<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2" category="Built-In Types" version="3.2">
	<brief_description>
		Vector used for 2D math.
	</brief_description>
	<description>
		2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
	</description>
	<tutorials>
		<link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
	</tutorials>
	<methods>
		<method name="Vector2">
			<return type="Vector2">
			</return>
			<argument index="0" name="x" type="float">
			</argument>
			<argument index="1" name="y" type="float">
			</argument>
			<description>
				Constructs a new Vector2 from the given [code]x[/code] and [code]y[/code].
			</description>
		</method>
		<method name="abs">
			<return type="Vector2">
			</return>
			<description>
				Returns a new vector with all components in absolute values (i.e. positive).
			</description>
		</method>
		<method name="angle">
			<return type="float">
			</return>
			<description>
				Returns the vector's angle in radians with respect to the X axis, or [code](1, 0)[/code] vector.
				Equivalent to the result of [method @GDScript.atan2] when called with the vector's [member x] and [member y] as parameters: [code]atan2(x, y)[/code].
			</description>
		</method>
		<method name="angle_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the angle in radians between the two vectors.
			</description>
		</method>
		<method name="angle_to_point">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the angle in radians between the line connecting the two points and the X coordinate.
			</description>
		</method>
		<method name="aspect">
			<return type="float">
			</return>
			<description>
				Returns the ratio of [member x] to [member y].
			</description>
		</method>
		<method name="bounce">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Returns the vector "bounced off" from a plane defined by the given normal.
			</description>
		</method>
		<method name="ceil">
			<return type="Vector2">
			</return>
			<description>
				Returns the vector with all components rounded up.
			</description>
		</method>
		<method name="clamped">
			<return type="Vector2">
			</return>
			<argument index="0" name="length" type="float">
			</argument>
			<description>
				Returns the vector with a maximum length.
			</description>
		</method>
		<method name="cross">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector2">
			</argument>
			<description>
				Returns the 2-dimensional analog of the cross product with the given vector.
			</description>
		</method>
		<method name="cubic_interpolate">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<argument index="1" name="pre_a" type="Vector2">
			</argument>
			<argument index="2" name="post_b" type="Vector2">
			</argument>
			<argument index="3" name="t" type="float">
			</argument>
			<description>
				Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
			</description>
		</method>
		<method name="direction_to">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<description>
				Returns the normalized vector pointing from this vector to [code]b[/code].
			</description>
		</method>
		<method name="distance_squared_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the squared distance to vector [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula.
			</description>
		</method>
		<method name="distance_to">
			<return type="float">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<description>
				Returns the distance to vector [code]b[/code].
			</description>
		</method>
		<method name="dot">
			<return type="float">
			</return>
			<argument index="0" name="with" type="Vector2">
			</argument>
			<description>
				Returns the dot product with vector [code]b[/code].
			</description>
		</method>
		<method name="floor">
			<return type="Vector2">
			</return>
			<description>
				Returns the vector with all components rounded down.
			</description>
		</method>
		<method name="is_normalized">
			<return type="bool">
			</return>
			<description>
				Returns [code]true[/code] if the vector is normalized.
			</description>
		</method>
		<method name="length">
			<return type="float">
			</return>
			<description>
				Returns the vector's length.
			</description>
		</method>
		<method name="length_squared">
			<return type="float">
			</return>
			<description>
				Returns the vector's length squared. Prefer this method over [method length] if you need to sort vectors or need the squared length for some formula.
			</description>
		</method>
		<method name="linear_interpolate">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<argument index="1" name="t" type="float">
			</argument>
			<description>
				Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
			</description>
		</method>
		<method name="move_toward">
			<return type="Vector2">
			</return>
			<argument index="0" name="to" type="Vector2">
			</argument>
			<argument index="1" name="delta" type="float">
			</argument>
			<description>
				Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
			</description>
		</method>
		<method name="normalized">
			<return type="Vector2">
			</return>
			<description>
				Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
			</description>
		</method>
		<method name="posmod">
			<return type="Vector2">
			</return>
			<argument index="0" name="mod" type="float">
			</argument>
			<description>
				Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]mod[/code].
			</description>
		</method>
		<method name="posmodv">
			<return type="Vector2">
			</return>
			<argument index="0" name="modv" type="Vector2">
			</argument>
			<description>
				Returns a vector composed of the [code]fposmod[/code] of this vector's components and [code]modv[/code]'s components.
			</description>
		</method>
		<method name="project">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<description>
				Returns the vector projected onto the vector [code]b[/code].
			</description>
		</method>
		<method name="reflect">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Returns the vector reflected from a plane defined by the given normal.
			</description>
		</method>
		<method name="rotated">
			<return type="Vector2">
			</return>
			<argument index="0" name="phi" type="float">
			</argument>
			<description>
				Returns the vector rotated by [code]phi[/code] radians. See also [method @GDScript.deg2rad].
			</description>
		</method>
		<method name="round">
			<return type="Vector2">
			</return>
			<description>
				Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
			</description>
		</method>
		<method name="sign">
			<return type="Vector2">
			</return>
			<description>
				Returns the vector with each component set to one or negative one, depending on the signs of the components.
			</description>
		</method>
		<method name="slerp">
			<return type="Vector2">
			</return>
			<argument index="0" name="b" type="Vector2">
			</argument>
			<argument index="1" name="t" type="float">
			</argument>
			<description>
				Returns the result of spherical linear interpolation between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
				[b]Note:[/b] Both vectors must be normalized.
			</description>
		</method>
		<method name="slide">
			<return type="Vector2">
			</return>
			<argument index="0" name="n" type="Vector2">
			</argument>
			<description>
				Returns the component of the vector along a plane defined by the given normal.
			</description>
		</method>
		<method name="snapped">
			<return type="Vector2">
			</return>
			<argument index="0" name="by" type="Vector2">
			</argument>
			<description>
				Returns the vector snapped to a grid with the given size.
			</description>
		</method>
		<method name="tangent">
			<return type="Vector2">
			</return>
			<description>
				Returns a perpendicular vector.
			</description>
		</method>
	</methods>
	<members>
		<member name="x" type="float" setter="" getter="" default="0.0">
			The vector's X component. Also accessible by using the index position [code][0][/code].
		</member>
		<member name="y" type="float" setter="" getter="" default="0.0">
			The vector's Y component. Also accessible by using the index position [code][1][/code].
		</member>
	</members>
	<constants>
		<constant name="AXIS_X" value="0">
			Enumerated value for the X axis.
		</constant>
		<constant name="AXIS_Y" value="1">
			Enumerated value for the Y axis.
		</constant>
		<constant name="ZERO" value="Vector2( 0, 0 )">
			Zero vector.
		</constant>
		<constant name="ONE" value="Vector2( 1, 1 )">
			One vector.
		</constant>
		<constant name="INF" value="Vector2( inf, inf )">
			Infinity vector.
		</constant>
		<constant name="LEFT" value="Vector2( -1, 0 )">
			Left unit vector.
		</constant>
		<constant name="RIGHT" value="Vector2( 1, 0 )">
			Right unit vector.
		</constant>
		<constant name="UP" value="Vector2( 0, -1 )">
			Up unit vector.
		</constant>
		<constant name="DOWN" value="Vector2( 0, 1 )">
			Down unit vector.
		</constant>
	</constants>
</class>