/*************************************************************************/ /* rasterizer_dummy.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RASTERIZER_DUMMY_H #define RASTERIZER_DUMMY_H #include "core/math/camera_matrix.h" #include "core/rid_owner.h" #include "core/self_list.h" #include "scene/resources/mesh.h" #include "servers/rendering/rasterizer.h" #include "servers/rendering_server.h" class RasterizerSceneDummy : public RasterizerScene { public: /* SHADOW ATLAS API */ RID shadow_atlas_create() { return RID(); } void shadow_atlas_set_size(RID p_atlas, int p_size) {} void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {} bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { return false; } void directional_shadow_atlas_set_size(int p_size) {} int get_directional_light_shadow_size(RID p_light_intance) { return 0; } void set_directional_shadow_count(int p_count) {} /* SKY API */ RID sky_create() { return RID(); } void sky_set_radiance_size(RID p_sky, int p_radiance_size) {} void sky_set_mode(RID p_sky, RS::SkyMode p_samples) {} void sky_set_texture(RID p_sky, RID p_panorama) {} void sky_set_texture(RID p_sky, RID p_cube_map, int p_radiance_size) {} void sky_set_material(RID p_sky, RID p_material) {} /* ENVIRONMENT API */ RID environment_create() { return RID(); } void environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {} void environment_set_sky(RID p_env, RID p_sky) {} void environment_set_sky_custom_fov(RID p_env, float p_scale) {} void environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {} void environment_set_bg_color(RID p_env, const Color &p_color) {} void environment_set_bg_energy(RID p_env, float p_energy) {} void environment_set_canvas_max_layer(RID p_env, int p_max_layer) {} void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG, const Color &p_ao_color = Color()) {} // FIXME: Disabled during Vulkan refactoring, should be ported. #if 0 void environment_set_camera_feed_id(RID p_env, int p_camera_feed_id) {} #endif void environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {} void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {} void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance, bool p_roughness) {} virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {} virtual void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) {} void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {} void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {} void environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {} void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {} void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {} bool is_environment(RID p_env) const { return false; } RS::EnvironmentBG environment_get_background(RID p_env) const { return RS::ENV_BG_KEEP; } int environment_get_canvas_max_layer(RID p_env) const { return 0; } virtual RID camera_effects_create() { return RID(); } virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {} virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {} virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {} virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {} RID light_instance_create(RID p_light) { return RID(); } void light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {} void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale = 1.0) {} void light_instance_mark_visible(RID p_light_instance) {} RID reflection_atlas_create() { return RID(); } virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {} RID reflection_probe_instance_create(RID p_probe) { return RID(); } void reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {} void reflection_probe_release_atlas_index(RID p_instance) {} bool reflection_probe_instance_needs_redraw(RID p_instance) { return false; } bool reflection_probe_instance_has_reflection(RID p_instance) { return false; } bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { return false; } bool reflection_probe_instance_postprocess_step(RID p_instance) { return true; } virtual RID gi_probe_instance_create(RID p_gi_probe) { return RID(); } void gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {} void gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {} virtual bool gi_probe_needs_update(RID p_probe) const { return false; } virtual void gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {} virtual void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {} void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {} virtual void render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {} void set_scene_pass(uint64_t p_pass) {} virtual void set_time(double p_time, double p_step) {} void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {} virtual RID render_buffers_create() { return RID(); } virtual void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa) {} virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) {} virtual bool screen_space_roughness_limiter_is_active() const { return false; } bool free(RID p_rid) { return true; } virtual void update() {} RasterizerSceneDummy() {} ~RasterizerSceneDummy() {} }; class RasterizerStorageDummy : public RasterizerStorage { public: /* TEXTURE API */ struct DummyTexture { int width; int height; uint32_t flags; Image::Format format; Ref image; String path; }; struct DummySurface { uint32_t format; RS::PrimitiveType primitive; Vector array; int vertex_count; Vector index_array; int index_count; AABB aabb; Vector> blend_shapes; Vector bone_aabbs; }; struct DummyMesh { Vector surfaces; int blend_shape_count; RS::BlendShapeMode blend_shape_mode; }; mutable RID_PtrOwner texture_owner; mutable RID_PtrOwner mesh_owner; virtual RID texture_2d_create(const Ref &p_image) { return RID(); } virtual RID texture_2d_layered_create(const Vector> &p_layers, RS::TextureLayeredType p_layered_type) { return RID(); } virtual RID texture_3d_create(const Vector> &p_slices) { return RID(); } virtual RID texture_proxy_create(RID p_base) { return RID(); } virtual void texture_2d_update_immediate(RID p_texture, const Ref &p_image, int p_layer = 0) {} virtual void texture_2d_update(RID p_texture, const Ref &p_image, int p_layer = 0) {} virtual void texture_3d_update(RID p_texture, const Ref &p_image, int p_depth, int p_mipmap) {} virtual void texture_proxy_update(RID p_proxy, RID p_base) {} virtual RID texture_2d_placeholder_create() { return RID(); } virtual RID texture_2d_layered_placeholder_create() { return RID(); } virtual RID texture_3d_placeholder_create() { return RID(); } virtual Ref texture_2d_get(RID p_texture) const { return Ref(); } virtual Ref texture_2d_layer_get(RID p_texture, int p_layer) const { return Ref(); } virtual Ref texture_3d_slice_get(RID p_texture, int p_depth, int p_mipmap) const { return Ref(); } virtual void texture_replace(RID p_texture, RID p_by_texture) {} virtual void texture_set_size_override(RID p_texture, int p_width, int p_height) {} // FIXME: Disabled during Vulkan refactoring, should be ported. #if 0 virtual void texture_bind(RID p_texture, uint32_t p_texture_no) = 0; #endif virtual void texture_set_path(RID p_texture, const String &p_path) {} virtual String texture_get_path(RID p_texture) const { return String(); } virtual void texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {} virtual void texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) {} virtual void texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata) {} virtual void texture_debug_usage(List *r_info) {} virtual void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {} virtual Size2 texture_size_with_proxy(RID p_proxy) { return Size2(); } #if 0 RID texture_create() { DummyTexture *texture = memnew(DummyTexture); ERR_FAIL_COND_V(!texture, RID()); return texture_owner.make_rid(texture); } void texture_allocate(RID p_texture, int p_width, int p_height, int p_depth_3d, Image::Format p_format, RenderingServer::TextureType p_type = RS::TEXTURE_TYPE_2D, uint32_t p_flags = RS::TEXTURE_FLAGS_DEFAULT) { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND(!t); t->width = p_width; t->height = p_height; t->flags = p_flags; t->format = p_format; t->image = Ref(memnew(Image)); t->image->create(p_width, p_height, false, p_format); } void texture_set_data(RID p_texture, const Ref &p_image, int p_level) { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND(!t); t->width = p_image->get_width(); t->height = p_image->get_height(); t->format = p_image->get_format(); t->image->create(t->width, t->height, false, t->format, p_image->get_data()); } void texture_set_data_partial(RID p_texture, const Ref &p_image, int src_x, int src_y, int src_w, int src_h, int dst_x, int dst_y, int p_dst_mip, int p_level) { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND(!t); ERR_FAIL_COND_MSG(p_image.is_null(), "It's not a reference to a valid Image object."); ERR_FAIL_COND(t->format != p_image->get_format()); ERR_FAIL_COND(src_w <= 0 || src_h <= 0); ERR_FAIL_COND(src_x < 0 || src_y < 0 || src_x + src_w > p_image->get_width() || src_y + src_h > p_image->get_height()); ERR_FAIL_COND(dst_x < 0 || dst_y < 0 || dst_x + src_w > t->width || dst_y + src_h > t->height); t->image->blit_rect(p_image, Rect2(src_x, src_y, src_w, src_h), Vector2(dst_x, dst_y)); } Ref texture_get_data(RID p_texture, int p_level) const { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!t, Ref()); return t->image; } void texture_set_flags(RID p_texture, uint32_t p_flags) { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND(!t); t->flags = p_flags; } uint32_t texture_get_flags(RID p_texture) const { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!t, 0); return t->flags; } Image::Format texture_get_format(RID p_texture) const { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!t, Image::FORMAT_RGB8); return t->format; } RenderingServer::TextureType texture_get_type(RID p_texture) const { return RS::TEXTURE_TYPE_2D; } uint32_t texture_get_texid(RID p_texture) const { return 0; } uint32_t texture_get_width(RID p_texture) const { return 0; } uint32_t texture_get_height(RID p_texture) const { return 0; } uint32_t texture_get_depth(RID p_texture) const { return 0; } void texture_set_size_override(RID p_texture, int p_width, int p_height, int p_depth_3d) {} void texture_bind(RID p_texture, uint32_t p_texture_no) {} void texture_set_path(RID p_texture, const String &p_path) { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND(!t); t->path = p_path; } String texture_get_path(RID p_texture) const { DummyTexture *t = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!t, String()); return t->path; } void texture_set_shrink_all_x2_on_set_data(bool p_enable) {} void texture_debug_usage(List *r_info) {} RID texture_create_radiance_cubemap(RID p_source, int p_resolution = -1) const { return RID(); } void texture_set_detect_3d_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {} void texture_set_detect_srgb_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {} void texture_set_detect_normal_callback(RID p_texture, RenderingServer::TextureDetectCallback p_callback, void *p_userdata) {} void textures_keep_original(bool p_enable) {} void texture_set_proxy(RID p_proxy, RID p_base) {} virtual Size2 texture_size_with_proxy(RID p_texture) const { return Size2(); } void texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) {} #endif /* SKY API */ RID sky_create() { return RID(); } void sky_set_texture(RID p_sky, RID p_cube_map, int p_radiance_size) {} /* SHADER API */ RID shader_create() { return RID(); } void shader_set_code(RID p_shader, const String &p_code) {} String shader_get_code(RID p_shader) const { return ""; } void shader_get_param_list(RID p_shader, List *p_param_list) const {} void shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) {} RID shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { return RID(); } virtual Variant shader_get_param_default(RID p_material, const StringName &p_param) const { return Variant(); } /* COMMON MATERIAL API */ RID material_create() { return RID(); } void material_set_render_priority(RID p_material, int priority) {} void material_set_shader(RID p_shader_material, RID p_shader) {} void material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {} Variant material_get_param(RID p_material, const StringName &p_param) const { return Variant(); } void material_set_next_pass(RID p_material, RID p_next_material) {} bool material_is_animated(RID p_material) { return false; } bool material_casts_shadows(RID p_material) { return false; } void material_update_dependency(RID p_material, RasterizerScene::InstanceBase *p_instance) {} /* MESH API */ RID mesh_create() { DummyMesh *mesh = memnew(DummyMesh); ERR_FAIL_COND_V(!mesh, RID()); mesh->blend_shape_count = 0; mesh->blend_shape_mode = RS::BLEND_SHAPE_MODE_NORMALIZED; return mesh_owner.make_rid(mesh); } void mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {} #if 0 void mesh_add_surface(RID p_mesh, uint32_t p_format, RS::PrimitiveType p_primitive, const Vector &p_array, int p_vertex_count, const Vector &p_index_array, int p_index_count, const AABB &p_aabb, const Vector > &p_blend_shapes = Vector >(), const Vector &p_bone_aabbs = Vector()) { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!m); m->surfaces.push_back(DummySurface()); DummySurface *s = &m->surfaces.write[m->surfaces.size() - 1]; s->format = p_format; s->primitive = p_primitive; s->array = p_array; s->vertex_count = p_vertex_count; s->index_array = p_index_array; s->index_count = p_index_count; s->aabb = p_aabb; s->blend_shapes = p_blend_shapes; s->bone_aabbs = p_bone_aabbs; } void mesh_set_blend_shape_count(RID p_mesh, int p_amount) { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!m); m->blend_shape_count = p_amount; } #endif int mesh_get_blend_shape_count(RID p_mesh) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, 0); return m->blend_shape_count; } void mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!m); m->blend_shape_mode = p_mode; } RS::BlendShapeMode mesh_get_blend_shape_mode(RID p_mesh) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, RS::BLEND_SHAPE_MODE_NORMALIZED); return m->blend_shape_mode; } void mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) {} void mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {} RID mesh_surface_get_material(RID p_mesh, int p_surface) const { return RID(); } #if 0 int mesh_surface_get_array_len(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, 0); return m->surfaces[p_surface].vertex_count; } int mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, 0); return m->surfaces[p_surface].index_count; } Vector mesh_surface_get_array(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, Vector()); return m->surfaces[p_surface].array; } Vector mesh_surface_get_index_array(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, Vector()); return m->surfaces[p_surface].index_array; } uint32_t mesh_surface_get_format(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, 0); return m->surfaces[p_surface].format; } RS::PrimitiveType mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, RS::PRIMITIVE_POINTS); return m->surfaces[p_surface].primitive; } AABB mesh_surface_get_aabb(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, AABB()); return m->surfaces[p_surface].aabb; } Vector > mesh_surface_get_blend_shapes(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, Vector >()); return m->surfaces[p_surface].blend_shapes; } Vector mesh_surface_get_skeleton_aabb(RID p_mesh, int p_surface) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, Vector()); return m->surfaces[p_surface].bone_aabbs; } void mesh_remove_surface(RID p_mesh, int p_index) { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!m); ERR_FAIL_COND(p_index >= m->surfaces.size()); m->surfaces.remove(p_index); } #endif RS::SurfaceData mesh_get_surface(RID p_mesh, int p_surface) const { return RS::SurfaceData(); } int mesh_get_surface_count(RID p_mesh) const { DummyMesh *m = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!m, 0); return m->surfaces.size(); } void mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {} AABB mesh_get_custom_aabb(RID p_mesh) const { return AABB(); } AABB mesh_get_aabb(RID p_mesh, RID p_skeleton = RID()) { return AABB(); } void mesh_clear(RID p_mesh) {} /* MULTIMESH API */ virtual RID multimesh_create() { return RID(); } virtual void multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors = false, bool p_use_custom_data = false) {} int multimesh_get_instance_count(RID p_multimesh) const { return 0; } void multimesh_set_mesh(RID p_multimesh, RID p_mesh) {} void multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {} void multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {} void multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {} void multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {} RID multimesh_get_mesh(RID p_multimesh) const { return RID(); } AABB multimesh_get_aabb(RID p_multimesh) const { return AABB(); } Transform multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return Transform(); } Transform2D multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { return Transform2D(); } Color multimesh_instance_get_color(RID p_multimesh, int p_index) const { return Color(); } Color multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { return Color(); } virtual void multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) {} virtual Vector multimesh_get_buffer(RID p_multimesh) const { return Vector(); } void multimesh_set_visible_instances(RID p_multimesh, int p_visible) {} int multimesh_get_visible_instances(RID p_multimesh) const { return 0; } /* IMMEDIATE API */ RID immediate_create() { return RID(); } void immediate_begin(RID p_immediate, RS::PrimitiveType p_rimitive, RID p_texture = RID()) {} void immediate_vertex(RID p_immediate, const Vector3 &p_vertex) {} void immediate_normal(RID p_immediate, const Vector3 &p_normal) {} void immediate_tangent(RID p_immediate, const Plane &p_tangent) {} void immediate_color(RID p_immediate, const Color &p_color) {} void immediate_uv(RID p_immediate, const Vector2 &tex_uv) {} void immediate_uv2(RID p_immediate, const Vector2 &tex_uv) {} void immediate_end(RID p_immediate) {} void immediate_clear(RID p_immediate) {} void immediate_set_material(RID p_immediate, RID p_material) {} RID immediate_get_material(RID p_immediate) const { return RID(); } AABB immediate_get_aabb(RID p_immediate) const { return AABB(); } /* SKELETON API */ RID skeleton_create() { return RID(); } void skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton = false) {} void skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {} void skeleton_set_world_transform(RID p_skeleton, bool p_enable, const Transform &p_world_transform) {} int skeleton_get_bone_count(RID p_skeleton) const { return 0; } void skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {} Transform skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { return Transform(); } void skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {} Transform2D skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { return Transform2D(); } /* Light API */ RID light_create(RS::LightType p_type) { return RID(); } RID directional_light_create() { return light_create(RS::LIGHT_DIRECTIONAL); } RID omni_light_create() { return light_create(RS::LIGHT_OMNI); } RID spot_light_create() { return light_create(RS::LIGHT_SPOT); } void light_set_color(RID p_light, const Color &p_color) {} void light_set_param(RID p_light, RS::LightParam p_param, float p_value) {} void light_set_shadow(RID p_light, bool p_enabled) {} void light_set_shadow_color(RID p_light, const Color &p_color) {} void light_set_projector(RID p_light, RID p_texture) {} void light_set_negative(RID p_light, bool p_enable) {} void light_set_cull_mask(RID p_light, uint32_t p_mask) {} void light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) {} void light_set_use_gi(RID p_light, bool p_enabled) {} void light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) {} void light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) {} void light_directional_set_blend_splits(RID p_light, bool p_enable) {} bool light_directional_get_blend_splits(RID p_light) const { return false; } void light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode) {} RS::LightDirectionalShadowDepthRangeMode light_directional_get_shadow_depth_range_mode(RID p_light) const { return RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE; } RS::LightDirectionalShadowMode light_directional_get_shadow_mode(RID p_light) { return RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; } RS::LightOmniShadowMode light_omni_get_shadow_mode(RID p_light) { return RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID; } bool light_has_shadow(RID p_light) const { return false; } RS::LightType light_get_type(RID p_light) const { return RS::LIGHT_OMNI; } AABB light_get_aabb(RID p_light) const { return AABB(); } float light_get_param(RID p_light, RS::LightParam p_param) { return 0.0; } Color light_get_color(RID p_light) { return Color(); } bool light_get_use_gi(RID p_light) { return false; } uint64_t light_get_version(RID p_light) const { return 0; } /* PROBE API */ RID reflection_probe_create() { return RID(); } void reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) {} void reflection_probe_set_intensity(RID p_probe, float p_intensity) {} void reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) {} void reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) {} void reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) {} void reflection_probe_set_max_distance(RID p_probe, float p_distance) {} void reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) {} void reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) {} void reflection_probe_set_as_interior(RID p_probe, bool p_enable) {} void reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) {} void reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) {} void reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) {} void reflection_probe_set_resolution(RID p_probe, int p_resolution) {} AABB reflection_probe_get_aabb(RID p_probe) const { return AABB(); } RS::ReflectionProbeUpdateMode reflection_probe_get_update_mode(RID p_probe) const { return RenderingServer::REFLECTION_PROBE_UPDATE_ONCE; } uint32_t reflection_probe_get_cull_mask(RID p_probe) const { return 0; } Vector3 reflection_probe_get_extents(RID p_probe) const { return Vector3(); } Vector3 reflection_probe_get_origin_offset(RID p_probe) const { return Vector3(); } float reflection_probe_get_origin_max_distance(RID p_probe) const { return 0.0; } bool reflection_probe_renders_shadows(RID p_probe) const { return false; } virtual void base_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {} virtual void skeleton_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) {} /* GI PROBE API */ RID gi_probe_create() { return RID(); } virtual void gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector &p_octree_cells, const Vector &p_data_cells, const Vector &p_distance_field, const Vector &p_level_counts) {} virtual AABB gi_probe_get_bounds(RID p_gi_probe) const { return AABB(); } virtual Vector3i gi_probe_get_octree_size(RID p_gi_probe) const { return Vector3i(); } virtual Vector gi_probe_get_octree_cells(RID p_gi_probe) const { return Vector(); } virtual Vector gi_probe_get_data_cells(RID p_gi_probe) const { return Vector(); } virtual Vector gi_probe_get_distance_field(RID p_gi_probe) const { return Vector(); } virtual Vector gi_probe_get_level_counts(RID p_gi_probe) const { return Vector(); } virtual Transform gi_probe_get_to_cell_xform(RID p_gi_probe) const { return Transform(); } virtual void gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) {} virtual float gi_probe_get_dynamic_range(RID p_gi_probe) const { return 0; } virtual void gi_probe_set_propagation(RID p_gi_probe, float p_range) {} virtual float gi_probe_get_propagation(RID p_gi_probe) const { return 0; } void gi_probe_set_energy(RID p_gi_probe, float p_range) {} float gi_probe_get_energy(RID p_gi_probe) const { return 0.0; } virtual void gi_probe_set_ao(RID p_gi_probe, float p_ao) {} virtual float gi_probe_get_ao(RID p_gi_probe) const { return 0; } virtual void gi_probe_set_ao_size(RID p_gi_probe, float p_strength) {} virtual float gi_probe_get_ao_size(RID p_gi_probe) const { return 0; } void gi_probe_set_bias(RID p_gi_probe, float p_range) {} float gi_probe_get_bias(RID p_gi_probe) const { return 0.0; } void gi_probe_set_normal_bias(RID p_gi_probe, float p_range) {} float gi_probe_get_normal_bias(RID p_gi_probe) const { return 0.0; } void gi_probe_set_interior(RID p_gi_probe, bool p_enable) {} bool gi_probe_is_interior(RID p_gi_probe) const { return false; } virtual void gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) {} virtual bool gi_probe_is_using_two_bounces(RID p_gi_probe) const { return false; } virtual void gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) {} virtual float gi_probe_get_anisotropy_strength(RID p_gi_probe) const { return 0; } uint32_t gi_probe_get_version(RID p_gi_probe) { return 0; } /* LIGHTMAP CAPTURE */ struct Instantiable { SelfList::List instance_list; _FORCE_INLINE_ void instance_change_notify(bool p_aabb = true, bool p_materials = true) { SelfList *instances = instance_list.first(); while (instances) { //instances->self()->base_changed(p_aabb, p_materials); instances = instances->next(); } } _FORCE_INLINE_ void instance_remove_deps() { SelfList *instances = instance_list.first(); while (instances) { SelfList *next = instances->next(); //instances->self()->base_removed(); instances = next; } } Instantiable() {} virtual ~Instantiable() { } }; struct LightmapCapture : public Instantiable { Vector octree; AABB bounds; Transform cell_xform; int cell_subdiv; float energy; LightmapCapture() { energy = 1.0; cell_subdiv = 1; } }; mutable RID_PtrOwner lightmap_capture_data_owner; void lightmap_capture_set_bounds(RID p_capture, const AABB &p_bounds) {} AABB lightmap_capture_get_bounds(RID p_capture) const { return AABB(); } void lightmap_capture_set_octree(RID p_capture, const Vector &p_octree) {} RID lightmap_capture_create() { LightmapCapture *capture = memnew(LightmapCapture); return lightmap_capture_data_owner.make_rid(capture); } Vector lightmap_capture_get_octree(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, Vector()); return Vector(); } void lightmap_capture_set_octree_cell_transform(RID p_capture, const Transform &p_xform) {} Transform lightmap_capture_get_octree_cell_transform(RID p_capture) const { return Transform(); } void lightmap_capture_set_octree_cell_subdiv(RID p_capture, int p_subdiv) {} int lightmap_capture_get_octree_cell_subdiv(RID p_capture) const { return 0; } void lightmap_capture_set_energy(RID p_capture, float p_energy) {} float lightmap_capture_get_energy(RID p_capture) const { return 0.0; } const Vector *lightmap_capture_get_octree_ptr(RID p_capture) const { const LightmapCapture *capture = lightmap_capture_data_owner.getornull(p_capture); ERR_FAIL_COND_V(!capture, NULL); return &capture->octree; } /* PARTICLES */ RID particles_create() { return RID(); } void particles_set_emitting(RID p_particles, bool p_emitting) {} void particles_set_amount(RID p_particles, int p_amount) {} void particles_set_lifetime(RID p_particles, float p_lifetime) {} void particles_set_one_shot(RID p_particles, bool p_one_shot) {} void particles_set_pre_process_time(RID p_particles, float p_time) {} void particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {} void particles_set_randomness_ratio(RID p_particles, float p_ratio) {} void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {} void particles_set_speed_scale(RID p_particles, float p_scale) {} void particles_set_use_local_coordinates(RID p_particles, bool p_enable) {} void particles_set_process_material(RID p_particles, RID p_material) {} void particles_set_fixed_fps(RID p_particles, int p_fps) {} void particles_set_fractional_delta(RID p_particles, bool p_enable) {} void particles_restart(RID p_particles) {} void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {} void particles_set_draw_passes(RID p_particles, int p_count) {} void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {} void particles_request_process(RID p_particles) {} AABB particles_get_current_aabb(RID p_particles) { return AABB(); } AABB particles_get_aabb(RID p_particles) const { return AABB(); } void particles_set_emission_transform(RID p_particles, const Transform &p_transform) {} bool particles_get_emitting(RID p_particles) { return false; } int particles_get_draw_passes(RID p_particles) const { return 0; } RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { return RID(); } virtual bool particles_is_inactive(RID p_particles) const { return false; } /* RENDER TARGET */ RID render_target_create() { return RID(); } void render_target_set_position(RID p_render_target, int p_x, int p_y) {} void render_target_set_size(RID p_render_target, int p_width, int p_height) {} RID render_target_get_texture(RID p_render_target) { return RID(); } void render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) {} void render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) {} bool render_target_was_used(RID p_render_target) { return false; } void render_target_set_as_unused(RID p_render_target) {} virtual void render_target_request_clear(RID p_render_target, const Color &p_clear_color) {} virtual bool render_target_is_clear_requested(RID p_render_target) { return false; } virtual Color render_target_get_clear_request_color(RID p_render_target) { return Color(); } virtual void render_target_disable_clear_request(RID p_render_target) {} virtual void render_target_do_clear_request(RID p_render_target) {} RS::InstanceType get_base_type(RID p_rid) const { if (mesh_owner.owns(p_rid)) { return RS::INSTANCE_MESH; } return RS::INSTANCE_NONE; } bool free(RID p_rid) { if (texture_owner.owns(p_rid)) { // delete the texture DummyTexture *texture = texture_owner.getornull(p_rid); texture_owner.free(p_rid); memdelete(texture); } return true; } bool has_os_feature(const String &p_feature) const { return false; } void update_dirty_resources() {} void set_debug_generate_wireframes(bool p_generate) {} void render_info_begin_capture() {} void render_info_end_capture() {} int get_captured_render_info(RS::RenderInfo p_info) { return 0; } int get_render_info(RS::RenderInfo p_info) { return 0; } String get_video_adapter_name() const { return String(); } String get_video_adapter_vendor() const { return String(); } static RasterizerStorage *base_singleton; virtual void capture_timestamps_begin() {} virtual void capture_timestamp(const String &p_name) {} virtual uint32_t get_captured_timestamps_count() const { return 0; } virtual uint64_t get_captured_timestamps_frame() const { return 0; } virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const { return 0; } virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const { return 0; } virtual String get_captured_timestamp_name(uint32_t p_index) const { return String(); } RasterizerStorageDummy() {} ~RasterizerStorageDummy() {} }; class RasterizerCanvasDummy : public RasterizerCanvas { public: virtual TextureBindingID request_texture_binding(RID p_texture, RID p_normalmap, RID p_specular, RS::CanvasItemTextureFilter p_filter, RS::CanvasItemTextureRepeat p_repeat, RID p_multimesh) { return 0; } virtual void free_texture_binding(TextureBindingID p_binding) {} virtual PolygonID request_polygon(const Vector &p_indices, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs = Vector(), const Vector &p_bones = Vector(), const Vector &p_weights = Vector()) { return 0; } virtual void free_polygon(PolygonID p_polygon) {} virtual void canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, const Transform2D &p_canvas_transform) {} virtual void canvas_debug_viewport_shadows(Light *p_lights_with_shadow) {} virtual RID light_create() { return RID(); } virtual void light_set_texture(RID p_rid, RID p_texture) {} virtual void light_set_use_shadow(RID p_rid, bool p_enable, int p_resolution) {} virtual void light_update_shadow(RID p_rid, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {} virtual RID occluder_polygon_create() { return RID(); } virtual void occluder_polygon_set_shape_as_lines(RID p_occluder, const Vector &p_lines) {} virtual void occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) {} void draw_window_margins(int *p_margins, RID *p_margin_textures) {} virtual bool free(RID p_rid) { return true; } virtual void update() {} RasterizerCanvasDummy() {} ~RasterizerCanvasDummy() {} }; class RasterizerDummy : public Rasterizer { protected: RasterizerCanvasDummy canvas; RasterizerStorageDummy storage; RasterizerSceneDummy scene; public: RasterizerStorage *get_storage() { return &storage; } RasterizerCanvas *get_canvas() { return &canvas; } RasterizerScene *get_scene() { return &scene; } void set_boot_image(const Ref &p_image, const Color &p_color, bool p_scale, bool p_use_filter = true) {} void initialize() {} void begin_frame(double frame_step) {} virtual void prepare_for_blitting_render_targets() {} virtual void blit_render_targets_to_screen(int p_screen, const BlitToScreen *p_render_targets, int p_amount) {} void end_frame(bool p_swap_buffers) { OS::get_singleton()->swap_buffers(); } void finalize() {} static Error is_viable() { return OK; } static Rasterizer *_create_current() { return memnew(RasterizerDummy); } static void make_current() { _create_func = _create_current; } virtual bool is_low_end() const { return true; } RasterizerDummy() {} ~RasterizerDummy() {} }; #endif // RASTERIZER_DUMMY_H