Most basic 3D game object, parent of all 3D-related nodes. Most basic 3D game object, with a 3D [Transform3D] and visibility settings. All other 3D game objects inherit from Node3D. Use [Node3D] as a parent node to move, scale, rotate and show/hide children in a 3D project. Affine operations (rotate, scale, translate) happen in parent's local coordinate system, unless the [Node3D] object is set as top-level. Affine operations in this coordinate system correspond to direct affine operations on the [Node3D]'s transform. The word local below refers to this coordinate system. The coordinate system that is attached to the [Node3D] object itself is referred to as object-local coordinate system. [b]Note:[/b] Unless otherwise specified, all methods that have angle parameters must have angles specified as [i]radians[/i]. To convert degrees to radians, use [method @GlobalScope.deg2rad]. https://docs.godotengine.org/en/latest/tutorials/3d/introduction_to_3d.html https://github.com/godotengine/godot-demo-projects/tree/master/3d Forces the transform to update. Transform changes in physics are not instant for performance reasons. Transforms are accumulated and then set. Use this if you need an up-to-date transform when doing physics operations. Returns the parent [Node3D], or an empty [Object] if no parent exists or parent is not of type [Node3D]. Returns the current [World3D] resource this [Node3D] node is registered to. Rotates the global (world) transformation around axis, a unit [Vector3], by specified angle in radians. The rotation axis is in global coordinate system. Scales the global (world) transformation by the given [Vector3] scale factors. Moves the global (world) transformation by [Vector3] offset. The offset is in global coordinate system. Disables rendering of this node. Changes [member visible] to [code]false[/code]. Returns whether node notifies about its local transformation changes. [Node3D] will not propagate this by default. Returns whether this node uses a scale of [code](1, 1, 1)[/code] or its local transformation scale. Returns whether the node notifies about its global and local transformation changes. [Node3D] will not propagate this by default. Returns [code]true[/code] if the node is present in the [SceneTree], its [member visible] property is [code]true[/code] and all its antecedents are also visible. If any antecedent is hidden, this node will not be visible in the scene tree. Rotates itself so that the local -Z axis points towards the [code]target[/code] position. The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors. Operations take place in global space. Moves the node to the specified [code]position[/code], and then rotates itself to point toward the [code]target[/code] as per [method look_at]. Operations take place in global space. Resets this node's transformations (like scale, skew and taper) preserving its rotation and translation by performing Gram-Schmidt orthonormalization on this node's [Transform3D]. Rotates the local transformation around axis, a unit [Vector3], by specified angle in radians. Rotates the local transformation around axis, a unit [Vector3], by specified angle in radians. The rotation axis is in object-local coordinate system. Rotates the local transformation around the X axis by angle in radians. Rotates the local transformation around the Y axis by angle in radians. Rotates the local transformation around the Z axis by angle in radians. Scales the local transformation by given 3D scale factors in object-local coordinate system. Sets whether the node uses a scale of [code](1, 1, 1)[/code] or its local transformation scale. Changes to the local transformation scale are preserved. Reset all transformations for this node (sets its [Transform3D] to the identity matrix). Sets whether the node ignores notification that its transformation (global or local) changed. Sets whether the node notifies about its local transformation changes. [Node3D] will not propagate this by default. Sets whether the node notifies about its global and local transformation changes. [Node3D] will not propagate this by default, unless it is in the editor context and it has a valid gizmo. Enables rendering of this node. Changes [member visible] to [code]true[/code]. Transforms [code]local_point[/code] from this node's local space to world space. Transforms [code]global_point[/code] from world space to this node's local space. Changes the node's position by the given offset [Vector3]. Note that the translation [code]offset[/code] is affected by the node's scale, so if scaled by e.g. [code](10, 1, 1)[/code], a translation by an offset of [code](2, 0, 0)[/code] would actually add 20 ([code]2 * 10[/code]) to the X coordinate. Changes the node's position by the given offset [Vector3] in local space. Updates the [Node3DGizmo] of this node. The [Node3DGizmo] for this node. Used for example in [EditorNode3DGizmo] as custom visualization and editing handles in Editor. World3D space (global) [Transform3D] of this node. Local position or translation of this node relative to the parent. This is equivalent to [code]transform.origin[/code]. Rotation part of the local transformation in radians, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle). [b]Note:[/b] In the mathematical sense, rotation is a matrix and not a vector. The three Euler angles, which are the three independent parameters of the Euler-angle parametrization of the rotation matrix, are stored in a [Vector3] data structure not because the rotation is a vector, but only because [Vector3] exists as a convenient data-structure to store 3 floating-point numbers. Therefore, applying affine operations on the rotation "vector" is not meaningful. Rotation part of the local transformation in degrees, specified in terms of YXZ-Euler angles in the format (X angle, Y angle, Z angle). Scale part of the local transformation. If [code]true[/code], the node will not inherit its transformations from its parent. Node transformations are only in global space. Local space [Transform3D] of this node, with respect to the parent node. Defines the visibility range parent for this node and its subtree. The visibility parent must be a GeometryInstance3D. Any visual instance will only be visible if the visibility parent (and all of its visibility ancestors) is hidden by being closer to the camera than its own [member GeometryInstance3D.visibility_range_begin]. Nodes hidden via the [member Node3D.visible] property are essentially removed from the visibility dependency tree, so dependant instances will not take the hidden node or its ancestors into account. If [code]true[/code], this node is drawn. The node is only visible if all of its antecedents are visible as well (in other words, [method is_visible_in_tree] must return [code]true[/code]). Emitted when node visibility changes. Node3D nodes receives this notification when their global transform changes. This means that either the current or a parent node changed its transform. In order for [constant NOTIFICATION_TRANSFORM_CHANGED] to work, users first need to ask for it, with [method set_notify_transform]. The notification is also sent if the node is in the editor context and it has a valid gizmo. Node3D nodes receives this notification when they are registered to new [World3D] resource. Node3D nodes receives this notification when they are unregistered from current [World3D] resource. Node3D nodes receives this notification when their visibility changes.