Creates a sub-view into the screen. A Viewport creates a different view into the screen, or a sub-view inside another viewport. Children 2D Nodes will display on it, and children Camera3D 3D nodes will render on it too. Optionally, a viewport can have its own 2D or 3D world, so they don't share what they draw with other viewports. If a viewport is a child of a [ViewportContainer], it will automatically take up its size, otherwise it must be set manually. Viewports can also choose to be audio listeners, so they generate positional audio depending on a 2D or 3D camera child of it. Also, viewports can be assigned to different screens in case the devices have multiple screens. Finally, viewports can also behave as render targets, in which case they will not be visible unless the associated texture is used to draw. https://docs.godotengine.org/en/latest/tutorials/2d/2d_transforms.html https://docs.godotengine.org/en/latest/tutorials/viewports/index.html Returns the 3D world of the viewport, or if none the world of the parent viewport. Returns the 2D world of the viewport. Returns the active 3D camera. Returns the total transform of the viewport. Returns the mouse position relative to the viewport. Returns information about the viewport from the rendering pipeline. Returns the [enum ShadowAtlasQuadrantSubdiv] of the specified quadrant. Returns the viewport's texture. [b]Note:[/b] Due to the way OpenGL works, the resulting [ViewportTexture] is flipped vertically. You can use [method Image.flip_y] on the result of [method Texture2D.get_data] to flip it back, for example: [codeblock] var img = get_viewport().get_texture().get_data() img.flip_y() [/codeblock] Returns the viewport's RID from the [RenderingServer]. Returns the visible rectangle in global screen coordinates. Returns the drag data from the GUI, that was previously returned by [method Control.get_drag_data]. Returns [code]true[/code] if the viewport is currently performing a drag operation. Stops the input from propagating further down the [SceneTree]. Sets the number of subdivisions to use in the specified quadrant. A higher number of subdivisions allows you to have more shadows in the scene at once, but reduces the quality of the shadows. A good practice is to have quadrants with a varying number of subdivisions and to have as few subdivisions as possible. Forces update of the 2D and 3D worlds. Warps the mouse to a position relative to the viewport. If [code]true[/code], the viewport will process 2D audio streams. If [code]true[/code], the viewport will process 3D audio streams. The canvas transform of the viewport, useful for changing the on-screen positions of all child [CanvasItem]s. This is relative to the global canvas transform of the viewport. The overlay mode for test rendered geometry in debug purposes. The global canvas transform of the viewport. The canvas transform is relative to this. If [code]true[/code], the viewport will not receive input event. If [code]true[/code], the GUI controls on the viewport will lay pixel perfectly. The multisample anti-aliasing mode. A higher number results in smoother edges at the cost of significantly worse performance. A value of 4 is best unless targeting very high-end systems. If [code]true[/code], the viewport will use [World3D] defined in [code]world[/code] property. If [code]true[/code], the objects rendered by viewport become subjects of mouse picking process. The subdivision amount of the first quadrant on the shadow atlas. The subdivision amount of the second quadrant on the shadow atlas. The subdivision amount of the third quadrant on the shadow atlas. The subdivision amount of the fourth quadrant on the shadow atlas. The shadow atlas' resolution (used for omni and spot lights). The value will be rounded up to the nearest power of 2. [b]Note:[/b] If this is set to 0, shadows won't be visible. Since user-created viewports default to a value of 0, this value must be set above 0 manually. If [code]true[/code], the viewport should render its background as transparent. The custom [World3D] which can be used as 3D environment source. The custom [World2D] which can be used as 2D environment source. Emitted when a Control node grabs keyboard focus. Emitted when the size of the viewport is changed, whether by resizing of window, or some other means. This quadrant will not be used. This quadrant will only be used by one shadow map. This quadrant will be split in 4 and used by up to 4 shadow maps. This quadrant will be split 16 ways and used by up to 16 shadow maps. This quadrant will be split 64 ways and used by up to 64 shadow maps. This quadrant will be split 256 ways and used by up to 256 shadow maps. Unless the [member shadow_atlas_size] is very high, the shadows in this quadrant will be very low resolution. This quadrant will be split 1024 ways and used by up to 1024 shadow maps. Unless the [member shadow_atlas_size] is very high, the shadows in this quadrant will be very low resolution. Represents the size of the [enum ShadowAtlasQuadrantSubdiv] enum. Amount of objects in frame. Amount of vertices in frame. Amount of material changes in frame. Amount of shader changes in frame. Amount of surface changes in frame. Amount of draw calls in frame. Represents the size of the [enum RenderInfo] enum. Objects are displayed normally. Objects are displayed without light information. Objected are displayed semi-transparent with additive blending so you can see where they intersect. Objects are displayed in wireframe style. Multisample anti-aliasing mode disabled. This is the default value. Use 2x Multisample Antialiasing. Use 4x Multisample Antialiasing. Use 8x Multisample Antialiasing. Likely unsupported on low-end and older hardware. Use 16x Multisample Antialiasing. Likely unsupported on medium and low-end hardware.