/*************************************************************************/ /* variant_utility.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "variant.h" #include "core/core_string_names.h" #include "core/io/marshalls.h" #include "core/object/ref_counted.h" #include "core/os/os.h" #include "core/templates/oa_hash_map.h" #include "core/templates/rid.h" #include "core/templates/rid_owner.h" #include "core/variant/binder_common.h" #include "core/variant/variant_parser.h" struct VariantUtilityFunctions { // Math static inline double sin(double arg) { return Math::sin(arg); } static inline double cos(double arg) { return Math::cos(arg); } static inline double tan(double arg) { return Math::tan(arg); } static inline double sinh(double arg) { return Math::sinh(arg); } static inline double cosh(double arg) { return Math::cosh(arg); } static inline double tanh(double arg) { return Math::tanh(arg); } static inline double asin(double arg) { return Math::asin(arg); } static inline double acos(double arg) { return Math::acos(arg); } static inline double atan(double arg) { return Math::atan(arg); } static inline double atan2(double y, double x) { return Math::atan2(y, x); } static inline double sqrt(double x) { return Math::sqrt(x); } static inline double fmod(double b, double r) { return Math::fmod(b, r); } static inline double fposmod(double b, double r) { return Math::fposmod(b, r); } static inline int64_t posmod(int64_t b, int64_t r) { return Math::posmod(b, r); } static inline Variant floor(Variant x, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; switch (x.get_type()) { case Variant::INT: { return VariantInternalAccessor::get(&x); } break; case Variant::FLOAT: { return Math::floor(VariantInternalAccessor::get(&x)); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&x).floor(); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&x).floor(); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&x).floor(); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double floorf(double x) { return Math::floor(x); } static inline int floori(double x) { return int(x); } static inline Variant ceil(Variant x, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; switch (x.get_type()) { case Variant::INT: { return VariantInternalAccessor::get(&x); } break; case Variant::FLOAT: { return Math::ceil(VariantInternalAccessor::get(&x)); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&x).ceil(); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&x).ceil(); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&x).ceil(); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double ceilf(double x) { return Math::ceil(x); } static inline int ceili(double x) { return int(Math::ceil(x)); } static inline Variant round(Variant x, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; switch (x.get_type()) { case Variant::INT: { return VariantInternalAccessor::get(&x); } break; case Variant::FLOAT: { return Math::round(VariantInternalAccessor::get(&x)); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&x).round(); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&x).round(); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&x).round(); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double roundf(double x) { return Math::round(x); } static inline int roundi(double x) { return int(Math::round(x)); } static inline Variant abs(const Variant &x, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; switch (x.get_type()) { case Variant::INT: { return ABS(VariantInternalAccessor::get(&x)); } break; case Variant::FLOAT: { return Math::absd(VariantInternalAccessor::get(&x)); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&x).abs(); } break; case Variant::VECTOR2I: { return VariantInternalAccessor::get(&x).abs(); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&x).abs(); } break; case Variant::VECTOR3I: { return VariantInternalAccessor::get(&x).abs(); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&x).abs(); } break; case Variant::VECTOR4I: { return VariantInternalAccessor::get(&x).abs(); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double absf(double x) { return Math::absd(x); } static inline int64_t absi(int64_t x) { return ABS(x); } static inline Variant sign(const Variant &x, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; switch (x.get_type()) { case Variant::INT: { return SIGN(VariantInternalAccessor::get(&x)); } break; case Variant::FLOAT: { return SIGN(VariantInternalAccessor::get(&x)); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&x).sign(); } break; case Variant::VECTOR2I: { return VariantInternalAccessor::get(&x).sign(); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&x).sign(); } break; case Variant::VECTOR3I: { return VariantInternalAccessor::get(&x).sign(); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&x).sign(); } break; case Variant::VECTOR4I: { return VariantInternalAccessor::get(&x).sign(); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double signf(double x) { return SIGN(x); } static inline int64_t signi(int64_t x) { return SIGN(x); } static inline double pow(double x, double y) { return Math::pow(x, y); } static inline double log(double x) { return Math::log(x); } static inline double exp(double x) { return Math::exp(x); } static inline bool is_nan(double x) { return Math::is_nan(x); } static inline bool is_inf(double x) { return Math::is_inf(x); } static inline bool is_equal_approx(double x, double y) { return Math::is_equal_approx(x, y); } static inline bool is_zero_approx(double x) { return Math::is_zero_approx(x); } static inline double ease(float x, float curve) { return Math::ease(x, curve); } static inline int step_decimals(float step) { return Math::step_decimals(step); } static inline double snapped(double value, double step) { return Math::snapped(value, step); } static inline Variant lerp(const Variant &from, const Variant &to, double weight, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; if (from.get_type() != to.get_type()) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; return Variant(); } switch (from.get_type()) { case Variant::FLOAT: { return lerpf(VariantInternalAccessor::get(&from), to, weight); } break; case Variant::VECTOR2: { return VariantInternalAccessor::get(&from).lerp(VariantInternalAccessor::get(&to), weight); } break; case Variant::VECTOR3: { return VariantInternalAccessor::get(&from).lerp(VariantInternalAccessor::get(&to), weight); } break; case Variant::VECTOR4: { return VariantInternalAccessor::get(&from).lerp(VariantInternalAccessor::get(&to), weight); } break; case Variant::QUATERNION: { return VariantInternalAccessor::get(&from).slerp(VariantInternalAccessor::get(&to), weight); } break; case Variant::BASIS: { return VariantInternalAccessor::get(&from).slerp(VariantInternalAccessor::get(&to), weight); } break; case Variant::COLOR: { return VariantInternalAccessor::get(&from).lerp(VariantInternalAccessor::get(&to), weight); } break; default: { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return Variant(); } } } static inline double lerpf(double from, double to, double weight) { return Math::lerp(from, to, weight); } static inline double cubic_interpolate(double from, double to, double pre, double post, double weight) { return Math::cubic_interpolate(from, to, pre, post, weight); } static inline double cubic_interpolate_angle(double from, double to, double pre, double post, double weight) { return Math::cubic_interpolate_angle(from, to, pre, post, weight); } static inline double cubic_interpolate_in_time(double from, double to, double pre, double post, double weight, double to_t, double pre_t, double post_t) { return Math::cubic_interpolate_in_time(from, to, pre, post, weight, to_t, pre_t, post_t); } static inline double cubic_interpolate_angle_in_time(double from, double to, double pre, double post, double weight, double to_t, double pre_t, double post_t) { return Math::cubic_interpolate_angle_in_time(from, to, pre, post, weight, to_t, pre_t, post_t); } static inline double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { return Math::bezier_interpolate(p_start, p_control_1, p_control_2, p_end, p_t); } static inline double lerp_angle(double from, double to, double weight) { return Math::lerp_angle(from, to, weight); } static inline double inverse_lerp(double from, double to, double weight) { return Math::inverse_lerp(from, to, weight); } static inline double remap(double value, double istart, double istop, double ostart, double ostop) { return Math::remap(value, istart, istop, ostart, ostop); } static inline double smoothstep(double from, double to, double val) { return Math::smoothstep(from, to, val); } static inline double move_toward(double from, double to, double delta) { return Math::move_toward(from, to, delta); } static inline double deg_to_rad(double angle_deg) { return Math::deg_to_rad(angle_deg); } static inline double rad_to_deg(double angle_rad) { return Math::rad_to_deg(angle_rad); } static inline double linear_to_db(double linear) { return Math::linear_to_db(linear); } static inline double db_to_linear(double db) { return Math::db_to_linear(db); } static inline Variant wrap(const Variant &p_x, const Variant &p_min, const Variant &p_max, Callable::CallError &r_error) { Variant::Type x_type = p_x.get_type(); if (x_type != Variant::INT && x_type != Variant::FLOAT) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = x_type; return Variant(); } Variant::Type min_type = p_min.get_type(); if (min_type != Variant::INT && min_type != Variant::FLOAT) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; r_error.expected = x_type; return Variant(); } Variant::Type max_type = p_max.get_type(); if (max_type != Variant::INT && max_type != Variant::FLOAT) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 2; r_error.expected = x_type; return Variant(); } Variant value; switch (x_type) { case Variant::INT: { if (x_type != min_type || x_type != max_type) { value = wrapf((double)p_x, (double)p_min, (double)p_max); } else { value = wrapi((int)p_x, (int)p_min, (int)p_max); } } break; case Variant::FLOAT: { value = wrapf((double)p_x, (double)p_min, (double)p_max); } break; default: break; } r_error.error = Callable::CallError::CALL_OK; return value; } static inline int64_t wrapi(int64_t value, int64_t min, int64_t max) { return Math::wrapi(value, min, max); } static inline double wrapf(double value, double min, double max) { return Math::wrapf(value, min, max); } static inline double pingpong(double value, double length) { return Math::pingpong(value, length); } static inline Variant max(const Variant **p_args, int p_argcount, Callable::CallError &r_error) { if (p_argcount < 2) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.expected = 2; return Variant(); } Variant base = *p_args[0]; Variant ret; for (int i = 1; i < p_argcount; i++) { bool valid; Variant::evaluate(Variant::OP_LESS, base, *p_args[i], ret, valid); if (!valid) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.expected = base.get_type(); r_error.argument = i; return Variant(); } if (ret.booleanize()) { base = *p_args[i]; } } r_error.error = Callable::CallError::CALL_OK; return base; } static inline double maxf(double x, double y) { return MAX(x, y); } static inline int64_t maxi(int64_t x, int64_t y) { return MAX(x, y); } static inline Variant min(const Variant **p_args, int p_argcount, Callable::CallError &r_error) { if (p_argcount < 2) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.expected = 2; return Variant(); } Variant base = *p_args[0]; Variant ret; for (int i = 1; i < p_argcount; i++) { bool valid; Variant::evaluate(Variant::OP_GREATER, base, *p_args[i], ret, valid); if (!valid) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.expected = base.get_type(); r_error.argument = i; return Variant(); } if (ret.booleanize()) { base = *p_args[i]; } } r_error.error = Callable::CallError::CALL_OK; return base; } static inline double minf(double x, double y) { return MIN(x, y); } static inline int64_t mini(int64_t x, int64_t y) { return MIN(x, y); } static inline Variant clamp(const Variant &x, const Variant &min, const Variant &max, Callable::CallError &r_error) { Variant value = x; Variant ret; bool valid; Variant::evaluate(Variant::OP_LESS, value, min, ret, valid); if (!valid) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.expected = value.get_type(); r_error.argument = 1; return Variant(); } if (ret.booleanize()) { value = min; } Variant::evaluate(Variant::OP_GREATER, value, max, ret, valid); if (!valid) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.expected = value.get_type(); r_error.argument = 2; return Variant(); } if (ret.booleanize()) { value = max; } r_error.error = Callable::CallError::CALL_OK; return value; } static inline double clampf(double x, double min, double max) { return CLAMP(x, min, max); } static inline int64_t clampi(int64_t x, int64_t min, int64_t max) { return CLAMP(x, min, max); } static inline int64_t nearest_po2(int64_t x) { return nearest_power_of_2_templated(uint64_t(x)); } // Random static inline void randomize() { Math::randomize(); } static inline int64_t randi() { return Math::rand(); } static inline double randf() { return Math::randf(); } static inline double randfn(double mean, double deviation) { return Math::randfn(mean, deviation); } static inline int64_t randi_range(int64_t from, int64_t to) { return Math::random((int32_t)from, (int32_t)to); } static inline double randf_range(double from, double to) { return Math::random(from, to); } static inline void seed(int64_t s) { return Math::seed(s); } static inline PackedInt64Array rand_from_seed(int64_t seed) { uint64_t s = seed; PackedInt64Array arr; arr.resize(2); arr.write[0] = Math::rand_from_seed(&s); arr.write[1] = s; return arr; } // Utility static inline Variant weakref(const Variant &obj, Callable::CallError &r_error) { if (obj.get_type() == Variant::OBJECT) { r_error.error = Callable::CallError::CALL_OK; if (obj.is_ref_counted()) { Ref wref = memnew(WeakRef); Ref r = obj; if (r.is_valid()) { wref->set_ref(r); } return wref; } else { Ref wref = memnew(WeakRef); Object *o = obj.get_validated_object(); if (o) { wref->set_obj(o); } return wref; } } else if (obj.get_type() == Variant::NIL) { r_error.error = Callable::CallError::CALL_OK; Ref wref = memnew(WeakRef); return wref; } else { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::OBJECT; return Variant(); } } static inline int64_t _typeof(const Variant &obj) { return obj.get_type(); } static inline String str(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; return String(); } String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } r_error.error = Callable::CallError::CALL_OK; return s; } static inline String error_string(Error error) { if (error < 0 || error >= ERR_MAX) { return String("(invalid error code)"); } return String(error_names[error]); } static inline void print(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } print_line(s); r_error.error = Callable::CallError::CALL_OK; } static inline void print_rich(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } print_line_rich(s); r_error.error = Callable::CallError::CALL_OK; } static inline void print_verbose(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { if (OS::get_singleton()->is_stdout_verbose()) { String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } // No need to use `print_verbose()` as this call already only happens // when verbose mode is enabled. This avoids performing string argument concatenation // when not needed. print_line(s); } r_error.error = Callable::CallError::CALL_OK; } static inline void printerr(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } print_error(s); r_error.error = Callable::CallError::CALL_OK; } static inline void printt(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { if (i) { s += "\t"; } s += p_args[i]->operator String(); } print_line(s); r_error.error = Callable::CallError::CALL_OK; } static inline void prints(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { if (i) { s += " "; } s += p_args[i]->operator String(); } print_line(s); r_error.error = Callable::CallError::CALL_OK; } static inline void printraw(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } OS::get_singleton()->print("%s", s.utf8().get_data()); r_error.error = Callable::CallError::CALL_OK; } static inline void push_error(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; } String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } ERR_PRINT(s); r_error.error = Callable::CallError::CALL_OK; } static inline void push_warning(const Variant **p_args, int p_arg_count, Callable::CallError &r_error) { if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; } String s; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { s = os; } else { s += os; } } WARN_PRINT(s); r_error.error = Callable::CallError::CALL_OK; } static inline String var_to_str(const Variant &p_var) { String vars; VariantWriter::write_to_string(p_var, vars); return vars; } static inline Variant str_to_var(const String &p_var) { VariantParser::StreamString ss; ss.s = p_var; String errs; int line; Variant ret; (void)VariantParser::parse(&ss, ret, errs, line); return ret; } static inline PackedByteArray var_to_bytes(const Variant &p_var) { int len; Error err = encode_variant(p_var, nullptr, len, false); if (err != OK) { return PackedByteArray(); } PackedByteArray barr; barr.resize(len); { uint8_t *w = barr.ptrw(); err = encode_variant(p_var, w, len, false); if (err != OK) { return PackedByteArray(); } } return barr; } static inline PackedByteArray var_to_bytes_with_objects(const Variant &p_var) { int len; Error err = encode_variant(p_var, nullptr, len, true); if (err != OK) { return PackedByteArray(); } PackedByteArray barr; barr.resize(len); { uint8_t *w = barr.ptrw(); err = encode_variant(p_var, w, len, true); if (err != OK) { return PackedByteArray(); } } return barr; } static inline Variant bytes_to_var(const PackedByteArray &p_arr) { Variant ret; { const uint8_t *r = p_arr.ptr(); Error err = decode_variant(ret, r, p_arr.size(), nullptr, false); if (err != OK) { return Variant(); } } return ret; } static inline Variant bytes_to_var_with_objects(const PackedByteArray &p_arr) { Variant ret; { const uint8_t *r = p_arr.ptr(); Error err = decode_variant(ret, r, p_arr.size(), nullptr, true); if (err != OK) { return Variant(); } } return ret; } static inline int64_t hash(const Variant &p_arr) { return p_arr.hash(); } static inline Object *instance_from_id(int64_t p_id) { ObjectID id = ObjectID((uint64_t)p_id); Object *ret = ObjectDB::get_instance(id); return ret; } static inline bool is_instance_id_valid(int64_t p_id) { return ObjectDB::get_instance(ObjectID((uint64_t)p_id)) != nullptr; } static inline bool is_instance_valid(const Variant &p_instance) { if (p_instance.get_type() != Variant::OBJECT) { return false; } return p_instance.get_validated_object() != nullptr; } static inline uint64_t rid_allocate_id() { return RID_AllocBase::_gen_id(); } static inline RID rid_from_int64(uint64_t p_base) { return RID::from_uint64(p_base); } }; #ifdef DEBUG_METHODS_ENABLED #define VCALLR *ret = p_func(VariantCasterAndValidate

::cast(p_args, Is, r_error)...) #define VCALL p_func(VariantCasterAndValidate

::cast(p_args, Is, r_error)...) #else #define VCALLR *ret = p_func(VariantCaster

::cast(*p_args[Is])...) #define VCALL p_func(VariantCaster

::cast(*p_args[Is])...) #endif template static _FORCE_INLINE_ void call_helperpr(R (*p_func)(P...), Variant *ret, const Variant **p_args, Callable::CallError &r_error, IndexSequence) { r_error.error = Callable::CallError::CALL_OK; VCALLR; (void)p_args; // avoid gcc warning (void)r_error; } template static _FORCE_INLINE_ void validated_call_helperpr(R (*p_func)(P...), Variant *ret, const Variant **p_args, IndexSequence) { *ret = p_func(VariantCaster

::cast(*p_args[Is])...); (void)p_args; } template static _FORCE_INLINE_ void ptr_call_helperpr(R (*p_func)(P...), void *ret, const void **p_args, IndexSequence) { PtrToArg::encode(p_func(PtrToArg

::convert(p_args[Is])...), ret); (void)p_args; } template static _FORCE_INLINE_ void call_helperr(R (*p_func)(P...), Variant *ret, const Variant **p_args, Callable::CallError &r_error) { call_helperpr(p_func, ret, p_args, r_error, BuildIndexSequence{}); } template static _FORCE_INLINE_ void validated_call_helperr(R (*p_func)(P...), Variant *ret, const Variant **p_args) { validated_call_helperpr(p_func, ret, p_args, BuildIndexSequence{}); } template static _FORCE_INLINE_ void ptr_call_helperr(R (*p_func)(P...), void *ret, const void **p_args) { ptr_call_helperpr(p_func, ret, p_args, BuildIndexSequence{}); } template static _FORCE_INLINE_ int get_arg_count_helperr(R (*p_func)(P...)) { return sizeof...(P); } template static _FORCE_INLINE_ Variant::Type get_arg_type_helperr(R (*p_func)(P...), int p_arg) { return call_get_argument_type(p_arg); } template static _FORCE_INLINE_ Variant::Type get_ret_type_helperr(R (*p_func)(P...)) { return GetTypeInfo::VARIANT_TYPE; } // WITHOUT RET template static _FORCE_INLINE_ void call_helperp(void (*p_func)(P...), const Variant **p_args, Callable::CallError &r_error, IndexSequence) { r_error.error = Callable::CallError::CALL_OK; VCALL; (void)p_args; (void)r_error; } template static _FORCE_INLINE_ void validated_call_helperp(void (*p_func)(P...), const Variant **p_args, IndexSequence) { p_func(VariantCaster

::cast(*p_args[Is])...); (void)p_args; } template static _FORCE_INLINE_ void ptr_call_helperp(void (*p_func)(P...), const void **p_args, IndexSequence) { p_func(PtrToArg

::convert(p_args[Is])...); (void)p_args; } template static _FORCE_INLINE_ void call_helper(void (*p_func)(P...), const Variant **p_args, Callable::CallError &r_error) { call_helperp(p_func, p_args, r_error, BuildIndexSequence{}); } template static _FORCE_INLINE_ void validated_call_helper(void (*p_func)(P...), const Variant **p_args) { validated_call_helperp(p_func, p_args, BuildIndexSequence{}); } template static _FORCE_INLINE_ void ptr_call_helper(void (*p_func)(P...), const void **p_args) { ptr_call_helperp(p_func, p_args, BuildIndexSequence{}); } template static _FORCE_INLINE_ int get_arg_count_helper(void (*p_func)(P...)) { return sizeof...(P); } template static _FORCE_INLINE_ Variant::Type get_arg_type_helper(void (*p_func)(P...), int p_arg) { return call_get_argument_type(p_arg); } template static _FORCE_INLINE_ Variant::Type get_ret_type_helper(void (*p_func)(P...)) { return Variant::NIL; } #define FUNCBINDR(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ call_helperr(VariantUtilityFunctions::m_func, r_ret, p_args, r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ validated_call_helperr(VariantUtilityFunctions::m_func, r_ret, p_args); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ ptr_call_helperr(VariantUtilityFunctions::m_func, ret, p_args); \ } \ static int get_argument_count() { \ return get_arg_count_helperr(VariantUtilityFunctions::m_func); \ } \ static Variant::Type get_argument_type(int p_arg) { \ return get_arg_type_helperr(VariantUtilityFunctions::m_func, p_arg); \ } \ static Variant::Type get_return_type() { \ return get_ret_type_helperr(VariantUtilityFunctions::m_func); \ } \ static bool has_return_type() { \ return true; \ } \ static bool is_vararg() { return false; } \ static Variant::UtilityFunctionType get_type() { return m_category; } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBINDVR(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ r_error.error = Callable::CallError::CALL_OK; \ *r_ret = VariantUtilityFunctions::m_func(*p_args[0], r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ Callable::CallError ce; \ *r_ret = VariantUtilityFunctions::m_func(*p_args[0], ce); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ Callable::CallError ce; \ PtrToArg::encode(VariantUtilityFunctions::m_func(PtrToArg::convert(p_args[0]), ce), ret); \ } \ static int get_argument_count() { \ return 1; \ } \ static Variant::Type get_argument_type(int p_arg) { \ return Variant::NIL; \ } \ static Variant::Type get_return_type() { \ return Variant::NIL; \ } \ static bool has_return_type() { \ return true; \ } \ static bool is_vararg() { return false; } \ static Variant::UtilityFunctionType get_type() { return m_category; } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBINDVR3(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ r_error.error = Callable::CallError::CALL_OK; \ *r_ret = VariantUtilityFunctions::m_func(*p_args[0], *p_args[1], *p_args[2], r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ Callable::CallError ce; \ *r_ret = VariantUtilityFunctions::m_func(*p_args[0], *p_args[1], *p_args[2], ce); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ Callable::CallError ce; \ Variant r; \ r = VariantUtilityFunctions::m_func(PtrToArg::convert(p_args[0]), PtrToArg::convert(p_args[1]), PtrToArg::convert(p_args[2]), ce); \ PtrToArg::encode(r, ret); \ } \ static int get_argument_count() { \ return 3; \ } \ static Variant::Type get_argument_type(int p_arg) { \ return Variant::NIL; \ } \ static Variant::Type get_return_type() { \ return Variant::NIL; \ } \ static bool has_return_type() { \ return true; \ } \ static bool is_vararg() { return false; } \ static Variant::UtilityFunctionType get_type() { return m_category; } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBINDVARARG(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ r_error.error = Callable::CallError::CALL_OK; \ *r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ Callable::CallError c; \ *r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, c); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ Vector args; \ for (int i = 0; i < p_argcount; i++) { \ args.push_back(PtrToArg::convert(p_args[i])); \ } \ Vector argsp; \ for (int i = 0; i < p_argcount; i++) { \ argsp.push_back(&args[i]); \ } \ Variant r; \ validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \ PtrToArg::encode(r, ret); \ } \ static int get_argument_count() { \ return 2; \ } \ static Variant::Type get_argument_type(int p_arg) { \ return Variant::NIL; \ } \ static Variant::Type get_return_type() { \ return Variant::NIL; \ } \ static bool has_return_type() { \ return true; \ } \ static bool is_vararg() { \ return true; \ } \ static Variant::UtilityFunctionType get_type() { \ return m_category; \ } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBINDVARARGS(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ r_error.error = Callable::CallError::CALL_OK; \ *r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ Callable::CallError c; \ *r_ret = VariantUtilityFunctions::m_func(p_args, p_argcount, c); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ Vector args; \ for (int i = 0; i < p_argcount; i++) { \ args.push_back(PtrToArg::convert(p_args[i])); \ } \ Vector argsp; \ for (int i = 0; i < p_argcount; i++) { \ argsp.push_back(&args[i]); \ } \ Variant r; \ validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \ PtrToArg::encode(r.operator String(), ret); \ } \ static int get_argument_count() { \ return 1; \ } \ static Variant::Type get_argument_type(int p_arg) { \ return Variant::NIL; \ } \ static Variant::Type get_return_type() { \ return Variant::STRING; \ } \ static bool has_return_type() { \ return true; \ } \ static bool is_vararg() { \ return true; \ } \ static Variant::UtilityFunctionType get_type() { \ return m_category; \ } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBINDVARARGV(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ r_error.error = Callable::CallError::CALL_OK; \ VariantUtilityFunctions::m_func(p_args, p_argcount, r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ Callable::CallError c; \ VariantUtilityFunctions::m_func(p_args, p_argcount, c); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ Vector args; \ for (int i = 0; i < p_argcount; i++) { \ args.push_back(PtrToArg::convert(p_args[i])); \ } \ Vector argsp; \ for (int i = 0; i < p_argcount; i++) { \ argsp.push_back(&args[i]); \ } \ Variant r; \ validated_call(&r, (const Variant **)argsp.ptr(), p_argcount); \ } \ static int get_argument_count() { \ return 1; \ } \ static Variant::Type get_argument_type(int p_arg) { \ return Variant::NIL; \ } \ static Variant::Type get_return_type() { \ return Variant::NIL; \ } \ static bool has_return_type() { \ return false; \ } \ static bool is_vararg() { \ return true; \ } \ static Variant::UtilityFunctionType get_type() { \ return m_category; \ } \ }; \ register_utility_function(#m_func, m_args) #define FUNCBIND(m_func, m_args, m_category) \ class Func_##m_func { \ public: \ static void call(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { \ call_helper(VariantUtilityFunctions::m_func, p_args, r_error); \ } \ static void validated_call(Variant *r_ret, const Variant **p_args, int p_argcount) { \ validated_call_helper(VariantUtilityFunctions::m_func, p_args); \ } \ static void ptrcall(void *ret, const void **p_args, int p_argcount) { \ ptr_call_helper(VariantUtilityFunctions::m_func, p_args); \ } \ static int get_argument_count() { \ return get_arg_count_helper(VariantUtilityFunctions::m_func); \ } \ static Variant::Type get_argument_type(int p_arg) { \ return get_arg_type_helper(VariantUtilityFunctions::m_func, p_arg); \ } \ static Variant::Type get_return_type() { \ return get_ret_type_helper(VariantUtilityFunctions::m_func); \ } \ static bool has_return_type() { \ return false; \ } \ static bool is_vararg() { return false; } \ static Variant::UtilityFunctionType get_type() { return m_category; } \ }; \ register_utility_function(#m_func, m_args) struct VariantUtilityFunctionInfo { void (*call_utility)(Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) = nullptr; Variant::ValidatedUtilityFunction validated_call_utility = nullptr; Variant::PTRUtilityFunction ptr_call_utility = nullptr; Vector argnames; bool is_vararg = false; bool returns_value = false; int argcount = 0; Variant::Type (*get_arg_type)(int) = nullptr; Variant::Type return_type; Variant::UtilityFunctionType type; }; static OAHashMap utility_function_table; static List utility_function_name_table; template static void register_utility_function(const String &p_name, const Vector &argnames) { String name = p_name; if (name.begins_with("_")) { name = name.substr(1, name.length() - 1); } StringName sname = name; ERR_FAIL_COND(utility_function_table.has(sname)); VariantUtilityFunctionInfo bfi; bfi.call_utility = T::call; bfi.validated_call_utility = T::validated_call; bfi.ptr_call_utility = T::ptrcall; bfi.is_vararg = T::is_vararg(); bfi.argnames = argnames; bfi.argcount = T::get_argument_count(); if (!bfi.is_vararg) { ERR_FAIL_COND_MSG(argnames.size() != bfi.argcount, "wrong number of arguments binding utility function: " + name); } bfi.get_arg_type = T::get_argument_type; bfi.return_type = T::get_return_type(); bfi.type = T::get_type(); bfi.returns_value = T::has_return_type(); utility_function_table.insert(sname, bfi); utility_function_name_table.push_back(sname); } void Variant::_register_variant_utility_functions() { // Math FUNCBINDR(sin, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cos, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(tan, sarray("angle_rad"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(sinh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cosh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(tanh, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(asin, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(acos, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(atan, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(atan2, sarray("y", "x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(sqrt, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(fmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(fposmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(posmod, sarray("x", "y"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR(floor, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(floorf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(floori, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR(ceil, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(ceilf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(ceili, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR(round, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(roundf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(roundi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR(abs, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(absf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(absi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR(sign, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(signf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(signi, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(pow, sarray("base", "exp"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(log, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(exp, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(is_nan, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(is_inf, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(is_equal_approx, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(is_zero_approx, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(ease, sarray("x", "curve"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(step_decimals, sarray("x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(snapped, sarray("x", "step"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR3(lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(lerpf, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cubic_interpolate, sarray("from", "to", "pre", "post", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cubic_interpolate_angle, sarray("from", "to", "pre", "post", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cubic_interpolate_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cubic_interpolate_angle_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(bezier_interpolate, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(lerp_angle, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(inverse_lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(remap, sarray("value", "istart", "istop", "ostart", "ostop"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(smoothstep, sarray("from", "to", "x"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(move_toward, sarray("from", "to", "delta"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(deg_to_rad, sarray("deg"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(rad_to_deg, sarray("rad"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(linear_to_db, sarray("lin"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(db_to_linear, sarray("db"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR3(wrap, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(wrapi, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(wrapf, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVARARG(max, sarray(), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(maxi, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(maxf, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVARARG(min, sarray(), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(mini, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(minf, sarray("a", "b"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDVR3(clamp, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(clampi, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(clampf, sarray("value", "min", "max"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(nearest_po2, sarray("value"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(pingpong, sarray("value", "length"), Variant::UTILITY_FUNC_TYPE_MATH); // Random FUNCBIND(randomize, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(randi, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(randf, sarray(), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(randi_range, sarray("from", "to"), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(randf_range, sarray("from", "to"), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(randfn, sarray("mean", "deviation"), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBIND(seed, sarray("base"), Variant::UTILITY_FUNC_TYPE_RANDOM); FUNCBINDR(rand_from_seed, sarray("seed"), Variant::UTILITY_FUNC_TYPE_RANDOM); // Utility FUNCBINDVR(weakref, sarray("obj"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(_typeof, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGS(str, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(error_string, sarray("error"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(print, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(print_rich, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(printerr, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(printt, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(prints, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(printraw, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(print_verbose, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(push_error, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDVARARGV(push_warning, sarray(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(var_to_str, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(str_to_var, sarray("string"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(var_to_bytes, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(bytes_to_var, sarray("bytes"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(var_to_bytes_with_objects, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(bytes_to_var_with_objects, sarray("bytes"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(hash, sarray("variable"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(instance_from_id, sarray("instance_id"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(is_instance_id_valid, sarray("id"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(is_instance_valid, sarray("instance"), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(rid_allocate_id, Vector(), Variant::UTILITY_FUNC_TYPE_GENERAL); FUNCBINDR(rid_from_int64, sarray("base"), Variant::UTILITY_FUNC_TYPE_GENERAL); } void Variant::_unregister_variant_utility_functions() { utility_function_table.clear(); utility_function_name_table.clear(); } void Variant::call_utility_function(const StringName &p_name, Variant *r_ret, const Variant **p_args, int p_argcount, Callable::CallError &r_error) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; r_error.argument = 0; r_error.expected = 0; return; } if (unlikely(!bfi->is_vararg && p_argcount < bfi->argcount)) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 0; r_error.expected = bfi->argcount; return; } if (unlikely(!bfi->is_vararg && p_argcount > bfi->argcount)) { r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = 0; r_error.expected = bfi->argcount; return; } bfi->call_utility(r_ret, p_args, p_argcount, r_error); } bool Variant::has_utility_function(const StringName &p_name) { return utility_function_table.has(p_name); } Variant::ValidatedUtilityFunction Variant::get_validated_utility_function(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return nullptr; } return bfi->validated_call_utility; } Variant::PTRUtilityFunction Variant::get_ptr_utility_function(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return nullptr; } return bfi->ptr_call_utility; } Variant::UtilityFunctionType Variant::get_utility_function_type(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return Variant::UTILITY_FUNC_TYPE_MATH; } return bfi->type; } MethodInfo Variant::get_utility_function_info(const StringName &p_name) { MethodInfo info; const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (bfi) { info.name = p_name; if (bfi->returns_value && bfi->return_type == Variant::NIL) { info.return_val.usage |= PROPERTY_USAGE_NIL_IS_VARIANT; } info.return_val.type = bfi->return_type; if (bfi->is_vararg) { info.flags |= METHOD_FLAG_VARARG; } for (int i = 0; i < bfi->argnames.size(); ++i) { PropertyInfo arg; arg.type = bfi->get_arg_type(i); arg.name = bfi->argnames[i]; info.arguments.push_back(arg); } } return info; } int Variant::get_utility_function_argument_count(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return 0; } return bfi->argcount; } Variant::Type Variant::get_utility_function_argument_type(const StringName &p_name, int p_arg) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return Variant::NIL; } return bfi->get_arg_type(p_arg); } String Variant::get_utility_function_argument_name(const StringName &p_name, int p_arg) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return String(); } ERR_FAIL_INDEX_V(p_arg, bfi->argnames.size(), String()); ERR_FAIL_COND_V(bfi->is_vararg, String()); return bfi->argnames[p_arg]; } bool Variant::has_utility_function_return_value(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return false; } return bfi->returns_value; } Variant::Type Variant::get_utility_function_return_type(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return Variant::NIL; } return bfi->return_type; } bool Variant::is_utility_function_vararg(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); if (!bfi) { return false; } return bfi->is_vararg; } uint32_t Variant::get_utility_function_hash(const StringName &p_name) { const VariantUtilityFunctionInfo *bfi = utility_function_table.lookup_ptr(p_name); ERR_FAIL_COND_V(!bfi, 0); uint32_t hash = hash_murmur3_one_32(bfi->is_vararg); hash = hash_murmur3_one_32(bfi->returns_value, hash); if (bfi->returns_value) { hash = hash_murmur3_one_32(bfi->return_type, hash); } hash = hash_murmur3_one_32(bfi->argcount, hash); for (int i = 0; i < bfi->argcount; i++) { hash = hash_murmur3_one_32(bfi->get_arg_type(i), hash); } return hash_fmix32(hash); } void Variant::get_utility_function_list(List *r_functions) { for (const StringName &E : utility_function_name_table) { r_functions->push_back(E); } } int Variant::get_utility_function_count() { return utility_function_name_table.size(); }