<?xml version="1.0" encoding="UTF-8" ?> <class name="Vector4" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> Vector used for 4D math using floating point coordinates. </brief_description> <description> 4-element structure that can be used to represent any quadruplet of numeric values. It uses floating-point coordinates. By default, these floating-point values use 32-bit precision, unlike [float] which is always 64-bit. If double precision is needed, compile the engine with the option [code]precision=double[/code]. See [Vector4i] for its integer counterpart. [b]Note:[/b] In a boolean context, a Vector4 will evaluate to [code]false[/code] if it's equal to [code]Vector4(0, 0, 0, 0)[/code]. Otherwise, a Vector4 will always evaluate to [code]true[/code]. </description> <tutorials> </tutorials> <constructors> <constructor name="Vector4"> <return type="Vector4" /> <description> Constructs a default-initialized [Vector4] with all components set to [code]0[/code]. </description> </constructor> <constructor name="Vector4"> <return type="Vector4" /> <param index="0" name="from" type="Vector4" /> <description> Constructs a [Vector4] as a copy of the given [Vector4]. </description> </constructor> <constructor name="Vector4"> <return type="Vector4" /> <param index="0" name="from" type="Vector4i" /> <description> Constructs a new [Vector4] from the given [Vector4i]. </description> </constructor> <constructor name="Vector4"> <return type="Vector4" /> <param index="0" name="x" type="float" /> <param index="1" name="y" type="float" /> <param index="2" name="z" type="float" /> <param index="3" name="w" type="float" /> <description> Returns a [Vector4] with the given components. </description> </constructor> </constructors> <methods> <method name="abs" qualifiers="const"> <return type="Vector4" /> <description> Returns a new vector with all components in absolute values (i.e. positive). </description> </method> <method name="ceil" qualifiers="const"> <return type="Vector4" /> <description> Returns a new vector with all components rounded up (towards positive infinity). </description> </method> <method name="clamp" qualifiers="const"> <return type="Vector4" /> <param index="0" name="min" type="Vector4" /> <param index="1" name="max" type="Vector4" /> <description> Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component. </description> </method> <method name="cubic_interpolate" qualifiers="const"> <return type="Vector4" /> <param index="0" name="b" type="Vector4" /> <param index="1" name="pre_a" type="Vector4" /> <param index="2" name="post_b" type="Vector4" /> <param index="3" name="weight" type="float" /> <description> Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation. </description> </method> <method name="cubic_interpolate_in_time" qualifiers="const"> <return type="Vector4" /> <param index="0" name="b" type="Vector4" /> <param index="1" name="pre_a" type="Vector4" /> <param index="2" name="post_b" type="Vector4" /> <param index="3" name="weight" type="float" /> <param index="4" name="b_t" type="float" /> <param index="5" name="pre_a_t" type="float" /> <param index="6" name="post_b_t" type="float" /> <description> Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation. It can perform smoother interpolation than [code]cubic_interpolate()[/code] by the time values. </description> </method> <method name="direction_to" qualifiers="const"> <return type="Vector4" /> <param index="0" name="to" type="Vector4" /> <description> Returns the normalized vector pointing from this vector to [param to]. This is equivalent to using [code](b - a).normalized()[/code]. </description> </method> <method name="distance_squared_to" qualifiers="const"> <return type="float" /> <param index="0" name="to" type="Vector4" /> <description> Returns the squared distance between this vector and [param to]. This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula. </description> </method> <method name="distance_to" qualifiers="const"> <return type="float" /> <param index="0" name="to" type="Vector4" /> <description> Returns the distance between this vector and [param to]. </description> </method> <method name="dot" qualifiers="const"> <return type="float" /> <param index="0" name="with" type="Vector4" /> <description> Returns the dot product of this vector and [param with]. </description> </method> <method name="floor" qualifiers="const"> <return type="Vector4" /> <description> Returns a new vector with all components rounded down (towards negative infinity). </description> </method> <method name="inverse" qualifiers="const"> <return type="Vector4" /> <description> Returns the inverse of the vector. This is the same as [code]Vector4(1.0 / v.x, 1.0 / v.y, 1.0 / v.z, 1.0 / v.w)[/code]. </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="with" type="Vector4" /> <description> Returns [code]true[/code] if this vector and [param with] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this vector is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="is_normalized" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if the vector is normalized, i.e. its length is equal to 1. </description> </method> <method name="is_zero_approx" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this vector's values are approximately zero, by running [method @GlobalScope.is_zero_approx] on each component. This method is faster than using [method is_equal_approx] with one value as a zero vector. </description> </method> <method name="length" qualifiers="const"> <return type="float" /> <description> Returns the length (magnitude) of this vector. </description> </method> <method name="length_squared" qualifiers="const"> <return type="float" /> <description> Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length]. </description> </method> <method name="lerp" qualifiers="const"> <return type="Vector4" /> <param index="0" name="to" type="Vector4" /> <param index="1" name="weight" type="float" /> <description> Returns the result of the linear interpolation between this vector and [param to] by amount [param weight]. [param weight] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation. </description> </method> <method name="max_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X]. </description> </method> <method name="min_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W]. </description> </method> <method name="normalized" qualifiers="const"> <return type="Vector4" /> <description> Returns the result of scaling the vector to unit length. Equivalent to [code]v / v.length()[/code]. </description> </method> <method name="posmod" qualifiers="const"> <return type="Vector4" /> <param index="0" name="mod" type="float" /> <description> Returns a new vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param mod]. </description> </method> <method name="posmodv" qualifiers="const"> <return type="Vector4" /> <param index="0" name="modv" type="Vector4" /> <description> Returns a new vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param modv]'s components. </description> </method> <method name="round" qualifiers="const"> <return type="Vector4" /> <description> Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero. </description> </method> <method name="sign" qualifiers="const"> <return type="Vector4" /> <description> Returns a new vector with each component set to [code]1.0[/code] if it's positive, [code]-1.0[/code] if it's negative, and [code]0.0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component. </description> </method> <method name="snapped" qualifiers="const"> <return type="Vector4" /> <param index="0" name="step" type="Vector4" /> <description> Returns a new vector with each component snapped to the nearest multiple of the corresponding component in [param step]. This can also be used to round the components to an arbitrary number of decimals. </description> </method> </methods> <members> <member name="w" type="float" setter="" getter="" default="0.0"> The vector's W component. Also accessible by using the index position [code][3][/code]. </member> <member name="x" type="float" setter="" getter="" default="0.0"> The vector's X component. Also accessible by using the index position [code][0][/code]. </member> <member name="y" type="float" setter="" getter="" default="0.0"> The vector's Y component. Also accessible by using the index position [code][1][/code]. </member> <member name="z" type="float" setter="" getter="" default="0.0"> The vector's Z component. Also accessible by using the index position [code][2][/code]. </member> </members> <constants> <constant name="AXIS_X" value="0"> Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_Y" value="1"> Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_Z" value="2"> Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_W" value="3"> Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="ZERO" value="Vector4(0, 0, 0, 0)"> Zero vector, a vector with all components set to [code]0[/code]. </constant> <constant name="ONE" value="Vector4(1, 1, 1, 1)"> One vector, a vector with all components set to [code]1[/code]. </constant> <constant name="INF" value="Vector4(inf, inf, inf, inf)"> Infinity vector, a vector with all components set to [constant @GDScript.INF]. </constant> </constants> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Returns [code]true[/code] if the vectors are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="Vector4" /> <param index="0" name="right" type="Projection" /> <description> Inversely transforms (multiplies) the [Vector4] by the given [Projection] matrix. </description> </operator> <operator name="operator *"> <return type="Vector4" /> <param index="0" name="right" type="Vector4" /> <description> Multiplies each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) * Vector4(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)" [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector4" /> <param index="0" name="right" type="float" /> <description> Multiplies each component of the [Vector4] by the given [float]. [codeblock] print(Vector4(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)" [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector4" /> <param index="0" name="right" type="int" /> <description> Multiplies each component of the [Vector4] by the given [int]. </description> </operator> <operator name="operator +"> <return type="Vector4" /> <param index="0" name="right" type="Vector4" /> <description> Adds each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) + Vector4(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)" [/codeblock] </description> </operator> <operator name="operator -"> <return type="Vector4" /> <param index="0" name="right" type="Vector4" /> <description> Subtracts each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) - Vector4(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <param index="0" name="right" type="Vector4" /> <description> Divides each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) / Vector4(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <param index="0" name="right" type="float" /> <description> Divides each component of the [Vector4] by the given [float]. [codeblock] print(Vector4(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector4" /> <param index="0" name="right" type="int" /> <description> Divides each component of the [Vector4] by the given [int]. </description> </operator> <operator name="operator <"> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Compares two [Vector4] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator <="> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Compares two [Vector4] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Returns [code]true[/code] if the vectors are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator >"> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator >="> <return type="bool" /> <param index="0" name="right" type="Vector4" /> <description> Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. </description> </operator> <operator name="operator []"> <return type="float" /> <param index="0" name="index" type="int" /> <description> Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code]. </description> </operator> <operator name="operator unary+"> <return type="Vector4" /> <description> Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable. </description> </operator> <operator name="operator unary-"> <return type="Vector4" /> <description> Returns the negative value of the [Vector4]. This is the same as writing [code]Vector4(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative. </description> </operator> </operators> </class>