<?xml version="1.0" encoding="UTF-8" ?> <class name="Transform" version="4.0"> <brief_description> 3D transformation (3×4 matrix). </brief_description> <description> 3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column). For more information, read the "Matrices and transforms" documentation article. </description> <tutorials> <link title="Math tutorial index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link> <link title="Matrices and transforms">https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link> <link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link> <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link> <link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link> <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link> </tutorials> <methods> <method name="Transform" qualifiers="constructor"> <return type="Transform"> </return> <description> Constructs a default-initialized [Transform] set to [constant IDENTITY]. </description> </method> <method name="Transform" qualifiers="constructor"> <return type="Transform"> </return> <argument index="0" name="from" type="Transform"> </argument> <description> Constructs a [Transform] as a copy of the given [Transform]. </description> </method> <method name="Transform" qualifiers="constructor"> <return type="Transform"> </return> <argument index="0" name="basis" type="Basis"> </argument> <argument index="1" name="origin" type="Vector3"> </argument> <description> Constructs a Transform from a [Basis] and [Vector3]. </description> </method> <method name="Transform" qualifiers="constructor"> <return type="Transform"> </return> <argument index="0" name="x_axis" type="Vector3"> </argument> <argument index="1" name="y_axis" type="Vector3"> </argument> <argument index="2" name="z_axis" type="Vector3"> </argument> <argument index="3" name="origin" type="Vector3"> </argument> <description> Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled). </description> </method> <method name="affine_inverse" qualifiers="const"> <return type="Transform"> </return> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation. </description> </method> <method name="interpolate_with" qualifiers="const"> <return type="Transform"> </return> <argument index="0" name="xform" type="Transform"> </argument> <argument index="1" name="weight" type="float"> </argument> <description> Interpolates the transform to other Transform by weight amount (on the range of 0.0 to 1.0). </description> </method> <method name="inverse" qualifiers="const"> <return type="Transform"> </return> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling). </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool"> </return> <argument index="0" name="xform" type="Transform"> </argument> <description> Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="looking_at" qualifiers="const"> <return type="Transform"> </return> <argument index="0" name="target" type="Vector3"> </argument> <argument index="1" name="up" type="Vector3" default="Vector3( 0, 1, 0 )"> </argument> <description> Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position. The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors. Operations take place in global space. </description> </method> <method name="operator !=" qualifiers="operator"> <return type="bool"> </return> <argument index="0" name="right" type="Transform"> </argument> <description> </description> </method> <method name="operator *" qualifiers="operator"> <return type="PackedVector3Array"> </return> <argument index="0" name="right" type="PackedVector3Array"> </argument> <description> </description> </method> <method name="operator *" qualifiers="operator"> <return type="Transform"> </return> <argument index="0" name="right" type="Transform"> </argument> <description> </description> </method> <method name="operator *" qualifiers="operator"> <return type="AABB"> </return> <argument index="0" name="right" type="AABB"> </argument> <description> </description> </method> <method name="operator *" qualifiers="operator"> <return type="Vector3"> </return> <argument index="0" name="right" type="Vector3"> </argument> <description> </description> </method> <method name="operator ==" qualifiers="operator"> <return type="bool"> </return> <argument index="0" name="right" type="Transform"> </argument> <description> </description> </method> <method name="orthonormalized" qualifiers="const"> <return type="Transform"> </return> <description> Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors. </description> </method> <method name="rotated" qualifiers="const"> <return type="Transform"> </return> <argument index="0" name="axis" type="Vector3"> </argument> <argument index="1" name="phi" type="float"> </argument> <description> Rotates the transform around the given axis by the given angle (in radians), using matrix multiplication. The axis must be a normalized vector. </description> </method> <method name="scaled" qualifiers="const"> <return type="Transform"> </return> <argument index="0" name="scale" type="Vector3"> </argument> <description> Scales basis and origin of the transform by the given scale factor, using matrix multiplication. </description> </method> <method name="translated" qualifiers="const"> <return type="Transform"> </return> <argument index="0" name="offset" type="Vector3"> </argument> <description> Translates the transform by the given offset, relative to the transform's basis vectors. Unlike [method rotated] and [method scaled], this does not use matrix multiplication. </description> </method> </methods> <members> <member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )"> The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object. </member> <member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )"> The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code]. </member> </members> <constants> <constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation. </constant> <constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the YZ plane. </constant> <constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the XZ plane. </constant> <constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )"> [Transform] with mirroring applied perpendicular to the XY plane. </constant> </constants> </class>