Vector used for 4D math using integer coordinates.
4-element structure that can be used to represent 4D grid coordinates or sets of integers.
It uses integer coordinates. See [Vector4] for its floating-point counterpart.
Constructs a default-initialized [Vector4i] with all components set to [code]0[/code].
Constructs a [Vector4i] as a copy of the given [Vector4i].
Constructs a new [Vector4i] from the given [Vector4].
Returns a [Vector4i] with the given components.
Returns a new vector with all components in absolute values (i.e. positive).
Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
Returns the length (magnitude) of this vector.
Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length].
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W].
Returns a new vector with each component set to [code]1[/code] if it's positive, [code]-1[/code] if it's negative, and [code]0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component.
Returns a new vector with each component snapped to the closest multiple of the corresponding component in [param step].
The vector's W component. Also accessible by using the index position [code][3][/code].
The vector's X component. Also accessible by using the index position [code][0][/code].
The vector's Y component. Also accessible by using the index position [code][1][/code].
The vector's Z component. Also accessible by using the index position [code][2][/code].
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index].
Zero vector, a vector with all components set to [code]0[/code].
One vector, a vector with all components set to [code]1[/code].
Returns [code]true[/code] if the vectors are not equal.
Gets the remainder of each component of the [Vector4i] with the components of the given [Vector4i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector4i(10, -20, 30, -40) % Vector4i(7, 8, 9, 10)) # Prints "(3, -4, 3, 0)"
[/codeblock]
Gets the remainder of each component of the [Vector4i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector4i(10, -20, 30, -40) % 7) # Prints "(3, -6, 2, -5)"
[/codeblock]
Multiplies each component of the [Vector4i] by the components of the given [Vector4i].
[codeblock]
print(Vector4i(10, 20, 30, 40) * Vector4i(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)"
[/codeblock]
Multiplies each component of the [Vector4i] by the given [float].
Returns a Vector4 value due to floating-point operations.
[codeblock]
print(Vector4i(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)"
[/codeblock]
Multiplies each component of the [Vector4i] by the given [int].
Adds each component of the [Vector4i] by the components of the given [Vector4i].
[codeblock]
print(Vector4i(10, 20, 30, 40) + Vector4i(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)"
[/codeblock]
Subtracts each component of the [Vector4i] by the components of the given [Vector4i].
[codeblock]
print(Vector4i(10, 20, 30, 40) - Vector4i(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)"
[/codeblock]
Divides each component of the [Vector4i] by the components of the given [Vector4i].
[codeblock]
print(Vector4i(10, 20, 30, 40) / Vector4i(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)"
[/codeblock]
Divides each component of the [Vector4i] by the given [float].
Returns a Vector4 value due to floating-point operations.
[codeblock]
print(Vector4i(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)"
[/codeblock]
Divides each component of the [Vector4i] by the given [int].
Compares two [Vector4i] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
Compares two [Vector4i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
Returns [code]true[/code] if the vectors are exactly equal.
Compares two [Vector4i] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
Compares two [Vector4i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code].
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
Returns the negative value of the [Vector4i]. This is the same as writing [code]Vector4i(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude.