<?xml version="1.0" encoding="UTF-8" ?> <class name="Transform3D" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> 3D transformation (3×4 matrix). </brief_description> <description> 3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column). For more information, read the "Matrices and transforms" documentation article. </description> <tutorials> <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link> <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link> <link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link> <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link> <link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link> <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link> </tutorials> <constructors> <constructor name="Transform3D"> <return type="Transform3D" /> <description> Constructs a default-initialized [Transform3D] set to [constant IDENTITY]. </description> </constructor> <constructor name="Transform3D"> <return type="Transform3D" /> <param index="0" name="from" type="Transform3D" /> <description> Constructs a [Transform3D] as a copy of the given [Transform3D]. </description> </constructor> <constructor name="Transform3D"> <return type="Transform3D" /> <param index="0" name="basis" type="Basis" /> <param index="1" name="origin" type="Vector3" /> <description> Constructs a Transform3D from a [Basis] and [Vector3]. </description> </constructor> <constructor name="Transform3D"> <return type="Transform3D" /> <param index="0" name="from" type="Projection" /> <description> </description> </constructor> <constructor name="Transform3D"> <return type="Transform3D" /> <param index="0" name="x_axis" type="Vector3" /> <param index="1" name="y_axis" type="Vector3" /> <param index="2" name="z_axis" type="Vector3" /> <param index="3" name="origin" type="Vector3" /> <description> Constructs a Transform3D from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled). </description> </constructor> </constructors> <methods> <method name="affine_inverse" qualifiers="const"> <return type="Transform3D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation. </description> </method> <method name="interpolate_with" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="xform" type="Transform3D" /> <param index="1" name="weight" type="float" /> <description> Returns a transform interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0). </description> </method> <method name="inverse" qualifiers="const"> <return type="Transform3D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling). </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="xform" type="Transform3D" /> <description> Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this transform is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="looking_at" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="target" type="Vector3" /> <param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" /> <description> Returns a copy of the transform rotated such that the forward axis (-Z) points towards the [param target] position. The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting transform is orthonormalized. The existing rotation, scale, and skew information from the original transform is discarded. The [param target] and [param up] vectors cannot be zero, cannot be parallel to each other, and are defined in global/parent space. </description> </method> <method name="orthonormalized" qualifiers="const"> <return type="Transform3D" /> <description> Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1). </description> </method> <method name="rotated" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="axis" type="Vector3" /> <param index="1" name="angle" type="float" /> <description> Returns a copy of the transform rotated around the given [param axis] by the given [param angle] (in radians). The [param axis] must be a normalized vector. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="rotated_local" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="axis" type="Vector3" /> <param index="1" name="angle" type="float" /> <description> Returns a copy of the transform rotated around the given [param axis] by the given [param angle] (in radians). The [param axis] must be a normalized vector. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="scaled" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="scale" type="Vector3" /> <description> Returns a copy of the transform scaled by the given [param scale] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="scaled_local" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="scale" type="Vector3" /> <description> Returns a copy of the transform scaled by the given [param scale] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="translated" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="offset" type="Vector3" /> <description> Returns a copy of the transform translated by the given [param offset]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="translated_local" qualifiers="const"> <return type="Transform3D" /> <param index="0" name="offset" type="Vector3" /> <description> Returns a copy of the transform translated by the given [param offset]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code]. This can be seen as transforming with respect to the local frame. </description> </method> </methods> <members> <member name="basis" type="Basis" setter="" getter="" default="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)"> The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object. </member> <member name="origin" type="Vector3" setter="" getter="" default="Vector3(0, 0, 0)"> The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code]. </member> </members> <constants> <constant name="IDENTITY" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)"> [Transform3D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation. </constant> <constant name="FLIP_X" value="Transform3D(-1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)"> [Transform3D] with mirroring applied perpendicular to the YZ plane. </constant> <constant name="FLIP_Y" value="Transform3D(1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0)"> [Transform3D] with mirroring applied perpendicular to the XZ plane. </constant> <constant name="FLIP_Z" value="Transform3D(1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0)"> [Transform3D] with mirroring applied perpendicular to the XY plane. </constant> </constants> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="Transform3D" /> <description> Returns [code]true[/code] if the transforms are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="AABB" /> <param index="0" name="right" type="AABB" /> <description> Transforms (multiplies) the [AABB] by the given [Transform3D] matrix. </description> </operator> <operator name="operator *"> <return type="PackedVector3Array" /> <param index="0" name="right" type="PackedVector3Array" /> <description> Transforms (multiplies) each element of the [Vector3] array by the given [Transform3D] matrix. </description> </operator> <operator name="operator *"> <return type="Plane" /> <param index="0" name="right" type="Plane" /> <description> Transforms (multiplies) the [Plane] by the given [Transform3D] transformation matrix. </description> </operator> <operator name="operator *"> <return type="Transform3D" /> <param index="0" name="right" type="Transform3D" /> <description> Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent). </description> </operator> <operator name="operator *"> <return type="Vector3" /> <param index="0" name="right" type="Vector3" /> <description> Transforms (multiplies) the [Vector3] by the given [Transform3D] matrix. </description> </operator> <operator name="operator *"> <return type="Transform3D" /> <param index="0" name="right" type="float" /> <description> This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly. </description> </operator> <operator name="operator *"> <return type="Transform3D" /> <param index="0" name="right" type="int" /> <description> This operator multiplies all components of the [Transform3D], including the origin vector, which scales it uniformly. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="Transform3D" /> <description> Returns [code]true[/code] if the transforms are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> </operators> </class>