<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform" version="4.0">
	<brief_description>
		3D transformation (3×4 matrix).
	</brief_description>
	<description>
		3×4 matrix (3 rows, 4 columns) used for 3D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of a [member basis] (first 3 columns) and a [Vector3] for the [member origin] (last column).
		For more information, read the "Matrices and transforms" documentation article.
	</description>
	<tutorials>
		<link title="Math tutorial index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
		<link title="Matrices and transforms">https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html</link>
		<link title="Using 3D transforms">https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
		<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
		<link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
		<link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
	</tutorials>
	<methods>
		<method name="Transform" qualifiers="constructor">
			<return type="Transform">
			</return>
			<description>
				Constructs a default-initialized [Transform] set to [constant IDENTITY].
			</description>
		</method>
		<method name="Transform" qualifiers="constructor">
			<return type="Transform">
			</return>
			<argument index="0" name="from" type="Transform">
			</argument>
			<description>
				Constructs a [Transform] as a copy of the given [Transform].
			</description>
		</method>
		<method name="Transform" qualifiers="constructor">
			<return type="Transform">
			</return>
			<argument index="0" name="basis" type="Basis">
			</argument>
			<argument index="1" name="origin" type="Vector3">
			</argument>
			<description>
				Constructs a Transform from a [Basis] and [Vector3].
			</description>
		</method>
		<method name="Transform" qualifiers="constructor">
			<return type="Transform">
			</return>
			<argument index="0" name="x_axis" type="Vector3">
			</argument>
			<argument index="1" name="y_axis" type="Vector3">
			</argument>
			<argument index="2" name="z_axis" type="Vector3">
			</argument>
			<argument index="3" name="origin" type="Vector3">
			</argument>
			<description>
				Constructs a Transform from four [Vector3] values (matrix columns). Each axis corresponds to local basis vectors (some of which may be scaled).
			</description>
		</method>
		<method name="affine_inverse">
			<return type="Transform">
			</return>
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
			</description>
		</method>
		<method name="interpolate_with">
			<return type="Transform">
			</return>
			<argument index="0" name="xform" type="Transform">
			</argument>
			<argument index="1" name="weight" type="float">
			</argument>
			<description>
				Interpolates the transform to other Transform by weight amount (on the range of 0.0 to 1.0).
			</description>
		</method>
		<method name="inverse">
			<return type="Transform">
			</return>
			<description>
				Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
			</description>
		</method>
		<method name="is_equal_approx">
			<return type="bool">
			</return>
			<argument index="0" name="xform" type="Transform">
			</argument>
			<description>
				Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
			</description>
		</method>
		<method name="looking_at">
			<return type="Transform">
			</return>
			<argument index="0" name="target" type="Vector3">
			</argument>
			<argument index="1" name="up" type="Vector3">
			</argument>
			<description>
				Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
				The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
				Operations take place in global space.
			</description>
		</method>
		<method name="operator !=" qualifiers="operator">
			<return type="bool">
			</return>
			<argument index="0" name="right" type="Transform">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="PackedVector3Array">
			</return>
			<argument index="0" name="right" type="PackedVector3Array">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="Transform">
			</return>
			<argument index="0" name="right" type="Transform">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="AABB">
			</return>
			<argument index="0" name="right" type="AABB">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator *" qualifiers="operator">
			<return type="Vector3">
			</return>
			<argument index="0" name="right" type="Vector3">
			</argument>
			<description>
			</description>
		</method>
		<method name="operator ==" qualifiers="operator">
			<return type="bool">
			</return>
			<argument index="0" name="right" type="Transform">
			</argument>
			<description>
			</description>
		</method>
		<method name="orthonormalized">
			<return type="Transform">
			</return>
			<description>
				Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
			</description>
		</method>
		<method name="rotated">
			<return type="Transform">
			</return>
			<argument index="0" name="axis" type="Vector3">
			</argument>
			<argument index="1" name="phi" type="float">
			</argument>
			<description>
				Rotates the transform around the given axis by the given angle (in radians), using matrix multiplication. The axis must be a normalized vector.
			</description>
		</method>
		<method name="scaled">
			<return type="Transform">
			</return>
			<argument index="0" name="scale" type="Vector3">
			</argument>
			<description>
				Scales basis and origin of the transform by the given scale factor, using matrix multiplication.
			</description>
		</method>
		<method name="translated">
			<return type="Transform">
			</return>
			<argument index="0" name="offset" type="Vector3">
			</argument>
			<description>
				Translates the transform by the given offset, relative to the transform's basis vectors.
				Unlike [method rotated] and [method scaled], this does not use matrix multiplication.
			</description>
		</method>
	</methods>
	<members>
		<member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
			The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
		</member>
		<member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )">
			The translation offset of the transform (column 3, the fourth column). Equivalent to array index [code]3[/code].
		</member>
	</members>
	<constants>
		<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
			[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
		</constant>
		<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
			[Transform] with mirroring applied perpendicular to the YZ plane.
		</constant>
		<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )">
			[Transform] with mirroring applied perpendicular to the XZ plane.
		</constant>
		<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )">
			[Transform] with mirroring applied perpendicular to the XY plane.
		</constant>
	</constants>
</class>