<?xml version="1.0" encoding="UTF-8" ?> <class name="Vector2i" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> Vector used for 2D math using integer coordinates. </brief_description> <description> 2-element structure that can be used to represent positions in 2D space or any other pair of numeric values. It uses integer coordinates and is therefore preferable to [Vector2] when exact precision is required. Note that the values are limited to 32 bits, and unlike [Vector2] this cannot be configured with an engine build option. Use [int] or [PackedInt64Array] if 64-bit values are needed. [b]Note:[/b] In a boolean context, a Vector2i will evaluate to [code]false[/code] if it's equal to [code]Vector2i(0, 0)[/code]. Otherwise, a Vector2i will always evaluate to [code]true[/code]. </description> <tutorials> <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link> <link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link> <link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link> </tutorials> <constructors> <constructor name="Vector2i"> <return type="Vector2i" /> <description> Constructs a default-initialized [Vector2i] with all components set to [code]0[/code]. </description> </constructor> <constructor name="Vector2i"> <return type="Vector2i" /> <param index="0" name="from" type="Vector2i" /> <description> Constructs a [Vector2i] as a copy of the given [Vector2i]. </description> </constructor> <constructor name="Vector2i"> <return type="Vector2i" /> <param index="0" name="from" type="Vector2" /> <description> Constructs a new [Vector2i] from [Vector2]. The floating point coordinates will be truncated. </description> </constructor> <constructor name="Vector2i"> <return type="Vector2i" /> <param index="0" name="x" type="int" /> <param index="1" name="y" type="int" /> <description> Constructs a new [Vector2i] from the given [param x] and [param y]. </description> </constructor> </constructors> <methods> <method name="abs" qualifiers="const"> <return type="Vector2i" /> <description> Returns a new vector with all components in absolute values (i.e. positive). </description> </method> <method name="aspect" qualifiers="const"> <return type="float" /> <description> Returns the aspect ratio of this vector, the ratio of [member x] to [member y]. </description> </method> <method name="clamp" qualifiers="const"> <return type="Vector2i" /> <param index="0" name="min" type="Vector2i" /> <param index="1" name="max" type="Vector2i" /> <description> Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component. </description> </method> <method name="length" qualifiers="const"> <return type="float" /> <description> Returns the length (magnitude) of this vector. </description> </method> <method name="length_squared" qualifiers="const"> <return type="int" /> <description> Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula. </description> </method> <method name="max_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X]. </description> </method> <method name="min_axis_index" qualifiers="const"> <return type="int" /> <description> Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y]. </description> </method> <method name="sign" qualifiers="const"> <return type="Vector2i" /> <description> Returns a new vector with each component set to [code]1[/code] if it's positive, [code]-1[/code] if it's negative, and [code]0[/code] if it's zero. The result is identical to calling [method @GlobalScope.sign] on each component. </description> </method> <method name="snapped" qualifiers="const"> <return type="Vector2i" /> <param index="0" name="step" type="Vector2i" /> <description> Returns a new vector with each component snapped to the closest multiple of the corresponding component in [param step]. </description> </method> </methods> <members> <member name="x" type="int" setter="" getter="" default="0"> The vector's X component. Also accessible by using the index position [code][0][/code]. </member> <member name="y" type="int" setter="" getter="" default="0"> The vector's Y component. Also accessible by using the index position [code][1][/code]. </member> </members> <constants> <constant name="AXIS_X" value="0"> Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="AXIS_Y" value="1"> Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index]. </constant> <constant name="ZERO" value="Vector2i(0, 0)"> Zero vector, a vector with all components set to [code]0[/code]. </constant> <constant name="ONE" value="Vector2i(1, 1)"> One vector, a vector with all components set to [code]1[/code]. </constant> <constant name="LEFT" value="Vector2i(-1, 0)"> Left unit vector. Represents the direction of left. </constant> <constant name="RIGHT" value="Vector2i(1, 0)"> Right unit vector. Represents the direction of right. </constant> <constant name="UP" value="Vector2i(0, -1)"> Up unit vector. Y is down in 2D, so this vector points -Y. </constant> <constant name="DOWN" value="Vector2i(0, 1)"> Down unit vector. Y is down in 2D, so this vector points +Y. </constant> </constants> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Returns [code]true[/code] if the vectors are not equal. </description> </operator> <operator name="operator %"> <return type="Vector2i" /> <param index="0" name="right" type="Vector2i" /> <description> Gets the remainder of each component of the [Vector2i] with the components of the given [Vector2i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers. [codeblock] print(Vector2i(10, -20) % Vector2i(7, 8)) # Prints "(3, -4)" [/codeblock] </description> </operator> <operator name="operator %"> <return type="Vector2i" /> <param index="0" name="right" type="int" /> <description> Gets the remainder of each component of the [Vector2i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers. [codeblock] print(Vector2i(10, -20) % 7) # Prints "(3, -6)" [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector2i" /> <param index="0" name="right" type="Vector2i" /> <description> Multiplies each component of the [Vector2i] by the components of the given [Vector2i]. [codeblock] print(Vector2i(10, 20) * Vector2i(3, 4)) # Prints "(30, 80)" [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector2" /> <param index="0" name="right" type="float" /> <description> Multiplies each component of the [Vector2i] by the given [float]. Returns a [Vector2]. [codeblock] print(Vector2i(10, 15) * 0.9) # Prints "(9, 13.5)" [/codeblock] </description> </operator> <operator name="operator *"> <return type="Vector2i" /> <param index="0" name="right" type="int" /> <description> Multiplies each component of the [Vector2i] by the given [int]. </description> </operator> <operator name="operator +"> <return type="Vector2i" /> <param index="0" name="right" type="Vector2i" /> <description> Adds each component of the [Vector2i] by the components of the given [Vector2i]. [codeblock] print(Vector2i(10, 20) + Vector2i(3, 4)) # Prints "(13, 24)" [/codeblock] </description> </operator> <operator name="operator -"> <return type="Vector2i" /> <param index="0" name="right" type="Vector2i" /> <description> Subtracts each component of the [Vector2i] by the components of the given [Vector2i]. [codeblock] print(Vector2i(10, 20) - Vector2i(3, 4)) # Prints "(7, 16)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector2i" /> <param index="0" name="right" type="Vector2i" /> <description> Divides each component of the [Vector2i] by the components of the given [Vector2i]. [codeblock] print(Vector2i(10, 20) / Vector2i(2, 5)) # Prints "(5, 4)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector2" /> <param index="0" name="right" type="float" /> <description> Divides each component of the [Vector2i] by the given [float]. Returns a [Vector2]. [codeblock] print(Vector2i(10, 20) / 2.9) # Prints "(5, 10)" [/codeblock] </description> </operator> <operator name="operator /"> <return type="Vector2i" /> <param index="0" name="right" type="int" /> <description> Divides each component of the [Vector2i] by the given [int]. </description> </operator> <operator name="operator <"> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors. </description> </operator> <operator name="operator <="> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Returns [code]true[/code] if the vectors are equal. </description> </operator> <operator name="operator >"> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors. </description> </operator> <operator name="operator >="> <return type="bool" /> <param index="0" name="right" type="Vector2i" /> <description> Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors. </description> </operator> <operator name="operator []"> <return type="int" /> <param index="0" name="index" type="int" /> <description> Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code]. </description> </operator> <operator name="operator unary+"> <return type="Vector2i" /> <description> Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable. </description> </operator> <operator name="operator unary-"> <return type="Vector2i" /> <description> Returns the negative value of the [Vector2i]. This is the same as writing [code]Vector2i(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude. </description> </operator> </operators> </class>