<?xml version="1.0" encoding="UTF-8" ?> <class name="Vector3" version="4.0"> <brief_description> Vector used for 3D math using floating point coordinates. </brief_description> <description> 3-element structure that can be used to represent positions in 3D space or any other pair of numeric values. It uses floating point coordinates. </description> <tutorials> <link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link> </tutorials> <methods> <method name="Vector3"> <return type="Vector3"> </return> <argument index="0" name="from" type="Vector3i"> </argument> <description> Constructs a new [Vector3] from [Vector3i]. </description> </method> <method name="Vector3"> <return type="Vector3"> </return> <argument index="0" name="x" type="float"> </argument> <argument index="1" name="y" type="float"> </argument> <argument index="2" name="z" type="float"> </argument> <description> Returns a [Vector3] with the given components. </description> </method> <method name="abs"> <return type="Vector3"> </return> <description> Returns a new vector with all components in absolute values (i.e. positive). </description> </method> <method name="angle_to"> <return type="float"> </return> <argument index="0" name="to" type="Vector3"> </argument> <description> Returns the minimum angle to the given vector. </description> </method> <method name="bounce"> <return type="Vector3"> </return> <argument index="0" name="n" type="Vector3"> </argument> <description> Returns the vector "bounced off" from a plane defined by the given normal. </description> </method> <method name="ceil"> <return type="Vector3"> </return> <description> Returns a new vector with all components rounded up. </description> </method> <method name="cross"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the cross product with [code]b[/code]. </description> </method> <method name="cubic_interpolate"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <argument index="1" name="pre_a" type="Vector3"> </argument> <argument index="2" name="post_b" type="Vector3"> </argument> <argument index="3" name="t" type="float"> </argument> <description> Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation. </description> </method> <method name="direction_to"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the normalized vector pointing from this vector to [code]b[/code]. </description> </method> <method name="distance_squared_to"> <return type="float"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the squared distance to [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula. </description> </method> <method name="distance_to"> <return type="float"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the distance to [code]b[/code]. </description> </method> <method name="dot"> <return type="float"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the dot product with [code]b[/code]. </description> </method> <method name="floor"> <return type="Vector3"> </return> <description> Returns a new vector with all components rounded down. </description> </method> <method name="inverse"> <return type="Vector3"> </return> <description> Returns the inverse of the vector. This is the same as [code]Vector3( 1.0 / v.x, 1.0 / v.y, 1.0 / v.z )[/code]. </description> </method> <method name="is_equal_approx"> <return type="bool"> </return> <argument index="0" name="v" type="Vector3"> </argument> <description> Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GDScript.is_equal_approx] on each component. </description> </method> <method name="is_normalized"> <return type="bool"> </return> <description> Returns [code]true[/code] if the vector is normalized. </description> </method> <method name="length"> <return type="float"> </return> <description> Returns the vector's length. </description> </method> <method name="length_squared"> <return type="float"> </return> <description> Returns the vector's length squared. Prefer this function over [method length] if you need to sort vectors or need the squared length for some formula. </description> </method> <method name="linear_interpolate"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <argument index="1" name="t" type="float"> </argument> <description> Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.. </description> </method> <method name="max_axis"> <return type="int"> </return> <description> Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. </description> </method> <method name="min_axis"> <return type="int"> </return> <description> Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. </description> </method> <method name="move_toward"> <return type="Vector3"> </return> <argument index="0" name="to" type="Vector3"> </argument> <argument index="1" name="delta" type="float"> </argument> <description> Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount. </description> </method> <method name="normalized"> <return type="Vector3"> </return> <description> Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code]. </description> </method> <method name="outer"> <return type="Basis"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the outer product with [code]b[/code]. </description> </method> <method name="posmod"> <return type="Vector3"> </return> <argument index="0" name="mod" type="float"> </argument> <description> Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]mod[/code]. </description> </method> <method name="posmodv"> <return type="Vector3"> </return> <argument index="0" name="modv" type="Vector3"> </argument> <description> Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]modv[/code]'s components. </description> </method> <method name="project"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <description> Returns the vector projected onto the vector [code]b[/code]. </description> </method> <method name="reflect"> <return type="Vector3"> </return> <argument index="0" name="n" type="Vector3"> </argument> <description> Returns the vector reflected from a plane defined by the given normal. </description> </method> <method name="rotated"> <return type="Vector3"> </return> <argument index="0" name="axis" type="Vector3"> </argument> <argument index="1" name="phi" type="float"> </argument> <description> Rotates the vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector. </description> </method> <method name="round"> <return type="Vector3"> </return> <description> Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero. </description> </method> <method name="sign"> <return type="Vector3"> </return> <description> Returns the vector with each component set to one or negative one, depending on the signs of the components. </description> </method> <method name="slerp"> <return type="Vector3"> </return> <argument index="0" name="b" type="Vector3"> </argument> <argument index="1" name="t" type="float"> </argument> <description> Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation. [b]Note:[/b] Both vectors must be normalized. </description> </method> <method name="slide"> <return type="Vector3"> </return> <argument index="0" name="n" type="Vector3"> </argument> <description> Returns the component of the vector along a plane defined by the given normal. </description> </method> <method name="snapped"> <return type="Vector3"> </return> <argument index="0" name="by" type="Vector3"> </argument> <description> Returns a copy of the vector snapped to the lowest neared multiple. </description> </method> <method name="to_diagonal_matrix"> <return type="Basis"> </return> <description> Returns a diagonal matrix with the vector as main diagonal. </description> </method> </methods> <members> <member name="x" type="float" setter="" getter="" default="0.0"> The vector's X component. Also accessible by using the index position [code][0][/code]. </member> <member name="y" type="float" setter="" getter="" default="0.0"> The vector's Y component. Also accessible by using the index position [code][1][/code]. </member> <member name="z" type="float" setter="" getter="" default="0.0"> The vector's Z component. Also accessible by using the index position [code][2][/code]. </member> </members> <constants> <constant name="AXIS_X" value="0"> Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis]. </constant> <constant name="AXIS_Y" value="1"> Enumerated value for the Y axis. Returned by [method max_axis] and [method min_axis]. </constant> <constant name="AXIS_Z" value="2"> Enumerated value for the Z axis. Returned by [method max_axis] and [method min_axis]. </constant> <constant name="ZERO" value="Vector3( 0, 0, 0 )"> Zero vector. </constant> <constant name="ONE" value="Vector3( 1, 1, 1 )"> One vector. </constant> <constant name="INF" value="Vector3( inf, inf, inf )"> Infinity vector. </constant> <constant name="LEFT" value="Vector3( -1, 0, 0 )"> Left unit vector. </constant> <constant name="RIGHT" value="Vector3( 1, 0, 0 )"> Right unit vector. </constant> <constant name="UP" value="Vector3( 0, 1, 0 )"> Up unit vector. </constant> <constant name="DOWN" value="Vector3( 0, -1, 0 )"> Down unit vector. </constant> <constant name="FORWARD" value="Vector3( 0, 0, -1 )"> Forward unit vector. </constant> <constant name="BACK" value="Vector3( 0, 0, 1 )"> Back unit vector. </constant> </constants> </class>