3×3 matrix datatype.
3×3 matrix used for 3D rotation and scale. Almost always used as an orthogonal basis for a [Transform3D].
Contains 3 vector fields X, Y and Z as its columns, which are typically interpreted as the local basis vectors of a transformation. For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
Can also be accessed as array of 3D vectors. These vectors are normally orthogonal to each other, but are not necessarily normalized (due to scaling).
For more information, read the "Matrices and transforms" documentation article.
https://docs.godotengine.org/en/latest/tutorials/math/index.html
https://docs.godotengine.org/en/latest/tutorials/math/matrices_and_transforms.html
https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html
https://godotengine.org/asset-library/asset/584
https://godotengine.org/asset-library/asset/125
https://godotengine.org/asset-library/asset/676
https://godotengine.org/asset-library/asset/583
Constructs a default-initialized [Basis] set to [constant IDENTITY].
Constructs a [Basis] as a copy of the given [Basis].
Constructs a pure rotation basis matrix, rotated around the given [code]axis[/code] by [code]phi[/code], in radians. The axis must be a normalized vector.
Constructs a pure rotation basis matrix from the given Euler angles (in the YXZ convention: when *composing*, first Y, then X, and Z last), given in the vector format as (X angle, Y angle, Z angle).
Consider using the [Quaternion] constructor instead, which uses a quaternion instead of Euler angles.
Constructs a pure rotation basis matrix from the given quaternion.
Constructs a basis matrix from 3 axis vectors (matrix columns).
Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale.
A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
Returns the basis's rotation in the form of Euler angles (in the YXZ convention: when decomposing, first Z, then X, and Y last). The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles.
This function considers a discretization of rotations into 24 points on unit sphere, lying along the vectors (x,y,z) with each component being either -1, 0, or 1, and returns the index of the point best representing the orientation of the object. It is mainly used by the [GridMap] editor. For further details, refer to the Godot source code.
Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
Returns the inverse of the matrix.
Returns [code]true[/code] if this basis and [code]b[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
Creates a Basis with a rotation such that the forward axis (-Z) points towards the [code]target[/code] position.
The up axis (+Y) points as close to the [code]up[/code] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [code]target[/code] and [code]up[/code] vectors cannot be zero, and cannot be parallel to each other.
This operator multiplies all components of the [Basis], which scales it uniformly.
This operator multiplies all components of the [Basis], which scales it uniformly.
Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
Introduce an additional rotation around the given axis by phi (radians). The axis must be a normalized vector.
Introduce an additional scaling specified by the given 3D scaling factor.
Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
Transposed dot product with the X axis of the matrix.
Transposed dot product with the Y axis of the matrix.
Transposed dot product with the Z axis of the matrix.
Returns the transposed version of the matrix.
The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
The basis matrix's Z vector (column 2). Equivalent to array index [code]2[/code].
The identity basis, with no rotation or scaling applied.
This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
The basis that will flip something along the X axis when used in a transformation.
The basis that will flip something along the Y axis when used in a transformation.
The basis that will flip something along the Z axis when used in a transformation.