Vector used for 4D math using floating point coordinates. 4-element structure that can be used to represent any quadruplet of numeric values. It uses floating-point coordinates. See [Vector4i] for its integer counterpart. [b]Note:[/b] In a boolean context, a Vector4 will evaluate to [code]false[/code] if it's equal to [code]Vector4(0, 0, 0, 0)[/code]. Otherwise, a Vector4 will always evaluate to [code]true[/code]. Constructs a default-initialized [Vector4] with all components set to [code]0[/code]. Constructs a [Vector4] as a copy of the given [Vector4]. Constructs a new [Vector4] from [Vector4i]. Returns a [Vector4] with the given components. Returns a new vector with all components in absolute values (i.e. positive). Returns a new vector with all components rounded up (towards positive infinity). Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component. Performs a cubic interpolation between this vector and [param b] using [param pre_a] and [param post_b] as handles, and returns the result at position [param weight]. [param weight] is on the range of 0.0 to 1.0, representing the amount of interpolation. Returns the normalized vector pointing from this vector to [param to]. This is equivalent to using [code](b - a).normalized()[/code]. Returns the distance between this vector and [param to]. Returns the dot product of this vector and [param with]. Returns a new vector with all components rounded down (towards negative infinity). Returns the inverse of the vector. This is the same as [code]Vector4(1.0 / v.x, 1.0 / v.y, 1.0 / v.z, 1.0 / v.w)[/code]. Returns [code]true[/code] if this vector and [param with] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component. Returns [code]true[/code] if the vector is normalized, i.e. its length is equal to 1. Returns the length (magnitude) of this vector. Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length]. Returns the result of the linear interpolation between this vector and [param to] by amount [param weight]. [param weight] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation. Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X]. Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W]. Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code]. Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param mod]. Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [param modv]'s components. Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero. Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component. Returns this vector with each component snapped to the nearest multiple of [param step]. This can also be used to round to an arbitrary number of decimals. The vector's W component. Also accessible by using the index position [code][3][/code]. The vector's X component. Also accessible by using the index position [code][0][/code]. The vector's Y component. Also accessible by using the index position [code][1][/code]. The vector's Z component. Also accessible by using the index position [code][2][/code]. Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index]. Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index]. Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index]. Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index]. Zero vector, a vector with all components set to [code]0[/code]. One vector, a vector with all components set to [code]1[/code]. Infinity vector, a vector with all components set to [constant @GDScript.INF]. Returns [code]true[/code] if the vectors are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. Inversely transforms (multiplies) the [Vector4] by the given [Projection] matrix. Multiplies each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) * Vector4(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)" [/codeblock] Multiplies each component of the [Vector4] by the given [float]. [codeblock] print(Vector4(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)" [/codeblock] Multiplies each component of the [Vector4] by the given [int]. Adds each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) + Vector4(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)" [/codeblock] Subtracts each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) - Vector4(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)" [/codeblock] Divides each component of the [Vector4] by the components of the given [Vector4]. [codeblock] print(Vector4(10, 20, 30, 40) / Vector4(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)" [/codeblock] Divides each component of the [Vector4] by the given [float]. [codeblock] print(Vector4(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)" [/codeblock] Divides each component of the [Vector4] by the given [int]. Compares two [Vector4] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. Compares two [Vector4] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. Returns [code]true[/code] if the vectors are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors. Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code]. Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable. Returns the negative value of the [Vector4]. This is the same as writing [code]Vector4(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.