<?xml version="1.0" encoding="UTF-8" ?> <class name="Tween" inherits="RefCounted" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> Lightweight object used for general-purpose animation via script, using [Tweener]s. </brief_description> <description> Tweens are mostly useful for animations requiring a numerical property to be interpolated over a range of values. The name [i]tween[/i] comes from [i]in-betweening[/i], an animation technique where you specify [i]keyframes[/i] and the computer interpolates the frames that appear between them. Animating something with a [Tween] is called tweening. [Tween] is more suited than [AnimationPlayer] for animations where you don't know the final values in advance. For example, interpolating a dynamically-chosen camera zoom value is best done with a [Tween]; it would be difficult to do the same thing with an [AnimationPlayer] node. Tweens are also more light-weight than [AnimationPlayer], so they are very much suited for simple animations or general tasks that don't require visual tweaking provided by the editor. They can be used in a fire-and-forget manner for some logic that normally would be done by code. You can e.g. make something shoot periodically by using a looped [CallbackTweener] with a delay. A [Tween] can be created by using either [method SceneTree.create_tween] or [method Node.create_tween]. [Tween]s created manually (i.e. by using [code]Tween.new()[/code]) are invalid and can't be used for tweening values. A tween animation is created by adding [Tweener]s to the [Tween] object, using [method tween_property], [method tween_interval], [method tween_callback] or [method tween_method]: [codeblock] var tween = get_tree().create_tween() tween.tween_property($Sprite, "modulate", Color.red, 1) tween.tween_property($Sprite, "scale", Vector2(), 1) tween.tween_callback($Sprite.queue_free) [/codeblock] This sequence will make the [code]$Sprite[/code] node turn red, then shrink, before finally calling [method Node.queue_free] to free the sprite. [Tweener]s are executed one after another by default. This behavior can be changed using [method parallel] and [method set_parallel]. When a [Tweener] is created with one of the [code]tween_*[/code] methods, a chained method call can be used to tweak the properties of this [Tweener]. For example, if you want to set a different transition type in the above example, you can use [method set_trans]: [codeblock] var tween = get_tree().create_tween() tween.tween_property($Sprite, "modulate", Color.red, 1).set_trans(Tween.TRANS_SINE) tween.tween_property($Sprite, "scale", Vector2(), 1).set_trans(Tween.TRANS_BOUNCE) tween.tween_callback($Sprite.queue_free) [/codeblock] Most of the [Tween] methods can be chained this way too. In the following example the [Tween] is bound to the running script's node and a default transition is set for its [Tweener]s: [codeblock] var tween = get_tree().create_tween().bind_node(self).set_trans(Tween.TRANS_ELASTIC) tween.tween_property($Sprite, "modulate", Color.red, 1) tween.tween_property($Sprite, "scale", Vector2(), 1) tween.tween_callback($Sprite.queue_free) [/codeblock] Another interesting use for [Tween]s is animating arbitrary sets of objects: [codeblock] var tween = create_tween() for sprite in get_children(): tween.tween_property(sprite, "position", Vector2(0, 0), 1) [/codeblock] In the example above, all children of a node are moved one after another to position (0, 0). Some [Tweener]s use transitions and eases. The first accepts a [enum TransitionType] constant, and refers to the way the timing of the animation is handled (see [url=https://easings.net/]easings.net[/url] for some examples). The second accepts an [enum EaseType] constant, and controls where the [code]trans_type[/code] is applied to the interpolation (in the beginning, the end, or both). If you don't know which transition and easing to pick, you can try different [enum TransitionType] constants with [constant EASE_IN_OUT], and use the one that looks best. [url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/tween_cheatsheet.png]Tween easing and transition types cheatsheet[/url] [b]Note:[/b] All [Tween]s will automatically start by default. To prevent a [Tween] from autostarting, you can call [method stop] immediately after it is created. </description> <tutorials> </tutorials> <methods> <method name="bind_node"> <return type="Tween" /> <param index="0" name="node" type="Node" /> <description> Binds this [Tween] with the given [param node]. [Tween]s are processed directly by the [SceneTree], so they run independently of the animated nodes. When you bind a [Node] with the [Tween], the [Tween] will halt the animation when the object is not inside tree and the [Tween] will be automatically killed when the bound object is freed. Also [constant TWEEN_PAUSE_BOUND] will make the pausing behavior dependent on the bound node. For a shorter way to create and bind a [Tween], you can use [method Node.create_tween]. </description> </method> <method name="chain"> <return type="Tween" /> <description> Used to chain two [Tweener]s after [method set_parallel] is called with [code]true[/code]. [codeblock] var tween = create_tween().set_parallel(true) tween.tween_property(...) tween.tween_property(...) # Will run parallelly with above. tween.chain().tween_property(...) # Will run after two above are finished. [/codeblock] </description> </method> <method name="custom_step"> <return type="bool" /> <param index="0" name="delta" type="float" /> <description> Processes the [Tween] by the given [param delta] value, in seconds. This is mostly useful for manual control when the [Tween] is paused. It can also be used to end the [Tween] animation immediately, by setting [param delta] longer than the whole duration of the [Tween] animation. Returns [code]true[/code] if the [Tween] still has [Tweener]s that haven't finished. [b]Note:[/b] The [Tween] will become invalid in the next processing frame after its animation finishes. Calling [method stop] after performing [method custom_step] instead keeps and resets the [Tween]. </description> </method> <method name="get_total_elapsed_time" qualifiers="const"> <return type="float" /> <description> Returns the total time in seconds the [Tween] has been animating (i.e. the time since it started, not counting pauses etc.). The time is affected by [method set_speed_scale], and [method stop] will reset it to [code]0[/code]. [b]Note:[/b] As it results from accumulating frame deltas, the time returned after the [Tween] has finished animating will be slightly greater than the actual [Tween] duration. </description> </method> <method name="interpolate_value" qualifiers="static"> <return type="Variant" /> <param index="0" name="initial_value" type="Variant" /> <param index="1" name="delta_value" type="Variant" /> <param index="2" name="elapsed_time" type="float" /> <param index="3" name="duration" type="float" /> <param index="4" name="trans_type" type="int" enum="Tween.TransitionType" /> <param index="5" name="ease_type" type="int" enum="Tween.EaseType" /> <description> This method can be used for manual interpolation of a value, when you don't want [Tween] to do animating for you. It's similar to [method @GlobalScope.lerp], but with support for custom transition and easing. [param initial_value] is the starting value of the interpolation. [param delta_value] is the change of the value in the interpolation, i.e. it's equal to [code]final_value - initial_value[/code]. [param elapsed_time] is the time in seconds that passed after the interpolation started and it's used to control the position of the interpolation. E.g. when it's equal to half of the [param duration], the interpolated value will be halfway between initial and final values. This value can also be greater than [param duration] or lower than 0, which will extrapolate the value. [param duration] is the total time of the interpolation. [b]Note:[/b] If [param duration] is equal to [code]0[/code], the method will always return the final value, regardless of [param elapsed_time] provided. </description> </method> <method name="is_running"> <return type="bool" /> <description> Returns whether the [Tween] is currently running, i.e. it wasn't paused and it's not finished. </description> </method> <method name="is_valid"> <return type="bool" /> <description> Returns whether the [Tween] is valid. A valid [Tween] is a [Tween] contained by the scene tree (i.e. the array from [method SceneTree.get_processed_tweens] will contain this [Tween]). A [Tween] might become invalid when it has finished tweening, is killed, or when created with [code]Tween.new()[/code]. Invalid [Tween]s can't have [Tweener]s appended. </description> </method> <method name="kill"> <return type="void" /> <description> Aborts all tweening operations and invalidates the [Tween]. </description> </method> <method name="parallel"> <return type="Tween" /> <description> Makes the next [Tweener] run parallelly to the previous one. Example: [codeblock] var tween = create_tween() tween.tween_property(...) tween.parallel().tween_property(...) tween.parallel().tween_property(...) [/codeblock] All [Tweener]s in the example will run at the same time. You can make the [Tween] parallel by default by using [method set_parallel]. </description> </method> <method name="pause"> <return type="void" /> <description> Pauses the tweening. The animation can be resumed by using [method play]. </description> </method> <method name="play"> <return type="void" /> <description> Resumes a paused or stopped [Tween]. </description> </method> <method name="set_ease"> <return type="Tween" /> <param index="0" name="ease" type="int" enum="Tween.EaseType" /> <description> Sets the default ease type for [PropertyTweener]s and [MethodTweener]s animated by this [Tween]. </description> </method> <method name="set_loops"> <return type="Tween" /> <param index="0" name="loops" type="int" default="0" /> <description> Sets the number of times the tweening sequence will be repeated, i.e. [code]set_loops(2)[/code] will run the animation twice. Calling this method without arguments will make the [Tween] run infinitely, until either it is killed with [method kill], the [Tween]'s bound node is freed, or all the animated objects have been freed (which makes further animation impossible). [b]Warning:[/b] Make sure to always add some duration/delay when using infinite loops. To prevent the game freezing, 0-duration looped animations (e.g. a single [CallbackTweener] with no delay) are stopped after a small number of loops, which may produce unexpected results. If a [Tween]'s lifetime depends on some node, always use [method bind_node]. </description> </method> <method name="set_parallel"> <return type="Tween" /> <param index="0" name="parallel" type="bool" default="true" /> <description> If [param parallel] is [code]true[/code], the [Tweener]s appended after this method will by default run simultaneously, as opposed to sequentially. </description> </method> <method name="set_pause_mode"> <return type="Tween" /> <param index="0" name="mode" type="int" enum="Tween.TweenPauseMode" /> <description> Determines the behavior of the [Tween] when the [SceneTree] is paused. Check [enum TweenPauseMode] for options. Default value is [constant TWEEN_PAUSE_BOUND]. </description> </method> <method name="set_process_mode"> <return type="Tween" /> <param index="0" name="mode" type="int" enum="Tween.TweenProcessMode" /> <description> Determines whether the [Tween] should run during idle frame (see [method Node._process]) or physics frame (see [method Node._physics_process]. Default value is [constant TWEEN_PROCESS_IDLE]. </description> </method> <method name="set_speed_scale"> <return type="Tween" /> <param index="0" name="speed" type="float" /> <description> Scales the speed of tweening. This affects all [Tweener]s and their delays. </description> </method> <method name="set_trans"> <return type="Tween" /> <param index="0" name="trans" type="int" enum="Tween.TransitionType" /> <description> Sets the default transition type for [PropertyTweener]s and [MethodTweener]s animated by this [Tween]. </description> </method> <method name="stop"> <return type="void" /> <description> Stops the tweening and resets the [Tween] to its initial state. This will not remove any appended [Tweener]s. </description> </method> <method name="tween_callback"> <return type="CallbackTweener" /> <param index="0" name="callback" type="Callable" /> <description> Creates and appends a [CallbackTweener]. This method can be used to call an arbitrary method in any object. Use [method Callable.bind] to bind additional arguments for the call. Example: object that keeps shooting every 1 second. [codeblock] var tween = get_tree().create_tween().set_loops() tween.tween_callback(shoot).set_delay(1) [/codeblock] Example: turning a sprite red and then blue, with 2 second delay. [codeblock] var tween = get_tree().create_tween() tween.tween_callback($Sprite.set_modulate.bind(Color.red)).set_delay(2) tween.tween_callback($Sprite.set_modulate.bind(Color.blue)).set_delay(2) [/codeblock] </description> </method> <method name="tween_interval"> <return type="IntervalTweener" /> <param index="0" name="time" type="float" /> <description> Creates and appends an [IntervalTweener]. This method can be used to create delays in the tween animation, as an alternative to using the delay in other [Tweener]s, or when there's no animation (in which case the [Tween] acts as a timer). [param time] is the length of the interval, in seconds. Example: creating an interval in code execution. [codeblock] # ... some code await create_tween().tween_interval(2).finished # ... more code [/codeblock] Example: creating an object that moves back and forth and jumps every few seconds. [codeblock] var tween = create_tween().set_loops() tween.tween_property($Sprite, "position:x", 200.0, 1).as_relative() tween.tween_callback(jump) tween.tween_interval(2) tween.tween_property($Sprite, "position:x", -200.0, 1).as_relative() tween.tween_callback(jump) tween.tween_interval(2) [/codeblock] </description> </method> <method name="tween_method"> <return type="MethodTweener" /> <param index="0" name="method" type="Callable" /> <param index="1" name="from" type="Variant" /> <param index="2" name="to" type="Variant" /> <param index="3" name="duration" type="float" /> <description> Creates and appends a [MethodTweener]. This method is similar to a combination of [method tween_callback] and [method tween_property]. It calls a method over time with a tweened value provided as an argument. The value is tweened between [param from] and [param to] over the time specified by [param duration], in seconds. Use [method Callable.bind] to bind additional arguments for the call. You can use [method MethodTweener.set_ease] and [method MethodTweener.set_trans] to tweak the easing and transition of the value or [method MethodTweener.set_delay] to delay the tweening. Example: making a 3D object look from one point to another point. [codeblock] var tween = create_tween() tween.tween_method(look_at.bind(Vector3.UP), Vector3(-1, 0, -1), Vector3(1, 0, -1), 1) # The look_at() method takes up vector as second argument. [/codeblock] Example: setting a text of a [Label], using an intermediate method and after a delay. [codeblock] func _ready(): var tween = create_tween() tween.tween_method(set_label_text, 0, 10, 1).set_delay(1) func set_label_text(value: int): $Label.text = "Counting " + str(value) [/codeblock] </description> </method> <method name="tween_property"> <return type="PropertyTweener" /> <param index="0" name="object" type="Object" /> <param index="1" name="property" type="NodePath" /> <param index="2" name="final_val" type="Variant" /> <param index="3" name="duration" type="float" /> <description> Creates and appends a [PropertyTweener]. This method tweens a [param property] of an [param object] between an initial value and [param final_val] in a span of time equal to [param duration], in seconds. The initial value by default is the property's value at the time the tweening of the [PropertyTweener] starts. For example: [codeblock] var tween = create_tween() tween.tween_property($Sprite, "position", Vector2(100, 200), 1) tween.tween_property($Sprite, "position", Vector2(200, 300), 1) [/codeblock] will move the sprite to position (100, 200) and then to (200, 300). If you use [method PropertyTweener.from] or [method PropertyTweener.from_current], the starting position will be overwritten by the given value instead. See other methods in [PropertyTweener] to see how the tweening can be tweaked further. [b]Note:[/b] You can find the correct property name by hovering over the property in the Inspector. You can also provide the components of a property directly by using [code]"property:component"[/code] (eg. [code]position:x[/code]), where it would only apply to that particular component. Example: moving object twice from the same position, with different transition types. [codeblock] var tween = create_tween() tween.tween_property($Sprite, "position", Vector2.RIGHT * 300, 1).as_relative().set_trans(Tween.TRANS_SINE) tween.tween_property($Sprite, "position", Vector2.RIGHT * 300, 1).as_relative().from_current().set_trans(Tween.TRANS_EXPO) [/codeblock] </description> </method> </methods> <signals> <signal name="finished"> <description> Emitted when the [Tween] has finished all tweening. Never emitted when the [Tween] is set to infinite looping (see [method set_loops]). [b]Note:[/b] The [Tween] is removed (invalidated) in the next processing frame after this signal is emitted. Calling [method stop] inside the signal callback will prevent the [Tween] from being removed. </description> </signal> <signal name="loop_finished"> <param index="0" name="loop_count" type="int" /> <description> Emitted when a full loop is complete (see [method set_loops]), providing the loop index. This signal is not emitted after the final loop, use [signal finished] instead for this case. </description> </signal> <signal name="step_finished"> <param index="0" name="idx" type="int" /> <description> Emitted when one step of the [Tween] is complete, providing the step index. One step is either a single [Tweener] or a group of [Tweener]s running in parallel. </description> </signal> </signals> <constants> <constant name="TWEEN_PROCESS_PHYSICS" value="0" enum="TweenProcessMode"> The [Tween] updates during the physics frame. </constant> <constant name="TWEEN_PROCESS_IDLE" value="1" enum="TweenProcessMode"> The [Tween] updates during the idle frame. </constant> <constant name="TWEEN_PAUSE_BOUND" value="0" enum="TweenPauseMode"> If the [Tween] has a bound node, it will process when that node can process (see [member Node.process_mode]). Otherwise it's the same as [constant TWEEN_PAUSE_STOP]. </constant> <constant name="TWEEN_PAUSE_STOP" value="1" enum="TweenPauseMode"> If [SceneTree] is paused, the [Tween] will also pause. </constant> <constant name="TWEEN_PAUSE_PROCESS" value="2" enum="TweenPauseMode"> The [Tween] will process regardless of whether [SceneTree] is paused. </constant> <constant name="TRANS_LINEAR" value="0" enum="TransitionType"> The animation is interpolated linearly. </constant> <constant name="TRANS_SINE" value="1" enum="TransitionType"> The animation is interpolated using a sine function. </constant> <constant name="TRANS_QUINT" value="2" enum="TransitionType"> The animation is interpolated with a quintic (to the power of 5) function. </constant> <constant name="TRANS_QUART" value="3" enum="TransitionType"> The animation is interpolated with a quartic (to the power of 4) function. </constant> <constant name="TRANS_QUAD" value="4" enum="TransitionType"> The animation is interpolated with a quadratic (to the power of 2) function. </constant> <constant name="TRANS_EXPO" value="5" enum="TransitionType"> The animation is interpolated with an exponential (to the power of x) function. </constant> <constant name="TRANS_ELASTIC" value="6" enum="TransitionType"> The animation is interpolated with elasticity, wiggling around the edges. </constant> <constant name="TRANS_CUBIC" value="7" enum="TransitionType"> The animation is interpolated with a cubic (to the power of 3) function. </constant> <constant name="TRANS_CIRC" value="8" enum="TransitionType"> The animation is interpolated with a function using square roots. </constant> <constant name="TRANS_BOUNCE" value="9" enum="TransitionType"> The animation is interpolated by bouncing at the end. </constant> <constant name="TRANS_BACK" value="10" enum="TransitionType"> The animation is interpolated backing out at ends. </constant> <constant name="EASE_IN" value="0" enum="EaseType"> The interpolation starts slowly and speeds up towards the end. </constant> <constant name="EASE_OUT" value="1" enum="EaseType"> The interpolation starts quickly and slows down towards the end. </constant> <constant name="EASE_IN_OUT" value="2" enum="EaseType"> A combination of [constant EASE_IN] and [constant EASE_OUT]. The interpolation is slowest at both ends. </constant> <constant name="EASE_OUT_IN" value="3" enum="EaseType"> A combination of [constant EASE_IN] and [constant EASE_OUT]. The interpolation is fastest at both ends. </constant> </constants> </class>