<?xml version="1.0" encoding="UTF-8" ?> <class name="Quat" category="Built-In Types" version="3.2"> <brief_description> Quaternion. </brief_description> <description> A unit quaternion used for representing 3D rotations. It is similar to [Basis], which implements matrix representation of rotations, and can be parametrized using both an axis-angle pair or Euler angles. But due to its compactness and the way it is stored in memory, certain operations (obtaining axis-angle and performing SLERP, in particular) are more efficient and robust against floating-point errors. Quaternions need to be (re)normalized. </description> <tutorials> <link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html#interpolating-with-quaternions</link> </tutorials> <methods> <method name="Quat"> <return type="Quat"> </return> <argument index="0" name="from" type="Basis"> </argument> <description> Returns the rotation matrix corresponding to the given quaternion. </description> </method> <method name="Quat"> <return type="Quat"> </return> <argument index="0" name="euler" type="Vector3"> </argument> <description> Returns a quaternion that will perform a rotation specified by Euler angles (in the YXZ convention: first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). </description> </method> <method name="Quat"> <return type="Quat"> </return> <argument index="0" name="axis" type="Vector3"> </argument> <argument index="1" name="angle" type="float"> </argument> <description> Returns a quaternion that will rotate around the given axis by the specified angle. The axis must be a normalized vector. </description> </method> <method name="Quat"> <return type="Quat"> </return> <argument index="0" name="x" type="float"> </argument> <argument index="1" name="y" type="float"> </argument> <argument index="2" name="z" type="float"> </argument> <argument index="3" name="w" type="float"> </argument> <description> Returns a quaternion defined by these values. </description> </method> <method name="cubic_slerp"> <return type="Quat"> </return> <argument index="0" name="b" type="Quat"> </argument> <argument index="1" name="pre_a" type="Quat"> </argument> <argument index="2" name="post_b" type="Quat"> </argument> <argument index="3" name="t" type="float"> </argument> <description> Performs a cubic spherical-linear interpolation with another quaternion. </description> </method> <method name="dot"> <return type="float"> </return> <argument index="0" name="b" type="Quat"> </argument> <description> Returns the dot product of two quaternions. </description> </method> <method name="get_euler"> <return type="Vector3"> </return> <description> Returns Euler angles (in the YXZ convention: first Z, then X, and Y last) corresponding to the rotation represented by the unit quaternion. Returned vector contains the rotation angles in the format (X angle, Y angle, Z angle). </description> </method> <method name="inverse"> <return type="Quat"> </return> <description> Returns the inverse of the quaternion. </description> </method> <method name="is_normalized"> <return type="bool"> </return> <description> Returns whether the quaternion is normalized or not. </description> </method> <method name="length"> <return type="float"> </return> <description> Returns the length of the quaternion. </description> </method> <method name="length_squared"> <return type="float"> </return> <description> Returns the length of the quaternion, squared. </description> </method> <method name="normalized"> <return type="Quat"> </return> <description> Returns a copy of the quaternion, normalized to unit length. </description> </method> <method name="set_axis_angle"> <argument index="0" name="axis" type="Vector3"> </argument> <argument index="1" name="angle" type="float"> </argument> <description> Sets the quaternion to a rotation which rotates around axis by the specified angle, in radians. The axis must be a normalized vector. </description> </method> <method name="set_euler"> <argument index="0" name="euler" type="Vector3"> </argument> <description> Sets the quaternion to a rotation specified by Euler angles (in the YXZ convention: first Z, then X, and Y last), given in the vector format as (X angle, Y angle, Z angle). </description> </method> <method name="slerp"> <return type="Quat"> </return> <argument index="0" name="b" type="Quat"> </argument> <argument index="1" name="t" type="float"> </argument> <description> Performs a spherical-linear interpolation with another quaternion. </description> </method> <method name="slerpni"> <return type="Quat"> </return> <argument index="0" name="b" type="Quat"> </argument> <argument index="1" name="t" type="float"> </argument> <description> Performs a spherical-linear interpolation with another quaterion without checking if the rotation path is not bigger than 90°. </description> </method> <method name="xform"> <return type="Vector3"> </return> <argument index="0" name="v" type="Vector3"> </argument> <description> Transforms the vector [code]v[/code] by this quaternion. </description> </method> </methods> <members> <member name="w" type="float" setter="" getter="" default="1.0"> W component of the quaternion. </member> <member name="x" type="float" setter="" getter="" default="0.0"> X component of the quaternion. </member> <member name="y" type="float" setter="" getter="" default="0.0"> Y component of the quaternion. </member> <member name="z" type="float" setter="" getter="" default="0.0"> Z component of the quaternion. </member> </members> <constants> <constant name="IDENTITY" value="Quat( 0, 0, 0, 1 )"> </constant> </constants> </class>