ptr(); // setting vertices means regenerating the AABB AABB aabb; float scale=1; float max=0; for (int i=0;iarray_len;i++) { GLfloat vector[3]={ src[i].x, src[i].y, src[i].z }; copymem(&p_mem[a.ofs+i*stride], vector, a.size); if (i==0) { aabb=AABB(src[i],Vector3()); } else { aabb.expand_to( src[i] ); } } if (p_main) { p_surface->aabb=aabb; p_surface->vertex_scale=scale; } } break; case VS::ARRAY_NORMAL: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER ); DVector::Read read = array.read(); const Vector3* src=read.ptr(); // setting vertices means regenerating the AABB for (int i=0;iarray_len;i++) { GLfloat vector[3]={ src[i].x, src[i].y, src[i].z }; copymem(&p_mem[a.ofs+i*stride], vector, a.size); } } break; case VS::ARRAY_TANGENT: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len*4, ERR_INVALID_PARAMETER ); DVector::Read read = array.read(); const real_t* src = read.ptr(); for (int i=0;iarray_len;i++) { GLfloat xyzw[4]={ src[i*4+0], src[i*4+1], src[i*4+2], src[i*4+3] }; copymem(&p_mem[a.ofs+i*stride], xyzw, a.size); } } break; case VS::ARRAY_COLOR: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len, ERR_INVALID_PARAMETER ); DVector::Read read = array.read(); const Color* src = read.ptr(); bool alpha=false; for (int i=0;iarray_len;i++) { if (src[i].a<0.98) // tolerate alpha a bit, for crappy exporters alpha=true; uint8_t colors[4]; for(int j=0;j<4;j++) { colors[j]=CLAMP( int((src[i][j])*255.0), 0,255 ); } copymem(&p_mem[a.ofs+i*stride], colors, a.size); } if (p_main) p_surface->has_alpha=alpha; } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::VECTOR3_ARRAY && p_arrays[ai].get_type() != Variant::VECTOR2_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len , ERR_INVALID_PARAMETER); DVector::Read read = array.read(); const Vector2 * src=read.ptr(); float scale=1.0; for (int i=0;iarray_len;i++) { GLfloat uv[2]={ src[i].x , src[i].y }; copymem(&p_mem[a.ofs+i*stride], uv, a.size); } if (p_main) { if (ai==VS::ARRAY_TEX_UV) { p_surface->uv_scale=scale; } if (ai==VS::ARRAY_TEX_UV2) { p_surface->uv2_scale=scale; } } } break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: { ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER ); DVector array = p_arrays[ai]; ERR_FAIL_COND_V( array.size() != p_surface->array_len*VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER ); DVector::Read read = array.read(); const real_t * src = read.ptr(); p_surface->max_bone=0; for (int i=0;iarray_len;i++) { GLfloat data[VS::ARRAY_WEIGHTS_SIZE]; for (int j=0;jmax_bone=MAX(data[j],p_surface->max_bone); } } copymem(&p_mem[a.ofs+i*stride], data, a.size); } } break; case VS::ARRAY_INDEX: { ERR_FAIL_COND_V( p_surface->index_array_len<=0, ERR_INVALID_DATA ); ERR_FAIL_COND_V( p_arrays[ai].get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER ); DVector indices = p_arrays[ai]; ERR_FAIL_COND_V( indices.size() == 0, ERR_INVALID_PARAMETER ); ERR_FAIL_COND_V( indices.size() != p_surface->index_array_len, ERR_INVALID_PARAMETER ); /* determine wether using 16 or 32 bits indices */ DVector::Read read = indices.read(); const int *src=read.ptr(); for (int i=0;iindex_array_len;i++) { if (a.size==2) { uint16_t v=src[i]; copymem(&p_index_mem[i*a.size], &v, a.size); } else { uint32_t v=src[i]; copymem(&p_index_mem[i*a.size], &v, a.size); } } } break; default: { ERR_FAIL_V(ERR_INVALID_PARAMETER);} } p_surface->configured_format|=(1<surfaces.size(), Array() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, Array() ); return surface->data; } Array RasterizerGLES1::mesh_get_surface_morph_arrays(RID p_mesh,int p_surface) const{ Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,Array()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, Array() ); return surface->morph_data; } void RasterizerGLES1::mesh_set_morph_target_count(RID p_mesh,int p_amount) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_COND( mesh->surfaces.size()!=0 ); mesh->morph_target_count=p_amount; } int RasterizerGLES1::mesh_get_morph_target_count(RID p_mesh) const{ Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); return mesh->morph_target_count; } void RasterizerGLES1::mesh_set_morph_target_mode(RID p_mesh,VS::MorphTargetMode p_mode) { ERR_FAIL_INDEX(p_mode,2); Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); mesh->morph_target_mode=p_mode; } VS::MorphTargetMode RasterizerGLES1::mesh_get_morph_target_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,VS::MORPH_MODE_NORMALIZED); return mesh->morph_target_mode; } void RasterizerGLES1::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND( !surface); if (surface->material_owned && surface->material.is_valid()) free(surface->material); surface->material_owned=p_owned; surface->material=p_material; } RID RasterizerGLES1::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, RID() ); return surface->material; } int RasterizerGLES1::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->array_len; } int RasterizerGLES1::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->index_array_len; } uint32_t RasterizerGLES1::mesh_surface_get_format(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, 0 ); return surface->format; } VS::PrimitiveType RasterizerGLES1::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS ); return surface->primitive; } void RasterizerGLES1::mesh_remove_surface(RID p_mesh,int p_index) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_index, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_index]; ERR_FAIL_COND( !surface); if (mesh->morph_target_count) { for(int i=0;imorph_target_count;i++) memfree(surface->morph_targets_local[i].array); memfree( surface->morph_targets_local ); } memdelete( mesh->surfaces[p_index] ); mesh->surfaces.remove(p_index); } int RasterizerGLES1::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); return mesh->surfaces.size(); } AABB RasterizerGLES1::mesh_get_aabb(RID p_mesh,RID p_skeleton) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,AABB()); if (mesh->custom_aabb!=AABB()) return mesh->custom_aabb; AABB aabb; for (int i=0;isurfaces.size();i++) { if (i==0) aabb=mesh->surfaces[i]->aabb; else aabb.merge_with(mesh->surfaces[i]->aabb); } return aabb; } void RasterizerGLES1::mesh_set_custom_aabb(RID p_mesh,const AABB& p_aabb) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); mesh->custom_aabb=p_aabb; } AABB RasterizerGLES1::mesh_get_custom_aabb(RID p_mesh) const { const Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,AABB()); return mesh->custom_aabb; } /* MULTIMESH API */ RID RasterizerGLES1::multimesh_create() { return multimesh_owner.make_rid( memnew( MultiMesh )); } void RasterizerGLES1::multimesh_set_instance_count(RID p_multimesh,int p_count) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations multimesh->elements.resize(p_count); } int RasterizerGLES1::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,-1); return multimesh->elements.size(); } void RasterizerGLES1::multimesh_set_mesh(RID p_multimesh,RID p_mesh) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->mesh=p_mesh; } void RasterizerGLES1::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->aabb=p_aabb; } void RasterizerGLES1::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index,multimesh->elements.size()); MultiMesh::Element &e=multimesh->elements[p_index]; e.matrix[0]=p_transform.basis.elements[0][0]; e.matrix[1]=p_transform.basis.elements[1][0]; e.matrix[2]=p_transform.basis.elements[2][0]; e.matrix[3]=0; e.matrix[4]=p_transform.basis.elements[0][1]; e.matrix[5]=p_transform.basis.elements[1][1]; e.matrix[6]=p_transform.basis.elements[2][1]; e.matrix[7]=0; e.matrix[8]=p_transform.basis.elements[0][2]; e.matrix[9]=p_transform.basis.elements[1][2]; e.matrix[10]=p_transform.basis.elements[2][2]; e.matrix[11]=0; e.matrix[12]=p_transform.origin.x; e.matrix[13]=p_transform.origin.y; e.matrix[14]=p_transform.origin.z; e.matrix[15]=1; } void RasterizerGLES1::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh) ERR_FAIL_INDEX(p_index,multimesh->elements.size()); MultiMesh::Element &e=multimesh->elements[p_index]; e.color[0]=CLAMP(p_color.r*255,0,255); e.color[1]=CLAMP(p_color.g*255,0,255); e.color[2]=CLAMP(p_color.b*255,0,255); e.color[3]=CLAMP(p_color.a*255,0,255); } RID RasterizerGLES1::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,RID()); return multimesh->mesh; } AABB RasterizerGLES1::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,AABB()); return multimesh->aabb; } Transform RasterizerGLES1::multimesh_instance_get_transform(RID p_multimesh,int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,Transform()); ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Transform()); MultiMesh::Element &e=multimesh->elements[p_index]; Transform tr; tr.basis.elements[0][0]=e.matrix[0]; tr.basis.elements[1][0]=e.matrix[1]; tr.basis.elements[2][0]=e.matrix[2]; tr.basis.elements[0][1]=e.matrix[4]; tr.basis.elements[1][1]=e.matrix[5]; tr.basis.elements[2][1]=e.matrix[6]; tr.basis.elements[0][2]=e.matrix[8]; tr.basis.elements[1][2]=e.matrix[9]; tr.basis.elements[2][2]=e.matrix[10]; tr.origin.x=e.matrix[12]; tr.origin.y=e.matrix[13]; tr.origin.z=e.matrix[14]; return tr; } Color RasterizerGLES1::multimesh_instance_get_color(RID p_multimesh,int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,Color()); ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Color()); MultiMesh::Element &e=multimesh->elements[p_index]; Color c; c.r=e.color[0]/255.0; c.g=e.color[1]/255.0; c.b=e.color[2]/255.0; c.a=e.color[3]/255.0; return c; } void RasterizerGLES1::multimesh_set_visible_instances(RID p_multimesh,int p_visible) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->visible=p_visible; } int RasterizerGLES1::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,-1); return multimesh->visible; } /* IMMEDIATE API */ RID RasterizerGLES1::immediate_create() { Immediate *im = memnew( Immediate ); return immediate_owner.make_rid(im); } void RasterizerGLES1::immediate_begin(RID p_immediate, VS::PrimitiveType p_rimitive, RID p_texture){ } void RasterizerGLES1::immediate_vertex(RID p_immediate,const Vector3& p_vertex){ } void RasterizerGLES1::immediate_normal(RID p_immediate,const Vector3& p_normal){ } void RasterizerGLES1::immediate_tangent(RID p_immediate,const Plane& p_tangent){ } void RasterizerGLES1::immediate_color(RID p_immediate,const Color& p_color){ } void RasterizerGLES1::immediate_uv(RID p_immediate,const Vector2& tex_uv){ } void RasterizerGLES1::immediate_uv2(RID p_immediate,const Vector2& tex_uv){ } void RasterizerGLES1::immediate_end(RID p_immediate){ } void RasterizerGLES1::immediate_clear(RID p_immediate) { } AABB RasterizerGLES1::immediate_get_aabb(RID p_immediate) const { return AABB(Vector3(-1,-1,-1),Vector3(2,2,2)); } void RasterizerGLES1::immediate_set_material(RID p_immediate,RID p_material) { Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND(!im); im->material=p_material; } RID RasterizerGLES1::immediate_get_material(RID p_immediate) const { const Immediate *im = immediate_owner.get(p_immediate); ERR_FAIL_COND_V(!im,RID()); return im->material; } /* PARTICLES API */ RID RasterizerGLES1::particles_create() { Particles *particles = memnew( Particles ); ERR_FAIL_COND_V(!particles,RID()); return particles_owner.make_rid(particles); } void RasterizerGLES1::particles_set_amount(RID p_particles, int p_amount) { ERR_FAIL_COND(p_amount<1); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.amount=p_amount; } int RasterizerGLES1::particles_get_amount(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.amount; } void RasterizerGLES1::particles_set_emitting(RID p_particles, bool p_emitting) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emitting=p_emitting;; } bool RasterizerGLES1::particles_is_emitting(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.emitting; } void RasterizerGLES1::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.visibility_aabb=p_visibility; } void RasterizerGLES1::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_half_extents=p_half_extents; } Vector3 RasterizerGLES1::particles_get_emission_half_extents(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.emission_half_extents; } void RasterizerGLES1::particles_set_emission_base_velocity(RID p_particles, const Vector3& p_base_velocity) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_base_velocity=p_base_velocity; } Vector3 RasterizerGLES1::particles_get_emission_base_velocity(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.emission_base_velocity; } void RasterizerGLES1::particles_set_emission_points(RID p_particles, const DVector& p_points) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_points=p_points; } DVector RasterizerGLES1::particles_get_emission_points(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,DVector()); return particles->data.emission_points; } void RasterizerGLES1::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.gravity_normal=p_normal; } Vector3 RasterizerGLES1::particles_get_gravity_normal(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.gravity_normal; } AABB RasterizerGLES1::particles_get_visibility_aabb(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,AABB()); return particles->data.visibility_aabb; } void RasterizerGLES1::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) { ERR_FAIL_INDEX(p_variable,VS::PARTICLE_VAR_MAX); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.particle_vars[p_variable]=p_value; } float RasterizerGLES1::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.particle_vars[p_variable]; } void RasterizerGLES1::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.particle_randomness[p_variable]=p_randomness; } float RasterizerGLES1::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.particle_randomness[p_variable]; } void RasterizerGLES1::particles_set_color_phases(RID p_particles, int p_phases) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_COND( p_phases<0 || p_phases>VS::MAX_PARTICLE_COLOR_PHASES ); particles->data.color_phase_count=p_phases; } int RasterizerGLES1::particles_get_color_phases(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.color_phase_count; } void RasterizerGLES1::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); if (p_pos<0.0) p_pos=0.0; if (p_pos>1.0) p_pos=1.0; Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].pos=p_pos; } float RasterizerGLES1::particles_get_color_phase_pos(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0); const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.color_phases[p_phase].pos; } void RasterizerGLES1::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].color=p_color; //update alpha particles->has_alpha=false; for(int i=0;idata.color_phases[i].color.a<0.99) particles->has_alpha=true; } } Color RasterizerGLES1::particles_get_color_phase_color(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color()); const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Color()); return particles->data.color_phases[p_phase].color; } void RasterizerGLES1::particles_set_attractors(RID p_particles, int p_attractors) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_COND( p_attractors<0 || p_attractors>VisualServer::MAX_PARTICLE_ATTRACTORS ); particles->data.attractor_count=p_attractors; } int RasterizerGLES1::particles_get_attractors(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.attractor_count; } void RasterizerGLES1::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count); particles->data.attractors[p_attractor].pos=p_pos;; } Vector3 RasterizerGLES1::particles_get_attractor_pos(RID p_particles,int p_attractor) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,Vector3()); return particles->data.attractors[p_attractor].pos; } void RasterizerGLES1::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count); particles->data.attractors[p_attractor].force=p_force; } float RasterizerGLES1::particles_get_attractor_strength(RID p_particles,int p_attractor) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,0); ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,0); return particles->data.attractors[p_attractor].force; } void RasterizerGLES1::particles_set_material(RID p_particles, RID p_material,bool p_owned) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); if (particles->material_owned && particles->material.is_valid()) free(particles->material); particles->material_owned=p_owned; particles->material=p_material; } RID RasterizerGLES1::particles_get_material(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,RID()); return particles->material; } void RasterizerGLES1::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.local_coordinates=p_enable; } bool RasterizerGLES1::particles_is_using_local_coordinates(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.local_coordinates; } bool RasterizerGLES1::particles_has_height_from_velocity(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.height_from_velocity; } void RasterizerGLES1::particles_set_height_from_velocity(RID p_particles, bool p_enable) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.height_from_velocity=p_enable; } AABB RasterizerGLES1::particles_get_aabb(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,AABB()); return particles->data.visibility_aabb; } /* SKELETON API */ RID RasterizerGLES1::skeleton_create() { Skeleton *skeleton = memnew( Skeleton ); ERR_FAIL_COND_V(!skeleton,RID()); return skeleton_owner.make_rid( skeleton ); } void RasterizerGLES1::skeleton_resize(RID p_skeleton,int p_bones) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); if (p_bones == skeleton->bones.size()) { return; }; skeleton->bones.resize(p_bones); } int RasterizerGLES1::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, -1); return skeleton->bones.size(); } void RasterizerGLES1::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX( p_bone, skeleton->bones.size() ); skeleton->bones[p_bone] = p_transform; } Transform RasterizerGLES1::skeleton_bone_get_transform(RID p_skeleton,int p_bone) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() ); // something return skeleton->bones[p_bone]; } /* LIGHT API */ RID RasterizerGLES1::light_create(VS::LightType p_type) { Light *light = memnew( Light ); light->type=p_type; return light_owner.make_rid(light); } VS::LightType RasterizerGLES1::light_get_type(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI); return light->type; } void RasterizerGLES1::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_type, 3 ); light->colors[p_type]=p_color; } Color RasterizerGLES1::light_get_color(RID p_light,VS::LightColor p_type) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, Color()); ERR_FAIL_INDEX_V( p_type, 3, Color() ); return light->colors[p_type]; } void RasterizerGLES1::light_set_shadow(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->shadow_enabled=p_enabled; } bool RasterizerGLES1::light_has_shadow(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->shadow_enabled; } void RasterizerGLES1::light_set_volumetric(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->volumetric_enabled=p_enabled; } bool RasterizerGLES1::light_is_volumetric(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->volumetric_enabled; } void RasterizerGLES1::light_set_projector(RID p_light,RID p_texture) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->projector=p_texture; } RID RasterizerGLES1::light_get_projector(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,RID()); return light->projector; } void RasterizerGLES1::light_set_var(RID p_light, VS::LightParam p_var, float p_value) { Light * light = light_owner.get( p_light ); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX ); light->vars[p_var]=p_value; } float RasterizerGLES1::light_get_var(RID p_light, VS::LightParam p_var) const { Light * light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,0); ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 ); return light->vars[p_var]; } void RasterizerGLES1::light_set_operator(RID p_light,VS::LightOp p_op) { Light * light = light_owner.get( p_light ); ERR_FAIL_COND(!light); }; VS::LightOp RasterizerGLES1::light_get_operator(RID p_light) const { return VS::LightOp(0); }; void RasterizerGLES1::light_omni_set_shadow_mode(RID p_light,VS::LightOmniShadowMode p_mode) { } VS::LightOmniShadowMode RasterizerGLES1::light_omni_get_shadow_mode(RID p_light) const{ return VS::LightOmniShadowMode(0); } void RasterizerGLES1::light_directional_set_shadow_mode(RID p_light,VS::LightDirectionalShadowMode p_mode) { } VS::LightDirectionalShadowMode RasterizerGLES1::light_directional_get_shadow_mode(RID p_light) const { return VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; } void RasterizerGLES1::light_directional_set_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param, float p_value) { } float RasterizerGLES1::light_directional_get_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param) const { return 0; } AABB RasterizerGLES1::light_get_aabb(RID p_light) const { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,AABB()); switch( light->type ) { case VS::LIGHT_SPOT: { float len=light->vars[VS::LIGHT_PARAM_RADIUS]; float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len; return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) ); } break; case VS::LIGHT_OMNI: { float r = light->vars[VS::LIGHT_PARAM_RADIUS]; return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 ); } break; case VS::LIGHT_DIRECTIONAL: { return AABB(); } break; default: {} } ERR_FAIL_V( AABB() ); } RID RasterizerGLES1::light_instance_create(RID p_light) { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light, RID()); LightInstance *light_instance = memnew( LightInstance ); light_instance->light=p_light; light_instance->base=light; light_instance->last_pass=0; return light_instance_owner.make_rid( light_instance ); } void RasterizerGLES1::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); lighti->transform=p_transform; } bool RasterizerGLES1::light_instance_has_shadow(RID p_light_instance) const { return false; /* LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND_V(!lighti, false); if (!lighti->base->shadow_enabled) return false; if (lighti->base->type==VS::LIGHT_DIRECTIONAL) { if (lighti->shadow_pass!=scene_pass) return false; } else { if (lighti->shadow_pass!=frame) return false; }*/ //return !lighti->shadow_buffers.empty(); } bool RasterizerGLES1::light_instance_assign_shadow(RID p_light_instance) { return false; } Rasterizer::ShadowType RasterizerGLES1::light_instance_get_shadow_type(RID p_light_instance) const { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND_V(!lighti,Rasterizer::SHADOW_NONE); switch(lighti->base->type) { case VS::LIGHT_DIRECTIONAL: return SHADOW_PSM; break; case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break; case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break; } return Rasterizer::SHADOW_NONE; } Rasterizer::ShadowType RasterizerGLES1::light_instance_get_shadow_type(RID p_light_instance,bool p_far) const { return SHADOW_NONE; } void RasterizerGLES1::light_instance_set_shadow_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) { } int RasterizerGLES1::light_instance_get_shadow_passes(RID p_light_instance) const { return 0; } bool RasterizerGLES1::light_instance_get_pssm_shadow_overlap(RID p_light_instance) const { return false; } void RasterizerGLES1::light_instance_set_custom_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); ERR_FAIL_COND(lighti->base->type!=VS::LIGHT_DIRECTIONAL); ERR_FAIL_INDEX(p_index,1); lighti->custom_projection=p_camera; lighti->custom_transform=p_transform; } void RasterizerGLES1::shadow_clear_near() { } bool RasterizerGLES1::shadow_allocate_near(RID p_light) { return false; } bool RasterizerGLES1::shadow_allocate_far(RID p_light) { return false; } /* PARTICLES INSTANCE */ RID RasterizerGLES1::particles_instance_create(RID p_particles) { ERR_FAIL_COND_V(!particles_owner.owns(p_particles),RID()); ParticlesInstance *particles_instance = memnew( ParticlesInstance ); ERR_FAIL_COND_V(!particles_instance, RID() ); particles_instance->particles=p_particles; return particles_instance_owner.make_rid(particles_instance); } void RasterizerGLES1::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) { ParticlesInstance *particles_instance=particles_instance_owner.get(p_particles_instance); ERR_FAIL_COND(!particles_instance); particles_instance->transform=p_transform; } /* RENDER API */ /* all calls (inside begin/end shadow) are always warranted to be in the following order: */ RID RasterizerGLES1::viewport_data_create() { return RID(); } RID RasterizerGLES1::render_target_create(){ return RID(); } void RasterizerGLES1::render_target_set_size(RID p_render_target, int p_width, int p_height){ } RID RasterizerGLES1::render_target_get_texture(RID p_render_target) const{ return RID(); } bool RasterizerGLES1::render_target_renedered_in_frame(RID p_render_target){ return false; } void RasterizerGLES1::begin_frame() { window_size = Size2( OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height ); //print_line("begin frame - winsize: "+window_size); double time = (OS::get_singleton()->get_ticks_usec()/1000); // get msec time/=1000.0; // make secs time_delta=time-last_time; last_time=time; frame++; clear_viewport(Color(1,0,0.5)); _rinfo.vertex_count=0; _rinfo.object_count=0; _rinfo.mat_change_count=0; _rinfo.shader_change_count=0; // material_shader.set_uniform_default(MaterialShaderGLES1::SCREENZ_SCALE, Math::fmod(time, 3600.0)); /* nehe ?*/ // glClearColor(0,0,1,1); // glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared.. } void RasterizerGLES1::capture_viewport(Image* r_capture) { } void RasterizerGLES1::clear_viewport(const Color& p_color) { glScissor( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height ); glEnable(GL_SCISSOR_TEST); glClearColor(p_color.r,p_color.g,p_color.b,p_color.a); glClear(GL_COLOR_BUFFER_BIT); //should not clear if anything else cleared.. glDisable(GL_SCISSOR_TEST); }; void RasterizerGLES1::set_viewport(const VS::ViewportRect& p_viewport) { viewport=p_viewport; //print_line("viewport: "+itos(p_viewport.x)+","+itos(p_viewport.y)+","+itos(p_viewport.width)+","+itos(p_viewport.height)); glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height ); } void RasterizerGLES1::set_render_target(RID p_render_target, bool p_transparent_bg, bool p_vflip) { } void RasterizerGLES1::begin_scene(RID p_viewport_data,RID p_env,VS::ScenarioDebugMode p_debug) { opaque_render_list.clear(); alpha_render_list.clear(); light_instance_count=0; scene_fx = NULL; // p_env.is_valid() ? fx_owner.get(p_env) : NULL; scene_pass++; last_light_id=0; directional_light_count=0; //set state glCullFace(GL_FRONT); cull_front=true; }; void RasterizerGLES1::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) { } void RasterizerGLES1::set_camera(const Transform& p_world,const CameraMatrix& p_projection) { camera_transform=p_world; camera_transform_inverse=camera_transform.inverse(); camera_projection=p_projection; camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) ); camera_z_near=camera_projection.get_z_near(); camera_z_far=camera_projection.get_z_far(); camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y); } void RasterizerGLES1::add_light( RID p_light_instance ) { #define LIGHT_FADE_TRESHOLD 0.05 ERR_FAIL_COND( light_instance_count >= MAX_SCENE_LIGHTS ); LightInstance *li = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!li); /* make light hash */ // actually, not really a hash, but helps to sort the lights // and avoid recompiling redudant shader versions li->last_pass=scene_pass; li->sort_key=light_instance_count; switch(li->base->type) { case VisualServer::LIGHT_DIRECTIONAL: { li->light_vector = camera_transform_inverse.basis.xform(li->transform.basis.get_axis(2)).normalized(); if (directional_light_countbase->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius==0) radius=0.0001; li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius; li->light_vector = camera_transform_inverse.xform(li->transform.origin); } break; case VisualServer::LIGHT_SPOT: { float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS]; if (radius==0) radius=0.0001; li->linear_att=(1/LIGHT_FADE_TRESHOLD)/radius; li->light_vector = camera_transform_inverse.xform(li->transform.origin); li->spot_vector = -camera_transform_inverse.basis.xform(li->transform.basis.get_axis(2)).normalized(); //li->sort_key|=LIGHT_SPOT_BIT; // this way, omnis go first, spots go last and less shader versions are generated /* if (li->base->projector.is_valid()) { float far = li->base->vars[ VS::LIGHT_VAR_RADIUS ]; ERR_FAIL_COND( far<=0 ); float near= far/200.0; if (near<0.05) near=0.05; float angle = li->base->vars[ VS::LIGHT_VAR_SPOT_ANGLE ]; //CameraMatrix proj; //proj.set_perspective( angle*2.0, 1.0, near, far ); //Transform modelview=Transform(camera_transform_inverse * li->transform).inverse(); //li->projector_mtx= proj * modelview; }*/ } break; } light_instances[light_instance_count++]=li; } void RasterizerGLES1::_add_geometry( const Geometry* p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner) { Material *m=NULL; RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override : p_geometry->material; if (m_src) m=material_owner.get( m_src ); if (!m) { m=material_owner.get( default_material ); } ERR_FAIL_COND(!m); if (m->last_pass!=frame) { m->last_pass=frame; } LightInstance *lights[RenderList::MAX_LIGHTS]; int light_count=0; RenderList *render_list=&opaque_render_list; if (m->fixed_flags[VS::FIXED_MATERIAL_FLAG_USE_ALPHA] || m->blend_mode!=VS::MATERIAL_BLEND_MODE_MIX) { render_list = &alpha_render_list; }; if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) { int lis = p_instance->light_instances.size(); for(int i=0;i=RenderList::MAX_LIGHTS) break; LightInstance *li=light_instance_owner.get( p_instance->light_instances[i] ); if (!li || li->last_pass!=scene_pass) //lit by light not in visible scene continue; lights[light_count++]=li; } } RenderList::Element *e = render_list->add_element(); e->geometry=p_geometry; // e->geometry_cmp=p_geometry_cmp; e->material=m; e->instance=p_instance; //e->depth=camera_plane.distance_to(p_world->origin); e->depth=camera_transform.origin.distance_to(p_instance->transform.origin); e->owner=p_owner; if (p_instance->skeleton.is_valid()) e->skeleton=skeleton_owner.get(p_instance->skeleton); else e->skeleton=NULL; e->mirror=p_instance->mirror; if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES]) e->mirror=!e->mirror; e->light_key=0; e->light_count=0; if (!shadow) { if (m->flags[VS::MATERIAL_FLAG_UNSHADED]) { e->light_key--; //special key for all the shadeless people } else if (light_count) { for(int i=0;ilights[i]=lights[i]->sort_key; } e->light_count=light_count; int poslight_count=light_count; if (poslight_count>1) { SortArray light_sort; light_sort.sort(&e->lights[0],poslight_count); //generate an equal sort key } } } } void RasterizerGLES1::add_mesh( const RID& p_mesh, const InstanceData *p_data) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); int ssize = mesh->surfaces.size(); for (int i=0;isurfaces[i]; _add_geometry(s,p_data,s,NULL); } mesh->last_pass=frame; } void RasterizerGLES1::add_multimesh( const RID& p_multimesh, const InstanceData *p_data){ MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); if (!multimesh->mesh.is_valid()) return; if (multimesh->elements.empty()) return; Mesh *mesh = mesh_owner.get(multimesh->mesh); ERR_FAIL_COND(!mesh); int surf_count = mesh->surfaces.size(); if (multimesh->last_pass!=scene_pass) { multimesh->cache_surfaces.resize(surf_count); for(int i=0;icache_surfaces[i].material=mesh->surfaces[i]->material; multimesh->cache_surfaces[i].has_alpha=mesh->surfaces[i]->has_alpha; multimesh->cache_surfaces[i].surface=mesh->surfaces[i]; } multimesh->last_pass=scene_pass; } for(int i=0;icache_surfaces[i],p_data,multimesh->cache_surfaces[i].surface,multimesh); } } void RasterizerGLES1::add_particles( const RID& p_particle_instance, const InstanceData *p_data){ //print_line("adding particles"); ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance); ERR_FAIL_COND(!particles_instance); Particles *p=particles_owner.get( particles_instance->particles ); ERR_FAIL_COND(!p); _add_geometry(p,p_data,p,particles_instance); } void RasterizerGLES1::_set_cull(bool p_front,bool p_reverse_cull) { bool front = p_front; if (p_reverse_cull) front=!front; if (front!=cull_front) { glCullFace(front?GL_FRONT:GL_BACK); cull_front=front; } } void RasterizerGLES1::_setup_fixed_material(const Geometry *p_geometry,const Material *p_material) { if (!shadow) { ///ambient @TODO offer global ambient group option //GLenum side = use_shaders?GL_FRONT:GL_FRONT_AND_BACK; GLenum side = GL_FRONT_AND_BACK; ///diffuse Color diffuse_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE]; float diffuse_rgba[4]={ diffuse_color.r, diffuse_color.g, diffuse_color.b, diffuse_color.a }; //color array overrides this glColor4f( diffuse_rgba[0],diffuse_rgba[1],diffuse_rgba[2],diffuse_rgba[3]); last_color=diffuse_color; glMaterialfv(side,GL_AMBIENT,diffuse_rgba); glMaterialfv(side,GL_DIFFUSE,diffuse_rgba); //specular const Color specular_color=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR]; float specular_rgba[4]={ specular_color.r, specular_color.g, specular_color.b, 1.0 }; glMaterialfv(side,GL_SPECULAR,specular_rgba); const Color emission=p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION]; float emission_rgba[4]={ emission.r, emission.g, emission.b, 1.0 //p_material->parameters[VS::FIXED_MATERIAL_PARAM_DETAIL_MIX] }; glMaterialfv(side,GL_EMISSION,emission_rgba); glMaterialf(side,GL_SHININESS,p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]); Plane sparams=p_material->parameters[VS::FIXED_MATERIAL_PARAM_SHADE_PARAM]; //depth test? } if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE].is_valid()) { Texture *texture = texture_owner.get( p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE] ); ERR_FAIL_COND(!texture); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); } else { glDisable(GL_TEXTURE_2D); } } void RasterizerGLES1::_setup_material(const Geometry *p_geometry,const Material *p_material) { if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED]) glDisable(GL_CULL_FACE); else { glEnable(GL_CULL_FACE); } /* if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME]) glPolygonMode(GL_FRONT_AND_BACK,GL_LINE); else glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);*/ if (p_material->line_width > 0) glLineWidth(p_material->line_width); if (!shadow) { if (blend_mode!=p_material->blend_mode) { switch(p_material->blend_mode) { case VS::MATERIAL_BLEND_MODE_MIX: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); } break; case VS::MATERIAL_BLEND_MODE_ADD: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_SUB: { //glBlendEquation(GL_FUNC_SUBTRACT); glBlendFunc(GL_SRC_ALPHA,GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_MUL: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); } break; } blend_mode=p_material->blend_mode; } if (lighting!=!p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) { if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) { glDisable(GL_LIGHTING); } else { glEnable(GL_LIGHTING); } lighting=!p_material->flags[VS::MATERIAL_FLAG_UNSHADED]; } } bool current_depth_write=p_material->depth_draw_mode!=VS::MATERIAL_DEPTH_DRAW_ALWAYS; //broken bool current_depth_test=!p_material->flags[VS::MATERIAL_FLAG_ONTOP]; _setup_fixed_material(p_geometry,p_material); if (current_depth_write!=depth_write) { depth_write=current_depth_write; glDepthMask(depth_write); } if (current_depth_test!=depth_test) { depth_test=current_depth_test; if (depth_test) glEnable(GL_DEPTH_TEST); else glDisable(GL_DEPTH_TEST); } } /* static const MaterialShaderGLES1::Conditionals _gl_light_version[4][3]={ {MaterialShaderGLES1::LIGHT_0_DIRECTIONAL,MaterialShaderGLES1::LIGHT_0_OMNI,MaterialShaderGLES1::LIGHT_0_SPOT}, {MaterialShaderGLES1::LIGHT_1_DIRECTIONAL,MaterialShaderGLES1::LIGHT_1_OMNI,MaterialShaderGLES1::LIGHT_1_SPOT}, {MaterialShaderGLES1::LIGHT_2_DIRECTIONAL,MaterialShaderGLES1::LIGHT_2_OMNI,MaterialShaderGLES1::LIGHT_2_SPOT}, {MaterialShaderGLES1::LIGHT_3_DIRECTIONAL,MaterialShaderGLES1::LIGHT_3_OMNI,MaterialShaderGLES1::LIGHT_3_SPOT} }; static const MaterialShaderGLES1::Conditionals _gl_light_shadow[4]={ MaterialShaderGLES1::LIGHT_0_SHADOW, MaterialShaderGLES1::LIGHT_1_SHADOW, MaterialShaderGLES1::LIGHT_2_SHADOW, MaterialShaderGLES1::LIGHT_3_SHADOW }; */ void RasterizerGLES1::_setup_light(LightInstance* p_instance, int p_idx) { Light* ld = p_instance->base; // material_shader.set_conditional(MaterialShaderGLES1::LIGHT_0_DIRECTIONAL, true); //material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE]); //material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR]); //material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT]); GLenum glid = GL_LIGHT0+p_idx; Color diff_color = ld->colors[VS::LIGHT_COLOR_DIFFUSE]; float emult = ld->vars[VS::LIGHT_PARAM_ENERGY]; if (ld->type!=VS::LIGHT_DIRECTIONAL) emult*=4.0; GLfloat diffuse_sdark[4]={ diff_color.r*emult, diff_color.g*emult, diff_color.b*emult, 1.0 }; glLightfv(glid , GL_DIFFUSE, diffuse_sdark); Color amb_color = Color(0,0,0); GLfloat amb_stexsize[4]={ amb_color.r, amb_color.g, amb_color.b, 1.0 }; glLightfv(glid , GL_AMBIENT, amb_stexsize ); Color spec_color = ld->colors[VS::LIGHT_COLOR_SPECULAR]; GLfloat spec_op[4]={ spec_color.r, spec_color.g, spec_color.b, 1.0 }; glLightfv(glid , GL_SPECULAR, spec_op ); switch(ld->type) { case VS::LIGHT_DIRECTIONAL: { glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); glLightf(glid,GL_CONSTANT_ATTENUATION, 1); glLightf(glid,GL_LINEAR_ATTENUATION, 0); glLightf(glid,GL_QUADRATIC_ATTENUATION,0); // energy float lightdir[4]={ p_instance->light_vector.x, p_instance->light_vector.y, p_instance->light_vector.z, 0.0 }; glLightfv(glid,GL_POSITION,lightdir); //at modelview glLightf(glid,GL_SPOT_CUTOFF,180.0); glLightf(glid,GL_SPOT_EXPONENT, 0); float sdir[4]={ 0, 0, -1, 0 }; glLightfv(glid,GL_SPOT_DIRECTION,sdir); //at modelview // material_shader.set_uniform_default(MaterialShaderGLES1::LIGHT_0_DIRECTION, p_instance->light_vector); glPopMatrix(); } break; case VS::LIGHT_OMNI: { glLightf(glid,GL_SPOT_CUTOFF,180.0); glLightf(glid,GL_SPOT_EXPONENT, 0); glLightf(glid,GL_CONSTANT_ATTENUATION, 0); glLightf(glid,GL_LINEAR_ATTENUATION, p_instance->linear_att); glLightf(glid,GL_QUADRATIC_ATTENUATION, 0); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); float lightpos[4]={ p_instance->light_vector.x, p_instance->light_vector.y, p_instance->light_vector.z, 1.0 }; glLightfv(glid,GL_POSITION,lightpos); //at modelview glPopMatrix(); } break; case VS::LIGHT_SPOT: { glLightf(glid,GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]); glLightf(glid,GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]); glLightf(glid,GL_CONSTANT_ATTENUATION, 0); glLightf(glid,GL_LINEAR_ATTENUATION, p_instance->linear_att); glLightf(glid,GL_QUADRATIC_ATTENUATION, 0); // wut? glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); float lightpos[4]={ p_instance->light_vector.x, p_instance->light_vector.y, p_instance->light_vector.z, 1.0 }; glLightfv(glid,GL_POSITION,lightpos); //at modelview float lightdir[4]={ p_instance->spot_vector.x, p_instance->spot_vector.y, p_instance->spot_vector.z, 1.0 }; glLightfv(glid,GL_SPOT_DIRECTION,lightdir); //at modelview glPopMatrix(); } break; default: break; } }; void RasterizerGLES1::_setup_lights(const uint16_t * p_lights,int p_light_count) { if (shadow) return; for (int i=directional_light_count; itype) { case Geometry::GEOMETRY_MULTISURFACE: case Geometry::GEOMETRY_SURFACE: { const Surface *surf=NULL; if (p_geometry->type==Geometry::GEOMETRY_SURFACE) surf=static_cast(p_geometry); else if (p_geometry->type==Geometry::GEOMETRY_MULTISURFACE) surf=static_cast(p_geometry)->surface; if (surf->format != surf->configured_format) { if (OS::get_singleton()->is_stdout_verbose()) { print_line("has format: "+itos(surf->format)); print_line("configured format: "+itos(surf->configured_format)); } ERR_EXPLAIN("Missing arrays (not set) in surface"); } ERR_FAIL_COND_V( surf->format != surf->configured_format, ERR_UNCONFIGURED ); uint8_t *base=0; int stride=surf->stride; bool use_VBO = (surf->array_local==0); _setup_geometry_vinfo=surf->array_len; bool skeleton_valid = p_skeleton && (surf->format&VS::ARRAY_FORMAT_BONES) && (surf->format&VS::ARRAY_FORMAT_WEIGHTS) && !p_skeleton->bones.empty() && p_skeleton->bones.size() > surf->max_bone; if (!use_VBO) { base = surf->array_local; glBindBuffer(GL_ARRAY_BUFFER, 0); bool can_copy_to_local=surf->local_stride * surf->array_len <= skinned_buffer_size; if (!can_copy_to_local) skeleton_valid=false; /* compute morphs */ if (p_morphs && surf->morph_target_count && can_copy_to_local) { base = skinned_buffer; stride=surf->local_stride; //copy all first float coef=1.0; for(int i=0;imorph_target_count;i++) { if (surf->mesh->morph_target_mode==VS::MORPH_MODE_NORMALIZED) coef-=p_morphs[i]; ERR_FAIL_COND_V( surf->morph_format != surf->morph_targets_local[i].configured_format, ERR_INVALID_DATA ); } for(int i=0;iarray[i]; if (ad.size==0) continue; int ofs = ad.ofs; int src_stride=surf->stride; int dst_stride=surf->local_stride; int count = surf->array_len; switch(i) { case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: case VS::ARRAY_TANGENT: { for(int k=0;karray_local[ofs+k*src_stride]; float *dst = (float*)&base[ofs+k*dst_stride]; dst[0]= src[0]*coef; dst[1]= src[1]*coef; dst[2]= src[2]*coef; } break; } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { for(int k=0;karray_local[ofs+k*src_stride]; float *dst = (float*)&base[ofs+k*dst_stride]; dst[0]= src[0]*coef; dst[1]= src[1]*coef; } break; } break; } } for(int j=0;jmorph_target_count;j++) { for(int i=0;iarray[i]; if (ad.size==0) continue; int ofs = ad.ofs; int dst_stride=surf->local_stride; int count = surf->array_len; const uint8_t *morph=surf->morph_targets_local[j].array; float w = p_morphs[j]; switch(i) { case VS::ARRAY_VERTEX: case VS::ARRAY_NORMAL: case VS::ARRAY_TANGENT: { for(int k=0;karray_len; int src_stride = surf->stride; int dst_stride = surf->stride - ( surf->array[VS::ARRAY_BONES].size + surf->array[VS::ARRAY_WEIGHTS].size ); for(int i=0;iarray_local[i*src_stride]; uint8_t *dst = &base[i*dst_stride]; memcpy(dst,src,dst_stride); } stride=dst_stride; } if (skeleton_valid) { //transform stuff const uint8_t *src_weights=&surf->array_local[surf->array[VS::ARRAY_WEIGHTS].ofs]; const uint8_t *src_bones=&surf->array_local[surf->array[VS::ARRAY_BONES].ofs]; int src_stride = surf->stride; int count = surf->array_len; const Transform *skeleton = &p_skeleton->bones[0]; for(int i=0;iarray[i]; if (ad.size==0) continue; int ofs = ad.ofs; switch(i) { case VS::ARRAY_VERTEX: { for(int k=0;k(&src_weights[k*src_stride]); const GLfloat *bones = reinterpret_cast(&src_bones[k*src_stride]); Vector3 src( ptr[0], ptr[1], ptr[2] ); Vector3 dst; for(int j=0;j(&src_weights[k*src_stride]); const GLfloat *bones = reinterpret_cast(&src_bones[k*src_stride]); Vector3 src( ptr[0], ptr[1], ptr[2] ); Vector3 dst; for(int j=0;jvertex_id); }; for (int i=0;i<(VS::ARRAY_MAX-1);i++) { const Surface::ArrayData& ad=surf->array[i]; // if (!gl_texcoord_shader[i]) // continue; if (ad.size==0 || i==VS::ARRAY_BONES || i==VS::ARRAY_WEIGHTS || gl_client_states[i]==0 ) { if (gl_texcoord_index[i] != -1) { glClientActiveTexture(GL_TEXTURE0+gl_texcoord_index[i]); } if (gl_client_states[i] != 0) glDisableClientState(gl_client_states[i]); if (i == VS::ARRAY_COLOR) { glColor4f(last_color.r,last_color.g,last_color.b,last_color.a); }; continue; // this one is disabled. } if (gl_texcoord_index[i] != -1) { glClientActiveTexture(GL_TEXTURE0+gl_texcoord_index[i]); } glEnableClientState(gl_client_states[i]); switch (i) { case VS::ARRAY_VERTEX: { glVertexPointer(3,ad.datatype,stride,&base[ad.ofs]); } break; /* fallthrough to normal */ case VS::ARRAY_NORMAL: { glNormalPointer(ad.datatype,stride,&base[ad.ofs]); } break; case VS::ARRAY_COLOR: { glColorPointer(4,ad.datatype,stride,&base[ad.ofs]); } break; case VS::ARRAY_TEX_UV: case VS::ARRAY_TEX_UV2: { glTexCoordPointer(2,ad.datatype,stride,&base[ad.ofs]); } break; case VS::ARRAY_TANGENT: { //glVertexAttribPointer(i, 4, use_VBO?GL_BYTE:GL_FLOAT, use_VBO?GL_TRUE:GL_FALSE, stride, &base[ad.ofs]); } break; case VS::ARRAY_BONES: case VS::ARRAY_WEIGHTS: { //do none //glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, surf->stride, &base[ad.ofs]); } break; case VS::ARRAY_INDEX: ERR_PRINT("Bug"); break; }; } } break; default: break; }; return OK; }; static const GLenum gl_primitive[]={ GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN }; static const GLenum gl_poly_primitive[4]={ GL_POINTS, GL_LINES, GL_TRIANGLES, //GL_QUADS }; void RasterizerGLES1::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton, const GeometryOwner *p_owner) { _rinfo.object_count++; switch(p_geometry->type) { case Geometry::GEOMETRY_SURFACE: { Surface *s = (Surface*)p_geometry; _rinfo.vertex_count+=s->array_len; if (s->packed && s->array_local==0) { float sc = (1.0/32767.0)*s->vertex_scale; glMatrixMode(GL_MODELVIEW); glPushMatrix(); glScalef(sc,sc,sc); if (s->format&VS::ARRAY_FORMAT_TEX_UV) { float uvs=(1.0/32767.0)*s->uv_scale; //glActiveTexture(GL_TEXTURE0); glClientActiveTexture(GL_TEXTURE0); glMatrixMode(GL_TEXTURE); glPushMatrix(); glScalef(uvs,uvs,uvs); } } if (s->index_array_len>0) { if (s->index_array_local) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT, s->index_array_local); } else { // print_line("indices: "+itos(s->index_array_local) ); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id); glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT,0); } } else { glDrawArrays(gl_primitive[s->primitive],0,s->array_len); }; if (s->packed && s->array_local==0) { if (s->format&VS::ARRAY_FORMAT_TEX_UV) { glPopMatrix(); glMatrixMode(GL_MODELVIEW); } glPopMatrix(); }; } break; case Geometry::GEOMETRY_MULTISURFACE: { Surface *s = static_cast(p_geometry)->surface; const MultiMesh *mm = static_cast(p_owner); int element_count=mm->elements.size(); if (element_count==0) return; const MultiMesh::Element *elements=&mm->elements[0]; _rinfo.vertex_count+=s->array_len*element_count; if (s->index_array_len>0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,s->index_id); for(int i=0;iprimitive],s->index_array_len, (s->array_len>(1<<16))?GL_UNSIGNED_SHORT:GL_UNSIGNED_SHORT,0); } } else { for(int i=0;iprimitive],0,s->array_len); } }; } break; case Geometry::GEOMETRY_PARTICLES: { //print_line("particulinas"); const Particles *particles = static_cast( p_geometry ); ERR_FAIL_COND(!p_owner); ParticlesInstance *particles_instance = (ParticlesInstance*)p_owner; ParticleSystemProcessSW &pp = particles_instance->particles_process; float td = time_delta; //MIN(time_delta,1.0/10.0); pp.process(&particles->data,particles_instance->transform,td); ERR_EXPLAIN("A parameter in the particle system is not correct."); ERR_FAIL_COND(!pp.valid); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind glBindBuffer(GL_ARRAY_BUFFER,0); Transform camera; if (shadow) camera=shadow->transform; else camera=camera_transform; particle_draw_info.prepare(&particles->data,&pp,particles_instance->transform,camera); _rinfo.vertex_count+=4*particles->data.amount; { static const Vector3 points[4]={ Vector3(-1.0,1.0,0), Vector3(1.0,1.0,0), Vector3(1.0,-1.0,0), Vector3(-1.0,-1.0,0) }; static const Vector3 uvs[4]={ Vector3(0.0,0.0,0.0), Vector3(1.0,0.0,0.0), Vector3(1.0,1.0,0.0), Vector3(0,1.0,0.0) }; static const Vector3 normals[4]={ Vector3(0,0,1), Vector3(0,0,1), Vector3(0,0,1), Vector3(0,0,1) }; static const Plane tangents[4]={ Plane(Vector3(1,0,0),0), Plane(Vector3(1,0,0),0), Plane(Vector3(1,0,0),0), Plane(Vector3(1,0,0),0) }; glMatrixMode(GL_MODELVIEW); glPushMatrix(); _gl_load_transform(camera_transform_inverse); for(int i=0;idata.amount;i++) { ParticleSystemDrawInfoSW::ParticleDrawInfo &pinfo=*particle_draw_info.draw_info_order[i]; if (!pinfo.data->active) continue; glPushMatrix(); _gl_mult_transform(pinfo.transform); glColor4f(pinfo.color.r*last_color.r,pinfo.color.g*last_color.g,pinfo.color.b*last_color.b,pinfo.color.a*last_color.a); _draw_primitive(4,points,normals,NULL,uvs,tangents); glPopMatrix(); } glPopMatrix(); } } break; default: break; }; }; void RasterizerGLES1::_setup_shader_params(const Material *p_material) { #if 0 int idx=0; int tex_idx=0; for(Map::Element *E=p_material->shader_cache->params.front();E;E=E->next(),idx++) { Variant v; // v = E->get(); const Map::Element *F=p_material->shader_params.find(E->key()); if (F) v=F->get(); switch(v.get_type() ) { case Variant::OBJECT: case Variant::_RID: { RID tex=v; if (!tex.is_valid()) break; Texture *texture = texture_owner.get(tex); if (!texture) break; glUniform1i( material_shader.get_custom_uniform_location(idx), tex_idx); glActiveTexture(tex_idx); glBindTexture(texture->target,texture->tex_id); } break; case Variant::COLOR: { Color c=v; material_shader.set_custom_uniform(idx,Vector3(c.r,c.g,c.b)); } break; default: { material_shader.set_custom_uniform(idx,v); } break; } } #endif } void RasterizerGLES1::_render_list_forward(RenderList *p_render_list,bool p_reverse_cull) { const Material *prev_material=NULL; uint64_t prev_light_key=0; const Skeleton *prev_skeleton=NULL; const Geometry *prev_geometry=NULL; Geometry::Type prev_geometry_type=Geometry::GEOMETRY_INVALID; for (int i=0;ielement_count;i++) { RenderList::Element *e = p_render_list->elements[i]; const Material *material = e->material; uint64_t light_key = e->light_key; const Skeleton *skeleton = e->skeleton; const Geometry *geometry = e->geometry; if (material!=prev_material || geometry->type!=prev_geometry_type) { _setup_material(e->geometry,material); _rinfo.mat_change_count++; //_setup_material_overrides(e->material,NULL,material_overrides); //_setup_material_skeleton(material,skeleton); } else { if (prev_skeleton!=skeleton) { //_setup_material_skeleton(material,skeleton); }; } if (geometry!=prev_geometry || geometry->type!=prev_geometry_type || prev_skeleton!=skeleton) { _setup_geometry(geometry, material,e->skeleton,e->instance->morph_values.ptr()); }; if (i==0 || light_key!=prev_light_key) _setup_lights(e->lights,e->light_count); _set_cull(e->mirror,p_reverse_cull); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glPushMatrix(); if (e->instance->billboard || e->instance->depth_scale) { Transform xf=e->instance->transform; if (e->instance->depth_scale) { if (camera_projection.matrix[3][3]) { //orthogonal matrix, try to do about the same //with viewport size //real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) ); real_t h = Math::abs( 1.0/(2.0*camera_projection.matrix[1][1]) ); float sc = (h*2.0); //consistent with Y-fov xf.basis.scale( Vector3(sc,sc,sc)); } else { //just scale by depth real_t sc = -camera_plane.distance_to(xf.origin); xf.basis.scale( Vector3(sc,sc,sc)); } } if (e->instance->billboard) { Vector3 scale = xf.basis.get_scale(); xf.set_look_at(xf.origin,xf.origin+camera_transform.get_basis().get_axis(2),camera_transform.get_basis().get_axis(1)); xf.basis.scale(scale); } _gl_mult_transform(xf); // for fixed pipeline } else { _gl_mult_transform(e->instance->transform); // for fixed pipeline } //bool changed_shader = material_shader.bind(); //if ( changed_shader && material->shader_cache && !material->shader_cache->params.empty()) // _setup_shader_params(material); _render(geometry, material, skeleton,e->owner); prev_material=material; prev_skeleton=skeleton; prev_geometry=geometry; prev_light_key=e->light_key; prev_geometry_type=geometry->type; } }; void RasterizerGLES1::end_scene() { glEnable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); depth_write=true; depth_test=true; if (scene_fx && scene_fx->skybox_active) { //skybox } else if (scene_fx && scene_fx->bgcolor_active) { glClearColor(scene_fx->bgcolor.r,scene_fx->bgcolor.g,scene_fx->bgcolor.b,1.0); } else { glClearColor(0.3,0.3,0.3,1.0); } #ifdef GLES_OVER_GL //glClearDepth(1.0); #else //glClearDepthf(1.0); #endif glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); if (scene_fx && scene_fx->fog_active) { /* glEnable(GL_FOG); glFogf(GL_FOG_MODE,GL_LINEAR); glFogf(GL_FOG_DENSITY,scene_fx->fog_attenuation); glFogf(GL_FOG_START,scene_fx->fog_near); glFogf(GL_FOG_END,scene_fx->fog_far); glFogfv(GL_FOG_COLOR,scene_fx->fog_color_far.components); glLightfv(GL_LIGHT5,GL_DIFFUSE,scene_fx->fog_color_near.components); material_shader.set_conditional( MaterialShaderGLES1::USE_FOG,true); */ } for(int i=0;ishadow_buffers.size()); glDisable(GL_BLEND); glDisable(GL_SCISSOR_TEST); glEnable(GL_DEPTH_TEST); glDepthMask(true); ShadowBuffer *sb = shadow->shadow_buffers[shadow_pass]; ERR_FAIL_COND(!sb); glBindFramebuffer(GL_FRAMEBUFFER, sb->fbo); glViewport(0, 0, sb->size, sb->size); glColorMask(0, 0, 0, 0); glEnable(GL_POLYGON_OFFSET_FILL); //glPolygonOffset(4,8); glPolygonOffset( 4.0f, 4096.0f); glPolygonOffset( 8.0f, 16.0f); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); CameraMatrix cm; float z_near,z_far; Transform light_transform; float dp_direction=0.0; bool flip_facing=false; switch(shadow->base->type) { case VS::LIGHT_DIRECTIONAL: { cm = shadow->custom_projection; light_transform=shadow->custom_transform; z_near=cm.get_z_near(); z_far=cm.get_z_far(); } break; case VS::LIGHT_OMNI: { material_shader.set_conditional(MaterialShaderGLES1::USE_DUAL_PARABOLOID,true); dp_direction = shadow_pass?1.0:0.0; flip_facing = (shadow_pass == 1); light_transform=shadow->transform; z_near=0; z_far=shadow->base->vars[ VS::LIGHT_VAR_RADIUS ]; } break; case VS::LIGHT_SPOT: { float far = shadow->base->vars[ VS::LIGHT_VAR_RADIUS ]; ERR_FAIL_COND( far<=0 ); float near= far/200.0; if (near<0.05) near=0.05; float angle = shadow->base->vars[ VS::LIGHT_VAR_SPOT_ANGLE ]; cm.set_perspective( angle*2.0, 1.0, near, far ); shadow->projection=cm; // cache light_transform=shadow->transform; z_near=cm.get_z_near(); z_far=cm.get_z_far(); } break; } Transform light_transform_inverse = light_transform.inverse(); opaque_render_list.sort_mat(); glLightf(GL_LIGHT5,GL_LINEAR_ATTENUATION,z_near); glLightf(GL_LIGHT5,GL_QUADRATIC_ATTENUATION,z_far); glLightf(GL_LIGHT5,GL_CONSTANT_ATTENUATION,dp_direction); glMatrixMode(GL_PROJECTION); glLoadMatrixf(&cm.matrix[0][0]); glMatrixMode(GL_MODELVIEW); _gl_load_transform(light_transform_inverse); glPushMatrix(); for(int i=0;i<4;i++) { for(int j=0;j<3;j++) { material_shader.set_conditional(_gl_light_version[i][j],false); //start false by default } material_shader.set_conditional(_gl_light_shadow[i],false); } _render_list_forward(&opaque_render_list,flip_facing); material_shader.set_conditional(MaterialShaderGLES1::USE_DUAL_PARABOLOID,false); glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height ); if (framebuffer.active) glBindFramebufferEXT(GL_FRAMEBUFFER,framebuffer.fbo); else glBindFramebufferEXT(GL_FRAMEBUFFER,0); glDisable(GL_POLYGON_OFFSET_FILL); glColorMask(1, 1, 1, 1); shadow=NULL; #endif } void RasterizerGLES1::_debug_draw_shadow(ShadowBuffer *p_buffer, const Rect2& p_rect) { /* Transform modelview; modelview.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f); modelview.scale( Vector3( 2.0f / viewport.width, -2.0f / viewport.height, 1.0f ) ); modelview.translate(p_rect.pos.x, p_rect.pos.y, 0); material_shader.set_uniform_default(MaterialShaderGLES1::MODELVIEW_TRANSFORM, *e->transform); glBindTexture(GL_TEXTURE_2D,p_buffer->depth); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); Vector3 coords[4]= { Vector3(p_rect.pos.x, p_rect.pos.y, 0 ), Vector3(p_rect.pos.x+p_rect.size.width, p_rect.pos.y, 0 ), Vector3(p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height, 0 ), Vector3(p_rect.pos.x, p_rect.pos.y+p_rect.size.height, 0 ) }; Vector3 texcoords[4]={ Vector3( 0.0f,0.0f, 0), Vector3( 1.0f,0.0f, 0), Vector3( 1.0f, 1.0f, 0), Vector3( 0.0f, 1.0f, 0), }; _draw_primitive(4,coords,0,0,texcoords); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE); */ } void RasterizerGLES1::_debug_draw_shadows_type(Vector& p_shadows,Point2& ofs) { // Size2 debug_size(128,128); Size2 debug_size(512,512); for (int i=0;iowner) continue; if (sb->owner->base->type==VS::LIGHT_DIRECTIONAL) { if (sb->owner->shadow_pass!=scene_pass-1) continue; } else { if (sb->owner->shadow_pass!=frame) continue; } _debug_draw_shadow(sb, Rect2( ofs, debug_size )); ofs.x+=debug_size.x; if ( (ofs.x+debug_size.x) > viewport.width ) { ofs.x=0; ofs.y+=debug_size.y; } } } void RasterizerGLES1::_debug_shadows() { return; #if 0 canvas_begin(); glUseProgram(0); glDisable(GL_BLEND); Size2 ofs; /* for(int i=0;i<16;i++) { glActiveTexture(GL_TEXTURE0+i); //glDisable(GL_TEXTURE_2D); } glActiveTexture(GL_TEXTURE0); //glEnable(GL_TEXTURE_2D); */ _debug_draw_shadows_type(near_shadow_buffers,ofs); _debug_draw_shadows_type(far_shadow_buffers,ofs); #endif } void RasterizerGLES1::end_frame() { /* if (framebuffer.active) { canvas_begin(); //resets stuff and goes back to fixedpipe glBindFramebuffer(GL_FRAMEBUFFER,0); //copy to main bufferz glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,framebuffer.color); glBegin(GL_QUADS); glTexCoord2f(0,0); glVertex2f(-1,-1); glTexCoord2f(0,1); glVertex2f(-1,+1); glTexCoord2f(1,1); glVertex2f(+1,+1); glTexCoord2f(1,0); glVertex2f(+1,-1); glEnd(); } */ //print_line("VTX: "+itos(_rinfo.vertex_count)+" OBJ: "+itos(_rinfo.object_count)+" MAT: "+itos(_rinfo.mat_change_count)+" SHD: "+itos(_rinfo.shader_change_count)); OS::get_singleton()->swap_buffers(); } /* CANVAS API */ void RasterizerGLES1::reset_state() { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0); //unbind glBindBuffer(GL_ARRAY_BUFFER,0); glActiveTexture(GL_TEXTURE0); glClientActiveTexture(GL_TEXTURE0); glMatrixMode(GL_TEXTURE); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glColor4f(1,1,1,1); glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); // glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); canvas_blend=VS::MATERIAL_BLEND_MODE_MIX; glLineWidth(1.0); glDisable(GL_LIGHTING); } _FORCE_INLINE_ static void _set_glcoloro(const Color& p_color,const float p_opac) { glColor4f(p_color.r, p_color.g, p_color.b, p_color.a*p_opac); } void RasterizerGLES1::canvas_begin() { reset_state(); canvas_opacity=1.0; glEnable(GL_BLEND); } void RasterizerGLES1::canvas_disable_blending() { glDisable(GL_BLEND); } void RasterizerGLES1::canvas_set_opacity(float p_opacity) { canvas_opacity = p_opacity; } void RasterizerGLES1::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) { switch(p_mode) { case VS::MATERIAL_BLEND_MODE_MIX: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); } break; case VS::MATERIAL_BLEND_MODE_ADD: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_SUB: { //glBlendEquation(GL_FUNC_SUBTRACT); glBlendFunc(GL_SRC_ALPHA,GL_ONE); } break; case VS::MATERIAL_BLEND_MODE_MUL: { //glBlendEquation(GL_FUNC_ADD); glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA); } break; } } void RasterizerGLES1::canvas_begin_rect(const Matrix32& p_transform) { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(2.0 / viewport.width, -2.0 / viewport.height, 0); glTranslatef((-(viewport.width / 2.0)), (-(viewport.height / 2.0)), 0); _gl_mult_transform(p_transform); glPushMatrix(); } void RasterizerGLES1::canvas_set_clip(bool p_clip, const Rect2& p_rect) { if (p_clip) { glEnable(GL_SCISSOR_TEST); // glScissor(viewport.x+p_rect.pos.x,viewport.y+ (viewport.height-(p_rect.pos.y+p_rect.size.height)), //p_rect.size.width,p_rect.size.height); //glScissor(p_rect.pos.x,(viewport.height-(p_rect.pos.y+p_rect.size.height)),p_rect.size.width,p_rect.size.height); glScissor(viewport.x+p_rect.pos.x,viewport.y+ (window_size.y-(p_rect.pos.y+p_rect.size.height)), p_rect.size.width,p_rect.size.height); } else { glDisable(GL_SCISSOR_TEST); } } void RasterizerGLES1::canvas_end_rect() { glPopMatrix(); } void RasterizerGLES1::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) { glDisable(GL_TEXTURE_2D); _set_glcoloro( p_color,canvas_opacity ); Vector3 verts[2]={ Vector3(p_from.x,p_from.y,0), Vector3(p_to.x,p_to.y,0) }; Color colors[2]={ p_color, p_color }; colors[0].a*=canvas_opacity; colors[1].a*=canvas_opacity; glLineWidth(p_width); _draw_primitive(2,verts,0,colors,0); } static void _draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size,bool p_flip_h=false,bool p_flip_v=false ) { Vector3 texcoords[4]= { Vector3( p_src_region.pos.x/p_tex_size.width, p_src_region.pos.y/p_tex_size.height, 0), Vector3((p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width, p_src_region.pos.y/p_tex_size.height, 0), Vector3( (p_src_region.pos.x+p_src_region.size.width)/p_tex_size.width, (p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, 0), Vector3( p_src_region.pos.x/p_tex_size.width, (p_src_region.pos.y+p_src_region.size.height)/p_tex_size.height, 0) }; if (p_flip_h) { SWAP( texcoords[0], texcoords[1] ); SWAP( texcoords[2], texcoords[3] ); } if (p_flip_v) { SWAP( texcoords[1], texcoords[2] ); SWAP( texcoords[0], texcoords[3] ); } Vector3 coords[4]= { Vector3( p_rect.pos.x, p_rect.pos.y, 0 ), Vector3( p_rect.pos.x+p_rect.size.width, p_rect.pos.y, 0 ), Vector3( p_rect.pos.x+p_rect.size.width, p_rect.pos.y+p_rect.size.height, 0 ), Vector3( p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 ) }; _draw_primitive(4,coords,0,0,texcoords); } static void _draw_quad(const Rect2& p_rect) { Vector3 coords[4]= { Vector3( p_rect.pos.x,p_rect.pos.y, 0 ), Vector3( p_rect.pos.x+p_rect.size.width,p_rect.pos.y, 0 ), Vector3( p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height, 0 ), Vector3( p_rect.pos.x,p_rect.pos.y+p_rect.size.height, 0 ) }; _draw_primitive(4,coords,0,0,0); } void RasterizerGLES1::canvas_draw_rect(const Rect2& p_rect, int p_flags, const Rect2& p_source,RID p_texture,const Color& p_modulate) { _set_glcoloro( p_modulate,canvas_opacity ); if ( p_texture.is_valid() ) { glEnable(GL_TEXTURE_2D); Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); if (!(p_flags&CANVAS_RECT_REGION)) { Rect2 region = Rect2(0,0,texture->width,texture->height); _draw_textured_quad(p_rect,region,region.size,p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V); } else { _draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height),p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V ); } } else { glDisable(GL_TEXTURE_2D); _draw_quad( p_rect ); } } void RasterizerGLES1::canvas_draw_style_box(const Rect2& p_rect, RID p_texture,const float *p_margin, bool p_draw_center,const Color& p_modulate) { _set_glcoloro( p_modulate,canvas_opacity ); Texture *texture = texture_owner.get( p_texture ); ERR_FAIL_COND(!texture); glEnable(GL_TEXTURE_2D); glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); /* CORNERS */ _draw_textured_quad( // top left Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Rect2( Point2(), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // top right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],0), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom left Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(0,texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); Rect2 src_center( Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( texture->width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], texture->height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); _draw_textured_quad( // top Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])), Rect2( Point2(p_margin[MARGIN_LEFT],0), Size2(src_center.size.width,p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])), Rect2( Point2(p_margin[MARGIN_LEFT],src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // left Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)), Rect2( Point2(0,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)), Size2( texture->width, texture->height ) ); _draw_textured_quad( // right Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)), Rect2( Point2(src_center.pos.x+src_center.size.width,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)), Size2( texture->width, texture->height ) ); if (p_draw_center) { _draw_textured_quad( rect_center, src_center, Size2( texture->width, texture->height )); } } void RasterizerGLES1::canvas_draw_primitive(const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture,float p_width) { ERR_FAIL_COND(p_points.size()<1); Vector3 verts[4]; Vector3 uvs[4]; _set_glcoloro( Color(1,1,1),canvas_opacity ); for(int i=0;itex_id ); } } glLineWidth(p_width); _draw_primitive(p_points.size(),&verts[0],NULL,p_colors.size()?&p_colors[0]:NULL,p_uvs.size()?uvs:NULL); } static const int _max_draw_poly_indices = 8*1024; static uint16_t _draw_poly_indices[_max_draw_poly_indices]; static float _verts3[_max_draw_poly_indices]; void RasterizerGLES1::canvas_draw_polygon(int p_vertex_count, const int* p_indices, const Vector2* p_vertices, const Vector2* p_uvs, const Color* p_colors,const RID& p_texture,bool p_singlecolor) { bool do_colors=false; //reset_state(); if (p_singlecolor) { Color m = *p_colors; m.a*=canvas_opacity; glColor4f(m.r, m.g, m.b, m.a); } else if (!p_colors) { glColor4f(1, 1, 1, canvas_opacity); } else do_colors=true; glColor4f(1, 1, 1, 1); Texture* texture = NULL; if (p_texture.is_valid()) { glEnable(GL_TEXTURE_2D); texture = texture_owner.get( p_texture ); if (texture) { glActiveTexture(GL_TEXTURE0); glBindTexture( GL_TEXTURE_2D,texture->tex_id ); } } glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, (GLvoid*)p_vertices); if (do_colors) { glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4,GL_FLOAT, 0, p_colors); } else { glDisableClientState(GL_COLOR_ARRAY); } if (texture && p_uvs) { glClientActiveTexture(GL_TEXTURE0); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 0, p_uvs); } else { glDisableClientState(GL_TEXTURE_COORD_ARRAY); } if (p_indices) { for (int i=0; i *p_effects) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); p_effects->clear(); p_effects->push_back("bgcolor"); p_effects->push_back("skybox"); p_effects->push_back("antialias"); //p_effects->push_back("hdr"); p_effects->push_back("glow"); // glow has a bloom parameter, too p_effects->push_back("ssao"); p_effects->push_back("fog"); p_effects->push_back("dof_blur"); p_effects->push_back("toon"); p_effects->push_back("edge"); } void RasterizerGLES1::fx_set_active(RID p_fx,const String& p_effect, bool p_active) { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") fx->bgcolor_active=p_active; else if (p_effect=="skybox") fx->skybox_active=p_active; else if (p_effect=="antialias") fx->antialias_active=p_active; else if (p_effect=="glow") fx->glow_active=p_active; else if (p_effect=="ssao") fx->ssao_active=p_active; else if (p_effect=="fog") fx->fog_active=p_active; // else if (p_effect=="dof_blur") // fx->dof_blur_active=p_active; else if (p_effect=="toon") fx->toon_active=p_active; else if (p_effect=="edge") fx->edge_active=p_active; } bool RasterizerGLES1::fx_is_active(RID p_fx,const String& p_effect) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND_V(!fx,false); if (p_effect=="bgcolor") return fx->bgcolor_active; else if (p_effect=="skybox") return fx->skybox_active; else if (p_effect=="antialias") return fx->antialias_active; else if (p_effect=="glow") return fx->glow_active; else if (p_effect=="ssao") return fx->ssao_active; else if (p_effect=="fog") return fx->fog_active; //else if (p_effect=="dof_blur") // return fx->dof_blur_active; else if (p_effect=="toon") return fx->toon_active; else if (p_effect=="edge") return fx->edge_active; return false; } void RasterizerGLES1::fx_get_effect_params(RID p_fx,const String& p_effect,List *p_params) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") { p_params->push_back( PropertyInfo( Variant::COLOR, "color" ) ); } else if (p_effect=="skybox") { p_params->push_back( PropertyInfo( Variant::_RID, "cubemap" ) ); } else if (p_effect=="antialias") { p_params->push_back( PropertyInfo( Variant::REAL, "tolerance", PROPERTY_HINT_RANGE,"1,128,1" ) ); } else if (p_effect=="glow") { p_params->push_back( PropertyInfo( Variant::INT, "passes", PROPERTY_HINT_RANGE,"1,4,1" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.01,8.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "bloom", PROPERTY_HINT_RANGE,"-1.0,1.0,0.01" ) ); } else if (p_effect=="ssao") { p_params->push_back( PropertyInfo( Variant::REAL, "radius", PROPERTY_HINT_RANGE,"0.0,16.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "max_distance", PROPERTY_HINT_RANGE,"0.0,256.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "range_max", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "range_min", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) ); } else if (p_effect=="fog") { p_params->push_back( PropertyInfo( Variant::REAL, "begin", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "end", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::COLOR, "color_begin" ) ); p_params->push_back( PropertyInfo( Variant::COLOR, "color_end" ) ); p_params->push_back( PropertyInfo( Variant::BOOL, "fog_bg" ) ); // } else if (p_effect=="dof_blur") { // return fx->dof_blur_active; } else if (p_effect=="toon") { p_params->push_back( PropertyInfo( Variant::REAL, "treshold", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "soft", PROPERTY_HINT_RANGE,"0.001,1.0,0.001" ) ); } else if (p_effect=="edge") { } } Variant RasterizerGLES1::fx_get_effect_param(RID p_fx,const String& p_effect,const String& p_param) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND_V(!fx,Variant()); if (p_effect=="bgcolor") { if (p_param=="color") return fx->bgcolor; } else if (p_effect=="skybox") { if (p_param=="cubemap") return fx->skybox_cubemap; } else if (p_effect=="antialias") { if (p_param=="tolerance") return fx->antialias_tolerance; } else if (p_effect=="glow") { if (p_param=="passes") return fx->glow_passes; if (p_param=="attenuation") return fx->glow_attenuation; if (p_param=="bloom") return fx->glow_bloom; } else if (p_effect=="ssao") { if (p_param=="attenuation") return fx->ssao_attenuation; if (p_param=="max_distance") return fx->ssao_max_distance; if (p_param=="range_max") return fx->ssao_range_max; if (p_param=="range_min") return fx->ssao_range_min; if (p_param=="radius") return fx->ssao_radius; } else if (p_effect=="fog") { if (p_param=="begin") return fx->fog_near; if (p_param=="end") return fx->fog_far; if (p_param=="attenuation") return fx->fog_attenuation; if (p_param=="color_begin") return fx->fog_color_near; if (p_param=="color_end") return fx->fog_color_far; if (p_param=="fog_bg") return fx->fog_bg; // } else if (p_effect=="dof_blur") { // return fx->dof_blur_active; } else if (p_effect=="toon") { if (p_param=="treshold") return fx->toon_treshold; if (p_param=="soft") return fx->toon_soft; } else if (p_effect=="edge") { } return Variant(); } void RasterizerGLES1::fx_set_effect_param(RID p_fx,const String& p_effect, const String& p_param, const Variant& p_value) { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") { if (p_param=="color") fx->bgcolor=p_value; } else if (p_effect=="skybox") { if (p_param=="cubemap") fx->skybox_cubemap=p_value; } else if (p_effect=="antialias") { if (p_param=="tolerance") fx->antialias_tolerance=p_value; } else if (p_effect=="glow") { if (p_param=="passes") fx->glow_passes=p_value; if (p_param=="attenuation") fx->glow_attenuation=p_value; if (p_param=="bloom") fx->glow_bloom=p_value; } else if (p_effect=="ssao") { if (p_param=="attenuation") fx->ssao_attenuation=p_value; if (p_param=="radius") fx->ssao_radius=p_value; if (p_param=="max_distance") fx->ssao_max_distance=p_value; if (p_param=="range_max") fx->ssao_range_max=p_value; if (p_param=="range_min") fx->ssao_range_min=p_value; } else if (p_effect=="fog") { if (p_param=="begin") fx->fog_near=p_value; if (p_param=="end") fx->fog_far=p_value; if (p_param=="attenuation") fx->fog_attenuation=p_value; if (p_param=="color_begin") fx->fog_color_near=p_value; if (p_param=="color_end") fx->fog_color_far=p_value; if (p_param=="fog_bg") fx->fog_bg=p_value; // } else if (p_effect=="dof_blur") { // fx->dof_blur_active=p_value; } else if (p_effect=="toon") { if (p_param=="treshold") fx->toon_treshold=p_value; if (p_param=="soft") fx->toon_soft=p_value; } else if (p_effect=="edge") { } } /* ENVIRONMENT */ RID RasterizerGLES1::environment_create() { Environment * env = memnew( Environment ); return environment_owner.make_rid(env); } void RasterizerGLES1::environment_set_background(RID p_env,VS::EnvironmentBG p_bg) { ERR_FAIL_INDEX(p_bg,VS::ENV_BG_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_mode=p_bg; } VS::EnvironmentBG RasterizerGLES1::environment_get_background(RID p_env) const{ const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,VS::ENV_BG_MAX); return env->bg_mode; } void RasterizerGLES1::environment_set_background_param(RID p_env,VS::EnvironmentBGParam p_param, const Variant& p_value){ ERR_FAIL_INDEX(p_param,VS::ENV_BG_PARAM_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_param[p_param]=p_value; } Variant RasterizerGLES1::environment_get_background_param(RID p_env,VS::EnvironmentBGParam p_param) const{ ERR_FAIL_INDEX_V(p_param,VS::ENV_BG_PARAM_MAX,Variant()); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,Variant()); return env->bg_param[p_param]; } void RasterizerGLES1::environment_set_enable_fx(RID p_env,VS::EnvironmentFx p_effect,bool p_enabled){ ERR_FAIL_INDEX(p_effect,VS::ENV_FX_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_enabled[p_effect]=p_enabled; } bool RasterizerGLES1::environment_is_fx_enabled(RID p_env,VS::EnvironmentFx p_effect) const{ ERR_FAIL_INDEX_V(p_effect,VS::ENV_FX_MAX,false); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,false); return env->fx_enabled[p_effect]; } void RasterizerGLES1::environment_fx_set_param(RID p_env,VS::EnvironmentFxParam p_param,const Variant& p_value){ ERR_FAIL_INDEX(p_param,VS::ENV_FX_PARAM_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_param[p_param]=p_value; } Variant RasterizerGLES1::environment_fx_get_param(RID p_env,VS::EnvironmentFxParam p_param) const{ ERR_FAIL_INDEX_V(p_param,VS::ENV_FX_PARAM_MAX,Variant()); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,Variant()); return env->fx_param[p_param]; } /* SAMPLED LIGHT */ RID RasterizerGLES1::sampled_light_dp_create(int p_width,int p_height) { return sampled_light_owner.make_rid(memnew(SampledLight)); } void RasterizerGLES1::sampled_light_dp_update(RID p_sampled_light, const Color *p_data, float p_multiplier) { } /*MISC*/ bool RasterizerGLES1::is_texture(const RID& p_rid) const { return texture_owner.owns(p_rid); } bool RasterizerGLES1::is_material(const RID& p_rid) const { return material_owner.owns(p_rid); } bool RasterizerGLES1::is_mesh(const RID& p_rid) const { return mesh_owner.owns(p_rid); } bool RasterizerGLES1::is_immediate(const RID& p_rid) const { return immediate_owner.owns(p_rid); } bool RasterizerGLES1::is_multimesh(const RID& p_rid) const { return multimesh_owner.owns(p_rid); } bool RasterizerGLES1::is_particles(const RID &p_beam) const { return particles_owner.owns(p_beam); } bool RasterizerGLES1::is_light(const RID& p_rid) const { return light_owner.owns(p_rid); } bool RasterizerGLES1::is_light_instance(const RID& p_rid) const { return light_instance_owner.owns(p_rid); } bool RasterizerGLES1::is_particles_instance(const RID& p_rid) const { return particles_instance_owner.owns(p_rid); } bool RasterizerGLES1::is_skeleton(const RID& p_rid) const { return skeleton_owner.owns(p_rid); } bool RasterizerGLES1::is_environment(const RID& p_rid) const { return environment_owner.owns(p_rid); } bool RasterizerGLES1::is_fx(const RID& p_rid) const { return fx_owner.owns(p_rid); } bool RasterizerGLES1::is_shader(const RID& p_rid) const { return false; } void RasterizerGLES1::free(const RID& p_rid) { if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); glDeleteTextures( 1,&texture->tex_id ); _rinfo.texture_mem-=texture->total_data_size; texture_owner.free(p_rid); memdelete(texture); } else if (shader_owner.owns(p_rid)) { // delete the texture Shader *shader = shader_owner.get(p_rid); shader_owner.free(p_rid); memdelete(shader); } else if (material_owner.owns(p_rid)) { Material *material = material_owner.get( p_rid ); ERR_FAIL_COND(!material); material_owner.free(p_rid); memdelete(material); } else if (mesh_owner.owns(p_rid)) { Mesh *mesh = mesh_owner.get(p_rid); ERR_FAIL_COND(!mesh); for (int i=0;isurfaces.size();i++) { Surface *surface = mesh->surfaces[i]; if (surface->array_local != 0) { memfree(surface->array_local); }; if (surface->index_array_local != 0) { memfree(surface->index_array_local); }; if (mesh->morph_target_count>0) { for(int i=0;imorph_target_count;i++) { memfree(surface->morph_targets_local[i].array); } memfree(surface->morph_targets_local); surface->morph_targets_local=NULL; } if (surface->vertex_id) glDeleteBuffers(1,&surface->vertex_id); if (surface->index_id) glDeleteBuffers(1,&surface->index_id); memdelete( surface ); }; mesh->surfaces.clear(); mesh_owner.free(p_rid); memdelete(mesh); } else if (multimesh_owner.owns(p_rid)) { MultiMesh *multimesh = multimesh_owner.get(p_rid); ERR_FAIL_COND(!multimesh); multimesh_owner.free(p_rid); memdelete(multimesh); } else if (particles_owner.owns(p_rid)) { Particles *particles = particles_owner.get(p_rid); ERR_FAIL_COND(!particles); particles_owner.free(p_rid); memdelete(particles); } else if (immediate_owner.owns(p_rid)) { Immediate *immediate = immediate_owner.get(p_rid); ERR_FAIL_COND(!immediate); immediate_owner.free(p_rid); memdelete(immediate); } else if (particles_instance_owner.owns(p_rid)) { ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid); ERR_FAIL_COND(!particles_isntance); particles_instance_owner.free(p_rid); memdelete(particles_isntance); } else if (skeleton_owner.owns(p_rid)) { Skeleton *skeleton = skeleton_owner.get( p_rid ); ERR_FAIL_COND(!skeleton) skeleton_owner.free(p_rid); memdelete(skeleton); } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get( p_rid ); ERR_FAIL_COND(!light) light_owner.free(p_rid); memdelete(light); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get( p_rid ); ERR_FAIL_COND(!light_instance); light_instance->clear_shadow_buffers(); light_instance_owner.free(p_rid); memdelete( light_instance ); } else if (fx_owner.owns(p_rid)) { FX *fx = fx_owner.get( p_rid ); ERR_FAIL_COND(!fx); fx_owner.free(p_rid); memdelete( fx ); } else if (environment_owner.owns(p_rid)) { Environment *env = environment_owner.get( p_rid ); ERR_FAIL_COND(!env); environment_owner.free(p_rid); memdelete( env ); } else if (sampled_light_owner.owns(p_rid)) { SampledLight *sampled_light = sampled_light_owner.get( p_rid ); ERR_FAIL_COND(!sampled_light); sampled_light_owner.free(p_rid); memdelete( sampled_light ); }; } void RasterizerGLES1::custom_shade_model_set_shader(int p_model, RID p_shader) { }; RID RasterizerGLES1::custom_shade_model_get_shader(int p_model) const { return RID(); }; void RasterizerGLES1::custom_shade_model_set_name(int p_model, const String& p_name) { }; String RasterizerGLES1::custom_shade_model_get_name(int p_model) const { return String(); }; void RasterizerGLES1::custom_shade_model_set_param_info(int p_model, const List& p_info) { }; void RasterizerGLES1::custom_shade_model_get_param_info(int p_model, List* p_info) const { }; void RasterizerGLES1::ShadowBuffer::init(int p_size) { #if 0 size=p_size; glActiveTexture(GL_TEXTURE0); glGenTextures(1, &depth); ERR_FAIL_COND(depth==0); /* Setup Depth Texture */ glBindTexture(GL_TEXTURE_2D, depth); glTexImage2D (GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, p_size, p_size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); float border_color[]={1.0f, 1.0f, 1.0f, 1.0f}; glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, border_color); /* Create FBO */ glGenFramebuffers(1, &fbo); ERR_FAIL_COND( fbo==0 ); glBindFramebuffer(GL_FRAMEBUFFER, fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depth, 0); glDrawBuffer(GL_FALSE); glReadBuffer(GL_FALSE); /* Check FBO creation */ GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER); ERR_FAIL_COND( status==GL_FRAMEBUFFER_UNSUPPORTED ); glBindFramebufferEXT(GL_FRAMEBUFFER, 0); #endif } void RasterizerGLES1::_init_shadow_buffers() { int near_shadow_size=GLOBAL_DEF("rasterizer/near_shadow_size",512); int far_shadow_size=GLOBAL_DEF("rasterizer/far_shadow_size",64); near_shadow_buffers.resize( GLOBAL_DEF("rasterizer/near_shadow_count",4) ); far_shadow_buffers.resize( GLOBAL_DEF("rasterizer/far_shadow_count",16) ); shadow_near_far_split_size_ratio = GLOBAL_DEF("rasterizer/shadow_near_far_split_size_ratio",0.3); for (int i=0;imake_current(); Set extensions; Vector strings = String((const char*)glGetString( GL_EXTENSIONS )).split(" ",false); for(int i=0;i textures; texture_owner.get_owned_list(&textures); keep_copies=false; for(List::Element *E=textures.front();E;E=E->next()) { RID tid = E->get(); Texture *t=texture_owner.get(tid); ERR_CONTINUE(!t); t->tex_id=0; t->data_size=0; glGenTextures(1, &t->tex_id); t->active=false; texture_allocate(tid,t->width,t->height,t->format,t->flags); bool had_image=false; for(int i=0;i<6;i++) { if (!t->image[i].empty()) { texture_set_data(tid,t->image[i],VS::CubeMapSide(i)); had_image=true; } } if (!had_image && t->reloader) { Object *rl = ObjectDB::get_instance(t->reloader); if (rl) rl->call(t->reloader_func,tid); } } keep_copies=true; } bool RasterizerGLES1::has_feature(VS::Features p_feature) const { switch( p_feature) { case VS::FEATURE_SHADERS: return false; case VS::FEATURE_NEEDS_RELOAD_HOOK: return use_reload_hooks; default: return false; } } RasterizerGLES1::RasterizerGLES1(bool p_keep_copies,bool p_use_reload_hooks) { keep_copies=p_keep_copies; pack_arrays=false; use_reload_hooks=p_use_reload_hooks; frame = 0; }; RasterizerGLES1::~RasterizerGLES1() { }; #endif