<?xml version="1.0" encoding="UTF-8" ?> <class name="Transform" version="4.0"> <brief_description> 3D transformation (3×4 matrix). </brief_description> <description> Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [member basis] and an [member origin]. It is similar to a 3×4 matrix. </description> <tutorials> <link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link> <link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link> </tutorials> <methods> <method name="Transform"> <return type="Transform"> </return> <argument index="0" name="x_axis" type="Vector3"> </argument> <argument index="1" name="y_axis" type="Vector3"> </argument> <argument index="2" name="z_axis" type="Vector3"> </argument> <argument index="3" name="origin" type="Vector3"> </argument> <description> Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled). </description> </method> <method name="Transform"> <return type="Transform"> </return> <argument index="0" name="basis" type="Basis"> </argument> <argument index="1" name="origin" type="Vector3"> </argument> <description> Constructs the Transform from a [Basis] and [Vector3]. </description> </method> <method name="Transform"> <return type="Transform"> </return> <argument index="0" name="from" type="Transform2D"> </argument> <description> Constructs the Transform from a [Transform2D]. </description> </method> <method name="Transform"> <return type="Transform"> </return> <argument index="0" name="from" type="Quat"> </argument> <description> Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0). </description> </method> <method name="Transform"> <return type="Transform"> </return> <argument index="0" name="from" type="Basis"> </argument> <description> Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0). </description> </method> <method name="affine_inverse"> <return type="Transform"> </return> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation. </description> </method> <method name="interpolate_with"> <return type="Transform"> </return> <argument index="0" name="transform" type="Transform"> </argument> <argument index="1" name="weight" type="float"> </argument> <description> Interpolates the transform to other Transform by weight amount (0-1). </description> </method> <method name="inverse"> <return type="Transform"> </return> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling). </description> </method> <method name="is_equal_approx"> <return type="bool"> </return> <argument index="0" name="transform" type="Transform"> </argument> <description> Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="looking_at"> <return type="Transform"> </return> <argument index="0" name="target" type="Vector3"> </argument> <argument index="1" name="up" type="Vector3"> </argument> <description> Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position. The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors. Operations take place in global space. </description> </method> <method name="orthonormalized"> <return type="Transform"> </return> <description> Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors. </description> </method> <method name="rotated"> <return type="Transform"> </return> <argument index="0" name="axis" type="Vector3"> </argument> <argument index="1" name="phi" type="float"> </argument> <description> Rotates the transform around the given axis by the given angle (in radians), using matrix multiplication. The axis must be a normalized vector. </description> </method> <method name="scaled"> <return type="Transform"> </return> <argument index="0" name="scale" type="Vector3"> </argument> <description> Scales basis and origin of the transform by the given scale factor, using matrix multiplication. </description> </method> <method name="translated"> <return type="Transform"> </return> <argument index="0" name="offset" type="Vector3"> </argument> <description> Translates the transform by the given offset, relative to the transform's basis vectors. Unlike [method rotated] and [method scaled], this does not use matrix multiplication. </description> </method> <method name="xform"> <return type="Variant"> </return> <argument index="0" name="v" type="Variant"> </argument> <description> Transforms the given [Vector3], [Plane], [AABB], or [PackedVector3Array] by this transform. </description> </method> <method name="xform_inv"> <return type="Variant"> </return> <argument index="0" name="v" type="Variant"> </argument> <description> Inverse-transforms the given [Vector3], [Plane], [AABB], or [PackedVector3Array] by this transform. </description> </method> </methods> <members> <member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )"> The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object. </member> <member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )"> The translation offset of the transform. </member> </members> <constants> <constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation. </constant> <constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the YZ plane. </constant> <constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the XZ plane. </constant> <constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the XY plane. </constant> </constants> </class>