/*************************************************************************/ /* variant.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "variant.h" #include "core/core_string_names.h" #include "core/debugger/engine_debugger.h" #include "core/io/json.h" #include "core/io/marshalls.h" #include "core/io/resource.h" #include "core/math/math_funcs.h" #include "core/string/print_string.h" #include "core/variant/variant_parser.h" String Variant::get_type_name(Variant::Type p_type) { switch (p_type) { case NIL: { return "Nil"; } break; // atomic types case BOOL: { return "bool"; } break; case INT: { return "int"; } break; case FLOAT: { return "float"; } break; case STRING: { return "String"; } break; // math types case VECTOR2: { return "Vector2"; } break; case VECTOR2I: { return "Vector2i"; } break; case RECT2: { return "Rect2"; } break; case RECT2I: { return "Rect2i"; } break; case TRANSFORM2D: { return "Transform2D"; } break; case VECTOR3: { return "Vector3"; } break; case VECTOR3I: { return "Vector3i"; } break; case PLANE: { return "Plane"; } break; case AABB: { return "AABB"; } break; case QUATERNION: { return "Quaternion"; } break; case BASIS: { return "Basis"; } break; case TRANSFORM3D: { return "Transform3D"; } break; // misc types case COLOR: { return "Color"; } break; case RID: { return "RID"; } break; case OBJECT: { return "Object"; } break; case CALLABLE: { return "Callable"; } break; case SIGNAL: { return "Signal"; } break; case STRING_NAME: { return "StringName"; } break; case NODE_PATH: { return "NodePath"; } break; case DICTIONARY: { return "Dictionary"; } break; case ARRAY: { return "Array"; } break; // arrays case PACKED_BYTE_ARRAY: { return "PackedByteArray"; } break; case PACKED_INT32_ARRAY: { return "PackedInt32Array"; } break; case PACKED_INT64_ARRAY: { return "PackedInt64Array"; } break; case PACKED_FLOAT32_ARRAY: { return "PackedFloat32Array"; } break; case PACKED_FLOAT64_ARRAY: { return "PackedFloat64Array"; } break; case PACKED_STRING_ARRAY: { return "PackedStringArray"; } break; case PACKED_VECTOR2_ARRAY: { return "PackedVector2Array"; } break; case PACKED_VECTOR3_ARRAY: { return "PackedVector3Array"; } break; case PACKED_COLOR_ARRAY: { return "PackedColorArray"; } break; default: { } } return ""; } bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) { return true; } if (p_type_to == NIL && p_type_from != NIL) { //nil can convert to anything return true; } if (p_type_from == NIL) { return (p_type_to == OBJECT); } const Type *valid_types = nullptr; const Type *invalid_types = nullptr; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, FLOAT, STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, FLOAT, STRING, NIL, }; valid_types = valid; } break; case FLOAT: { static const Type valid[] = { BOOL, INT, STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type invalid[] = { OBJECT, NIL }; invalid_types = invalid; } break; case VECTOR2: { static const Type valid[] = { VECTOR2I, NIL, }; valid_types = valid; } break; case VECTOR2I: { static const Type valid[] = { VECTOR2, NIL, }; valid_types = valid; } break; case RECT2: { static const Type valid[] = { RECT2I, NIL, }; valid_types = valid; } break; case RECT2I: { static const Type valid[] = { RECT2, NIL, }; valid_types = valid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case VECTOR3: { static const Type valid[] = { VECTOR3I, NIL, }; valid_types = valid; } break; case VECTOR3I: { static const Type valid[] = { VECTOR3, NIL, }; valid_types = valid; } break; case QUATERNION: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUATERNION, NIL }; valid_types = valid; } break; case TRANSFORM3D: { static const Type valid[] = { TRANSFORM2D, QUATERNION, BASIS, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case STRING_NAME: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { PACKED_BYTE_ARRAY, PACKED_INT32_ARRAY, PACKED_INT64_ARRAY, PACKED_FLOAT32_ARRAY, PACKED_FLOAT64_ARRAY, PACKED_STRING_ARRAY, PACKED_COLOR_ARRAY, PACKED_VECTOR2_ARRAY, PACKED_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case PACKED_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) { return true; } i++; } } else if (invalid_types) { int i = 0; while (invalid_types[i] != NIL) { if (p_type_from == invalid_types[i]) { return false; } i++; } return true; } return false; } bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) { return true; } if (p_type_to == NIL && p_type_from != NIL) { //nil can convert to anything return true; } if (p_type_from == NIL) { return (p_type_to == OBJECT); } const Type *valid_types = nullptr; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, FLOAT, //STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, FLOAT, //STRING, NIL, }; valid_types = valid; } break; case FLOAT: { static const Type valid[] = { BOOL, INT, //STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type valid[] = { NODE_PATH, STRING_NAME, NIL }; valid_types = valid; } break; case VECTOR2: { static const Type valid[] = { VECTOR2I, NIL, }; valid_types = valid; } break; case VECTOR2I: { static const Type valid[] = { VECTOR2, NIL, }; valid_types = valid; } break; case RECT2: { static const Type valid[] = { RECT2I, NIL, }; valid_types = valid; } break; case RECT2I: { static const Type valid[] = { RECT2, NIL, }; valid_types = valid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM3D, NIL }; valid_types = valid; } break; case VECTOR3: { static const Type valid[] = { VECTOR3I, NIL, }; valid_types = valid; } break; case VECTOR3I: { static const Type valid[] = { VECTOR3, NIL, }; valid_types = valid; } break; case QUATERNION: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUATERNION, NIL }; valid_types = valid; } break; case TRANSFORM3D: { static const Type valid[] = { TRANSFORM2D, QUATERNION, BASIS, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case STRING_NAME: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { PACKED_BYTE_ARRAY, PACKED_INT32_ARRAY, PACKED_INT64_ARRAY, PACKED_FLOAT32_ARRAY, PACKED_FLOAT64_ARRAY, PACKED_STRING_ARRAY, PACKED_COLOR_ARRAY, PACKED_VECTOR2_ARRAY, PACKED_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case PACKED_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_INT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT32_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_FLOAT64_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case PACKED_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) { return true; } i++; } } return false; } bool Variant::operator==(const Variant &p_variant) const { return hash_compare(p_variant); } bool Variant::operator!=(const Variant &p_variant) const { // Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL if (type != p_variant.type) { //evaluation of operator== needs to be more strict return true; } bool v; Variant r; evaluate(OP_NOT_EQUAL, *this, p_variant, r, v); return r; } bool Variant::operator<(const Variant &p_variant) const { if (type != p_variant.type) { //if types differ, then order by type first return type < p_variant.type; } bool v; Variant r; evaluate(OP_LESS, *this, p_variant, r, v); return r; } bool Variant::is_zero() const { switch (type) { case NIL: { return true; } break; // atomic types case BOOL: { return !(_data._bool); } break; case INT: { return _data._int == 0; } break; case FLOAT: { return _data._float == 0; } break; case STRING: { return *reinterpret_cast<const String *>(_data._mem) == String(); } break; // math types case VECTOR2: { return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(); } break; case VECTOR2I: { return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i(); } break; case RECT2: { return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(); } break; case RECT2I: { return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i(); } break; case TRANSFORM2D: { return *_data._transform2d == Transform2D(); } break; case VECTOR3: { return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(); } break; case VECTOR3I: { return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i(); } break; case PLANE: { return *reinterpret_cast<const Plane *>(_data._mem) == Plane(); } break; case AABB: { return *_data._aabb == ::AABB(); } break; case QUATERNION: { return *reinterpret_cast<const Quaternion *>(_data._mem) == Quaternion(); } break; case BASIS: { return *_data._basis == Basis(); } break; case TRANSFORM3D: { return *_data._transform3d == Transform3D(); } break; // misc types case COLOR: { return *reinterpret_cast<const Color *>(_data._mem) == Color(); } break; case RID: { return *reinterpret_cast<const ::RID *>(_data._mem) == ::RID(); } break; case OBJECT: { return _get_obj().obj == nullptr; } break; case CALLABLE: { return reinterpret_cast<const Callable *>(_data._mem)->is_null(); } break; case SIGNAL: { return reinterpret_cast<const Signal *>(_data._mem)->is_null(); } break; case STRING_NAME: { return *reinterpret_cast<const StringName *>(_data._mem) != StringName(); } break; case NODE_PATH: { return reinterpret_cast<const NodePath *>(_data._mem)->is_empty(); } break; case DICTIONARY: { return reinterpret_cast<const Dictionary *>(_data._mem)->is_empty(); } break; case ARRAY: { return reinterpret_cast<const Array *>(_data._mem)->is_empty(); } break; // arrays case PACKED_BYTE_ARRAY: { return PackedArrayRef<uint8_t>::get_array(_data.packed_array).size() == 0; } break; case PACKED_INT32_ARRAY: { return PackedArrayRef<int32_t>::get_array(_data.packed_array).size() == 0; } break; case PACKED_INT64_ARRAY: { return PackedArrayRef<int64_t>::get_array(_data.packed_array).size() == 0; } break; case PACKED_FLOAT32_ARRAY: { return PackedArrayRef<float>::get_array(_data.packed_array).size() == 0; } break; case PACKED_FLOAT64_ARRAY: { return PackedArrayRef<double>::get_array(_data.packed_array).size() == 0; } break; case PACKED_STRING_ARRAY: { return PackedArrayRef<String>::get_array(_data.packed_array).size() == 0; } break; case PACKED_VECTOR2_ARRAY: { return PackedArrayRef<Vector2>::get_array(_data.packed_array).size() == 0; } break; case PACKED_VECTOR3_ARRAY: { return PackedArrayRef<Vector3>::get_array(_data.packed_array).size() == 0; } break; case PACKED_COLOR_ARRAY: { return PackedArrayRef<Color>::get_array(_data.packed_array).size() == 0; } break; default: { } } return false; } bool Variant::is_one() const { switch (type) { case NIL: { return true; } break; // atomic types case BOOL: { return _data._bool; } break; case INT: { return _data._int == 1; } break; case FLOAT: { return _data._float == 1; } break; case VECTOR2: { return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1); } break; case VECTOR2I: { return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i(1, 1); } break; case RECT2: { return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1); } break; case RECT2I: { return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i(1, 1, 1, 1); } break; case VECTOR3: { return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1); } break; case VECTOR3I: { return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i(1, 1, 1); } break; case PLANE: { return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1); } break; case COLOR: { return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1); } break; default: { return !is_zero(); } } return false; } bool Variant::is_null() const { if (type == OBJECT && _get_obj().obj) { return false; } else { return true; } } bool Variant::initialize_ref(Object *p_object) { RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object)); if (!ref_counted->init_ref()) { return false; } return true; } void Variant::reference(const Variant &p_variant) { switch (type) { case NIL: case BOOL: case INT: case FLOAT: break; default: clear(); } type = p_variant.type; switch (p_variant.type) { case NIL: { // none } break; // atomic types case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case FLOAT: { _data._float = p_variant._data._float; } break; case STRING: { memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem))); } break; // math types case VECTOR2: { memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem))); } break; case VECTOR2I: { memnew_placement(_data._mem, Vector2i(*reinterpret_cast<const Vector2i *>(p_variant._data._mem))); } break; case RECT2: { memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem))); } break; case RECT2I: { memnew_placement(_data._mem, Rect2i(*reinterpret_cast<const Rect2i *>(p_variant._data._mem))); } break; case TRANSFORM2D: { _data._transform2d = memnew(Transform2D(*p_variant._data._transform2d)); } break; case VECTOR3: { memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem))); } break; case VECTOR3I: { memnew_placement(_data._mem, Vector3i(*reinterpret_cast<const Vector3i *>(p_variant._data._mem))); } break; case PLANE: { memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem))); } break; case AABB: { _data._aabb = memnew(::AABB(*p_variant._data._aabb)); } break; case QUATERNION: { memnew_placement(_data._mem, Quaternion(*reinterpret_cast<const Quaternion *>(p_variant._data._mem))); } break; case BASIS: { _data._basis = memnew(Basis(*p_variant._data._basis)); } break; case TRANSFORM3D: { _data._transform3d = memnew(Transform3D(*p_variant._data._transform3d)); } break; // misc types case COLOR: { memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem))); } break; case RID: { memnew_placement(_data._mem, ::RID(*reinterpret_cast<const ::RID *>(p_variant._data._mem))); } break; case OBJECT: { memnew_placement(_data._mem, ObjData); if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) { RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj); if (!ref_counted->reference()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); break; } } _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj); _get_obj().id = p_variant._get_obj().id; } break; case CALLABLE: { memnew_placement(_data._mem, Callable(*reinterpret_cast<const Callable *>(p_variant._data._mem))); } break; case SIGNAL: { memnew_placement(_data._mem, Signal(*reinterpret_cast<const Signal *>(p_variant._data._mem))); } break; case STRING_NAME: { memnew_placement(_data._mem, StringName(*reinterpret_cast<const StringName *>(p_variant._data._mem))); } break; case NODE_PATH: { memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem))); } break; case DICTIONARY: { memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem))); } break; case ARRAY: { memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem))); } break; // arrays case PACKED_BYTE_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<uint8_t> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<uint8_t>::create(); } } break; case PACKED_INT32_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<int32_t> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<int32_t>::create(); } } break; case PACKED_INT64_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<int64_t> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<int64_t>::create(); } } break; case PACKED_FLOAT32_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<float> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<float>::create(); } } break; case PACKED_FLOAT64_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<double> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<double>::create(); } } break; case PACKED_STRING_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<String> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<String>::create(); } } break; case PACKED_VECTOR2_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<Vector2> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<Vector2>::create(); } } break; case PACKED_VECTOR3_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<Vector3> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<Vector3>::create(); } } break; case PACKED_COLOR_ARRAY: { _data.packed_array = static_cast<PackedArrayRef<Color> *>(p_variant._data.packed_array)->reference(); if (!_data.packed_array) { _data.packed_array = PackedArrayRef<Color>::create(); } } break; default: { } } } void Variant::zero() { switch (type) { case NIL: break; case BOOL: this->_data._bool = false; break; case INT: this->_data._int = 0; break; case FLOAT: this->_data._float = 0; break; case VECTOR2: *reinterpret_cast<Vector2 *>(this->_data._mem) = Vector2(); break; case VECTOR2I: *reinterpret_cast<Vector2i *>(this->_data._mem) = Vector2i(); break; case RECT2: *reinterpret_cast<Rect2 *>(this->_data._mem) = Rect2(); break; case RECT2I: *reinterpret_cast<Rect2i *>(this->_data._mem) = Rect2i(); break; case VECTOR3: *reinterpret_cast<Vector3 *>(this->_data._mem) = Vector3(); break; case VECTOR3I: *reinterpret_cast<Vector3i *>(this->_data._mem) = Vector3i(); break; case PLANE: *reinterpret_cast<Plane *>(this->_data._mem) = Plane(); break; case QUATERNION: *reinterpret_cast<Quaternion *>(this->_data._mem) = Quaternion(); break; case COLOR: *reinterpret_cast<Color *>(this->_data._mem) = Color(); break; default: this->clear(); break; } } void Variant::_clear_internal() { switch (type) { case STRING: { reinterpret_cast<String *>(_data._mem)->~String(); } break; /* // no point, they don't allocate memory VECTOR3, PLANE, QUATERNION, COLOR, VECTOR2, RECT2 */ case TRANSFORM2D: { memdelete(_data._transform2d); } break; case AABB: { memdelete(_data._aabb); } break; case BASIS: { memdelete(_data._basis); } break; case TRANSFORM3D: { memdelete(_data._transform3d); } break; // misc types case STRING_NAME: { reinterpret_cast<StringName *>(_data._mem)->~StringName(); } break; case NODE_PATH: { reinterpret_cast<NodePath *>(_data._mem)->~NodePath(); } break; case OBJECT: { if (_get_obj().id.is_ref_counted()) { //we are safe that there is a reference here RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj); if (ref_counted->unreference()) { memdelete(ref_counted); } } _get_obj().obj = nullptr; _get_obj().id = ObjectID(); } break; case RID: { // not much need probably // Can't seem to use destructor + scoping operator, so hack. typedef ::RID RID_Class; reinterpret_cast<RID_Class *>(_data._mem)->~RID_Class(); } break; case CALLABLE: { reinterpret_cast<Callable *>(_data._mem)->~Callable(); } break; case SIGNAL: { reinterpret_cast<Signal *>(_data._mem)->~Signal(); } break; case DICTIONARY: { reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary(); } break; case ARRAY: { reinterpret_cast<Array *>(_data._mem)->~Array(); } break; // arrays case PACKED_BYTE_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_INT32_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_INT64_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_FLOAT32_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_FLOAT64_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_STRING_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_VECTOR2_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_VECTOR3_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; case PACKED_COLOR_ARRAY: { PackedArrayRefBase::destroy(_data.packed_array); } break; default: { } /* not needed */ } } Variant::operator signed int() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned int() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator int64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator uint64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator ObjectID() const { if (type == INT) { return ObjectID(_data._int); } else if (type == OBJECT) { return _get_obj().id; } else { return ObjectID(); } } #ifdef NEED_LONG_INT Variant::operator signed long() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } return 0; } Variant::operator unsigned long() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } return 0; } #endif Variant::operator signed short() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned short() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator signed char() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned char() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case FLOAT: return _data._float; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator char32_t() const { return operator unsigned int(); } Variant::operator float() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (float)_data._int; case FLOAT: return _data._float; case STRING: return operator String().to_float(); default: { return 0; } } } Variant::operator double() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (double)_data._int; case FLOAT: return _data._float; case STRING: return operator String().to_float(); default: { return 0; } } } Variant::operator StringName() const { if (type == STRING_NAME) { return *reinterpret_cast<const StringName *>(_data._mem); } else if (type == STRING) { return *reinterpret_cast<const String *>(_data._mem); } return StringName(); } struct _VariantStrPair { String key; String value; bool operator<(const _VariantStrPair &p) const { return key < p.key; } }; Variant::operator String() const { return stringify(0); } template <class T> String stringify_vector(const T &vec, int recursion_count) { String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) { str += ", "; } str = str + Variant(vec[i]).stringify(recursion_count); } str += "]"; return str; } String Variant::stringify(int recursion_count) const { switch (type) { case NIL: return "null"; case BOOL: return _data._bool ? "true" : "false"; case INT: return itos(_data._int); case FLOAT: return rtos(_data._float); case STRING: return *reinterpret_cast<const String *>(_data._mem); case VECTOR2: return operator Vector2(); case VECTOR2I: return operator Vector2i(); case RECT2: return operator Rect2(); case RECT2I: return operator Rect2i(); case TRANSFORM2D: return operator Transform2D(); case VECTOR3: return operator Vector3(); case VECTOR3I: return operator Vector3i(); case PLANE: return operator Plane(); case AABB: return operator ::AABB(); case QUATERNION: return operator Quaternion(); case BASIS: return operator Basis(); case TRANSFORM3D: return operator Transform3D(); case STRING_NAME: return operator StringName(); case NODE_PATH: return operator NodePath(); case COLOR: return operator Color(); case DICTIONARY: { const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem); if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return "{...}"; } String str("{"); List<Variant> keys; d.get_key_list(&keys); Vector<_VariantStrPair> pairs; recursion_count++; for (List<Variant>::Element *E = keys.front(); E; E = E->next()) { _VariantStrPair sp; sp.key = E->get().stringify(recursion_count); sp.value = d[E->get()].stringify(recursion_count); pairs.push_back(sp); } for (int i = 0; i < pairs.size(); i++) { if (i > 0) { str += ", "; } str += pairs[i].key + ":" + pairs[i].value; } str += "}"; return str; } break; case PACKED_VECTOR2_ARRAY: { return stringify_vector(operator Vector<Vector2>(), recursion_count); } break; case PACKED_VECTOR3_ARRAY: { return stringify_vector(operator Vector<Vector3>(), recursion_count); } break; case PACKED_COLOR_ARRAY: { return stringify_vector(operator Vector<Color>(), recursion_count); } break; case PACKED_STRING_ARRAY: { return stringify_vector(operator Vector<String>(), recursion_count); } break; case PACKED_BYTE_ARRAY: { return stringify_vector(operator Vector<uint8_t>(), recursion_count); } break; case PACKED_INT32_ARRAY: { return stringify_vector(operator Vector<int32_t>(), recursion_count); } break; case PACKED_INT64_ARRAY: { return stringify_vector(operator Vector<int64_t>(), recursion_count); } break; case PACKED_FLOAT32_ARRAY: { return stringify_vector(operator Vector<float>(), recursion_count); } break; case PACKED_FLOAT64_ARRAY: { return stringify_vector(operator Vector<double>(), recursion_count); } break; case ARRAY: { Array arr = operator Array(); if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return "[...]"; } String str = stringify_vector(arr, recursion_count); return str; } break; case OBJECT: { if (_get_obj().obj) { if (!_get_obj().id.is_ref_counted() && ObjectDB::get_instance(_get_obj().id) == nullptr) { return "[Freed Object]"; } return _get_obj().obj->to_string(); } else { return "[Object:null]"; } } break; case CALLABLE: { const Callable &c = *reinterpret_cast<const Callable *>(_data._mem); return c; } break; case SIGNAL: { const Signal &s = *reinterpret_cast<const Signal *>(_data._mem); return s; } break; case RID: { const ::RID &s = *reinterpret_cast<const ::RID *>(_data._mem); return "RID(" + itos(s.get_id()) + ")"; } break; default: { return "[" + get_type_name(type) + "]"; } } return ""; } String Variant::to_json_string() const { JSON json; return json.stringify(*this); } Variant::operator Vector2() const { if (type == VECTOR2) { return *reinterpret_cast<const Vector2 *>(_data._mem); } else if (type == VECTOR2I) { return *reinterpret_cast<const Vector2i *>(_data._mem); } else if (type == VECTOR3) { return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y); } else if (type == VECTOR3I) { return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y); } else { return Vector2(); } } Variant::operator Vector2i() const { if (type == VECTOR2I) { return *reinterpret_cast<const Vector2i *>(_data._mem); } else if (type == VECTOR2) { return *reinterpret_cast<const Vector2 *>(_data._mem); } else if (type == VECTOR3) { return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y); } else if (type == VECTOR3I) { return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y); } else { return Vector2i(); } } Variant::operator Rect2() const { if (type == RECT2) { return *reinterpret_cast<const Rect2 *>(_data._mem); } else if (type == RECT2I) { return *reinterpret_cast<const Rect2i *>(_data._mem); } else { return Rect2(); } } Variant::operator Rect2i() const { if (type == RECT2I) { return *reinterpret_cast<const Rect2i *>(_data._mem); } else if (type == RECT2) { return *reinterpret_cast<const Rect2 *>(_data._mem); } else { return Rect2i(); } } Variant::operator Vector3() const { if (type == VECTOR3) { return *reinterpret_cast<const Vector3 *>(_data._mem); } else if (type == VECTOR3I) { return *reinterpret_cast<const Vector3i *>(_data._mem); } else if (type == VECTOR2) { return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0); } else if (type == VECTOR2I) { return Vector3(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0); } else { return Vector3(); } } Variant::operator Vector3i() const { if (type == VECTOR3I) { return *reinterpret_cast<const Vector3i *>(_data._mem); } else if (type == VECTOR3) { return *reinterpret_cast<const Vector3 *>(_data._mem); } else if (type == VECTOR2) { return Vector3i(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0); } else if (type == VECTOR2I) { return Vector3i(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0); } else { return Vector3i(); } } Variant::operator Plane() const { if (type == PLANE) { return *reinterpret_cast<const Plane *>(_data._mem); } else { return Plane(); } } Variant::operator ::AABB() const { if (type == AABB) { return *_data._aabb; } else { return ::AABB(); } } Variant::operator Basis() const { if (type == BASIS) { return *_data._basis; } else if (type == QUATERNION) { return *reinterpret_cast<const Quaternion *>(_data._mem); } else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert? return _data._transform3d->basis; } else { return Basis(); } } Variant::operator Quaternion() const { if (type == QUATERNION) { return *reinterpret_cast<const Quaternion *>(_data._mem); } else if (type == BASIS) { return *_data._basis; } else if (type == TRANSFORM3D) { return _data._transform3d->basis; } else { return Quaternion(); } } Variant::operator Transform3D() const { if (type == TRANSFORM3D) { return *_data._transform3d; } else if (type == BASIS) { return Transform3D(*_data._basis, Vector3()); } else if (type == QUATERNION) { return Transform3D(Basis(*reinterpret_cast<const Quaternion *>(_data._mem)), Vector3()); } else if (type == TRANSFORM2D) { const Transform2D &t = *_data._transform2d; Transform3D m; m.basis.elements[0][0] = t.elements[0][0]; m.basis.elements[1][0] = t.elements[0][1]; m.basis.elements[0][1] = t.elements[1][0]; m.basis.elements[1][1] = t.elements[1][1]; m.origin[0] = t.elements[2][0]; m.origin[1] = t.elements[2][1]; return m; } else { return Transform3D(); } } Variant::operator Transform2D() const { if (type == TRANSFORM2D) { return *_data._transform2d; } else if (type == TRANSFORM3D) { const Transform3D &t = *_data._transform3d; Transform2D m; m.elements[0][0] = t.basis.elements[0][0]; m.elements[0][1] = t.basis.elements[1][0]; m.elements[1][0] = t.basis.elements[0][1]; m.elements[1][1] = t.basis.elements[1][1]; m.elements[2][0] = t.origin[0]; m.elements[2][1] = t.origin[1]; return m; } else { return Transform2D(); } } Variant::operator Color() const { if (type == COLOR) { return *reinterpret_cast<const Color *>(_data._mem); } else if (type == STRING) { return Color(operator String()); } else if (type == INT) { return Color::hex(operator int()); } else { return Color(); } } Variant::operator NodePath() const { if (type == NODE_PATH) { return *reinterpret_cast<const NodePath *>(_data._mem); } else if (type == STRING) { return NodePath(operator String()); } else { return NodePath(); } } Variant::operator ::RID() const { if (type == RID) { return *reinterpret_cast<const ::RID *>(_data._mem); } else if (type == OBJECT && _get_obj().obj == nullptr) { return ::RID(); } else if (type == OBJECT && _get_obj().obj) { #ifdef DEBUG_ENABLED if (EngineDebugger::is_active()) { ERR_FAIL_COND_V_MSG(ObjectDB::get_instance(_get_obj().id) == nullptr, ::RID(), "Invalid pointer (object was freed)."); } #endif Callable::CallError ce; Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->get_rid, nullptr, 0, ce); if (ce.error == Callable::CallError::CALL_OK && ret.get_type() == Variant::RID) { return ret; } return ::RID(); } else { return ::RID(); } } Variant::operator Object *() const { if (type == OBJECT) { return _get_obj().obj; } else { return nullptr; } } Object *Variant::get_validated_object_with_check(bool &r_previously_freed) const { if (type == OBJECT) { Object *instance = ObjectDB::get_instance(_get_obj().id); r_previously_freed = !instance && _get_obj().id != ObjectID(); return instance; } else { r_previously_freed = false; return nullptr; } } Object *Variant::get_validated_object() const { if (type == OBJECT) { return ObjectDB::get_instance(_get_obj().id); } else { return nullptr; } } Variant::operator Dictionary() const { if (type == DICTIONARY) { return *reinterpret_cast<const Dictionary *>(_data._mem); } else { return Dictionary(); } } Variant::operator Callable() const { if (type == CALLABLE) { return *reinterpret_cast<const Callable *>(_data._mem); } else { return Callable(); } } Variant::operator Signal() const { if (type == SIGNAL) { return *reinterpret_cast<const Signal *>(_data._mem); } else { return Signal(); } } template <class DA, class SA> inline DA _convert_array(const SA &p_array) { DA da; da.resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { da.set(i, Variant(p_array.get(i))); } return da; } template <class DA> inline DA _convert_array_from_variant(const Variant &p_variant) { switch (p_variant.get_type()) { case Variant::ARRAY: { return _convert_array<DA, Array>(p_variant.operator Array()); } case Variant::PACKED_BYTE_ARRAY: { return _convert_array<DA, Vector<uint8_t>>(p_variant.operator Vector<uint8_t>()); } case Variant::PACKED_INT32_ARRAY: { return _convert_array<DA, Vector<int32_t>>(p_variant.operator Vector<int32_t>()); } case Variant::PACKED_INT64_ARRAY: { return _convert_array<DA, Vector<int64_t>>(p_variant.operator Vector<int64_t>()); } case Variant::PACKED_FLOAT32_ARRAY: { return _convert_array<DA, Vector<float>>(p_variant.operator Vector<float>()); } case Variant::PACKED_FLOAT64_ARRAY: { return _convert_array<DA, Vector<double>>(p_variant.operator Vector<double>()); } case Variant::PACKED_STRING_ARRAY: { return _convert_array<DA, Vector<String>>(p_variant.operator Vector<String>()); } case Variant::PACKED_VECTOR2_ARRAY: { return _convert_array<DA, Vector<Vector2>>(p_variant.operator Vector<Vector2>()); } case Variant::PACKED_VECTOR3_ARRAY: { return _convert_array<DA, Vector<Vector3>>(p_variant.operator Vector<Vector3>()); } case Variant::PACKED_COLOR_ARRAY: { return _convert_array<DA, Vector<Color>>(p_variant.operator Vector<Color>()); } default: { return DA(); } } } Variant::operator Array() const { if (type == ARRAY) { return *reinterpret_cast<const Array *>(_data._mem); } else { return _convert_array_from_variant<Array>(*this); } } Variant::operator Vector<uint8_t>() const { if (type == PACKED_BYTE_ARRAY) { return static_cast<PackedArrayRef<uint8_t> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<uint8_t>>(*this); } } Variant::operator Vector<int32_t>() const { if (type == PACKED_INT32_ARRAY) { return static_cast<PackedArrayRef<int32_t> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<int>>(*this); } } Variant::operator Vector<int64_t>() const { if (type == PACKED_INT64_ARRAY) { return static_cast<PackedArrayRef<int64_t> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<int64_t>>(*this); } } Variant::operator Vector<float>() const { if (type == PACKED_FLOAT32_ARRAY) { return static_cast<PackedArrayRef<float> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<float>>(*this); } } Variant::operator Vector<double>() const { if (type == PACKED_FLOAT64_ARRAY) { return static_cast<PackedArrayRef<double> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<double>>(*this); } } Variant::operator Vector<String>() const { if (type == PACKED_STRING_ARRAY) { return static_cast<PackedArrayRef<String> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<String>>(*this); } } Variant::operator Vector<Vector3>() const { if (type == PACKED_VECTOR3_ARRAY) { return static_cast<PackedArrayRef<Vector3> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<Vector3>>(*this); } } Variant::operator Vector<Vector2>() const { if (type == PACKED_VECTOR2_ARRAY) { return static_cast<PackedArrayRef<Vector2> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<Vector2>>(*this); } } Variant::operator Vector<Color>() const { if (type == PACKED_COLOR_ARRAY) { return static_cast<PackedArrayRef<Color> *>(_data.packed_array)->array; } else { return _convert_array_from_variant<Vector<Color>>(*this); } } /* helpers */ Variant::operator Vector<::RID>() const { Array va = operator Array(); Vector<::RID> rids; rids.resize(va.size()); for (int i = 0; i < rids.size(); i++) { rids.write[i] = va[i]; } return rids; } Variant::operator Vector<Plane>() const { Array va = operator Array(); Vector<Plane> planes; int va_size = va.size(); if (va_size == 0) { return planes; } planes.resize(va_size); Plane *w = planes.ptrw(); for (int i = 0; i < va_size; i++) { w[i] = va[i]; } return planes; } Variant::operator Vector<Face3>() const { Vector<Vector3> va = operator Vector<Vector3>(); Vector<Face3> faces; int va_size = va.size(); if (va_size == 0) { return faces; } faces.resize(va_size / 3); Face3 *w = faces.ptrw(); const Vector3 *r = va.ptr(); for (int i = 0; i < va_size; i++) { w[i / 3].vertex[i % 3] = r[i]; } return faces; } Variant::operator Vector<Variant>() const { Array va = operator Array(); Vector<Variant> variants; int va_size = va.size(); if (va_size == 0) { return variants; } variants.resize(va_size); Variant *w = variants.ptrw(); for (int i = 0; i < va_size; i++) { w[i] = va[i]; } return variants; } Variant::operator Vector<StringName>() const { Vector<String> from = operator Vector<String>(); Vector<StringName> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Side() const { return (Side) operator int(); } Variant::operator Orientation() const { return (Orientation) operator int(); } Variant::operator IPAddress() const { if (type == PACKED_FLOAT32_ARRAY || type == PACKED_INT32_ARRAY || type == PACKED_FLOAT64_ARRAY || type == PACKED_INT64_ARRAY || type == PACKED_BYTE_ARRAY) { Vector<int> addr = operator Vector<int>(); if (addr.size() == 4) { return IPAddress(addr.get(0), addr.get(1), addr.get(2), addr.get(3)); } } return IPAddress(operator String()); } Variant::Variant(bool p_bool) { type = BOOL; _data._bool = p_bool; } Variant::Variant(signed int p_int) { type = INT; _data._int = p_int; } Variant::Variant(unsigned int p_int) { type = INT; _data._int = p_int; } #ifdef NEED_LONG_INT Variant::Variant(signed long p_int) { type = INT; _data._int = p_int; } Variant::Variant(unsigned long p_int) { type = INT; _data._int = p_int; } #endif Variant::Variant(int64_t p_int) { type = INT; _data._int = p_int; } Variant::Variant(uint64_t p_int) { type = INT; _data._int = p_int; } Variant::Variant(signed short p_short) { type = INT; _data._int = p_short; } Variant::Variant(unsigned short p_short) { type = INT; _data._int = p_short; } Variant::Variant(signed char p_char) { type = INT; _data._int = p_char; } Variant::Variant(unsigned char p_char) { type = INT; _data._int = p_char; } Variant::Variant(float p_float) { type = FLOAT; _data._float = p_float; } Variant::Variant(double p_double) { type = FLOAT; _data._float = p_double; } Variant::Variant(const ObjectID &p_id) { type = INT; _data._int = p_id; } Variant::Variant(const StringName &p_string) { type = STRING_NAME; memnew_placement(_data._mem, StringName(p_string)); } Variant::Variant(const String &p_string) { type = STRING; memnew_placement(_data._mem, String(p_string)); } Variant::Variant(const char *const p_cstring) { type = STRING; memnew_placement(_data._mem, String((const char *)p_cstring)); } Variant::Variant(const char32_t *p_wstring) { type = STRING; memnew_placement(_data._mem, String(p_wstring)); } Variant::Variant(const Vector3 &p_vector3) { type = VECTOR3; memnew_placement(_data._mem, Vector3(p_vector3)); } Variant::Variant(const Vector3i &p_vector3i) { type = VECTOR3I; memnew_placement(_data._mem, Vector3i(p_vector3i)); } Variant::Variant(const Vector2 &p_vector2) { type = VECTOR2; memnew_placement(_data._mem, Vector2(p_vector2)); } Variant::Variant(const Vector2i &p_vector2i) { type = VECTOR2I; memnew_placement(_data._mem, Vector2i(p_vector2i)); } Variant::Variant(const Rect2 &p_rect2) { type = RECT2; memnew_placement(_data._mem, Rect2(p_rect2)); } Variant::Variant(const Rect2i &p_rect2i) { type = RECT2I; memnew_placement(_data._mem, Rect2i(p_rect2i)); } Variant::Variant(const Plane &p_plane) { type = PLANE; memnew_placement(_data._mem, Plane(p_plane)); } Variant::Variant(const ::AABB &p_aabb) { type = AABB; _data._aabb = memnew(::AABB(p_aabb)); } Variant::Variant(const Basis &p_matrix) { type = BASIS; _data._basis = memnew(Basis(p_matrix)); } Variant::Variant(const Quaternion &p_quaternion) { type = QUATERNION; memnew_placement(_data._mem, Quaternion(p_quaternion)); } Variant::Variant(const Transform3D &p_transform) { type = TRANSFORM3D; _data._transform3d = memnew(Transform3D(p_transform)); } Variant::Variant(const Transform2D &p_transform) { type = TRANSFORM2D; _data._transform2d = memnew(Transform2D(p_transform)); } Variant::Variant(const Color &p_color) { type = COLOR; memnew_placement(_data._mem, Color(p_color)); } Variant::Variant(const NodePath &p_node_path) { type = NODE_PATH; memnew_placement(_data._mem, NodePath(p_node_path)); } Variant::Variant(const ::RID &p_rid) { type = RID; memnew_placement(_data._mem, ::RID(p_rid)); } Variant::Variant(const Object *p_object) { type = OBJECT; memnew_placement(_data._mem, ObjData); if (p_object) { if (p_object->is_ref_counted()) { RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object)); if (!ref_counted->init_ref()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); return; } } _get_obj().obj = const_cast<Object *>(p_object); _get_obj().id = p_object->get_instance_id(); } else { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); } } Variant::Variant(const Callable &p_callable) { type = CALLABLE; memnew_placement(_data._mem, Callable(p_callable)); } Variant::Variant(const Signal &p_callable) { type = SIGNAL; memnew_placement(_data._mem, Signal(p_callable)); } Variant::Variant(const Dictionary &p_dictionary) { type = DICTIONARY; memnew_placement(_data._mem, Dictionary(p_dictionary)); } Variant::Variant(const Array &p_array) { type = ARRAY; memnew_placement(_data._mem, Array(p_array)); } Variant::Variant(const Vector<Plane> &p_array) { type = ARRAY; Array *plane_array = memnew_placement(_data._mem, Array); plane_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { plane_array->operator[](i) = Variant(p_array[i]); } } Variant::Variant(const Vector<::RID> &p_array) { type = ARRAY; Array *rid_array = memnew_placement(_data._mem, Array); rid_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { rid_array->set(i, Variant(p_array[i])); } } Variant::Variant(const Vector<uint8_t> &p_byte_array) { type = PACKED_BYTE_ARRAY; _data.packed_array = PackedArrayRef<uint8_t>::create(p_byte_array); } Variant::Variant(const Vector<int32_t> &p_int32_array) { type = PACKED_INT32_ARRAY; _data.packed_array = PackedArrayRef<int32_t>::create(p_int32_array); } Variant::Variant(const Vector<int64_t> &p_int64_array) { type = PACKED_INT64_ARRAY; _data.packed_array = PackedArrayRef<int64_t>::create(p_int64_array); } Variant::Variant(const Vector<float> &p_float32_array) { type = PACKED_FLOAT32_ARRAY; _data.packed_array = PackedArrayRef<float>::create(p_float32_array); } Variant::Variant(const Vector<double> &p_float64_array) { type = PACKED_FLOAT64_ARRAY; _data.packed_array = PackedArrayRef<double>::create(p_float64_array); } Variant::Variant(const Vector<String> &p_string_array) { type = PACKED_STRING_ARRAY; _data.packed_array = PackedArrayRef<String>::create(p_string_array); } Variant::Variant(const Vector<Vector3> &p_vector3_array) { type = PACKED_VECTOR3_ARRAY; _data.packed_array = PackedArrayRef<Vector3>::create(p_vector3_array); } Variant::Variant(const Vector<Vector2> &p_vector2_array) { type = PACKED_VECTOR2_ARRAY; _data.packed_array = PackedArrayRef<Vector2>::create(p_vector2_array); } Variant::Variant(const Vector<Color> &p_color_array) { type = PACKED_COLOR_ARRAY; _data.packed_array = PackedArrayRef<Color>::create(p_color_array); } Variant::Variant(const Vector<Face3> &p_face_array) { Vector<Vector3> vertices; int face_count = p_face_array.size(); vertices.resize(face_count * 3); if (face_count) { const Face3 *r = p_face_array.ptr(); Vector3 *w = vertices.ptrw(); for (int i = 0; i < face_count; i++) { for (int j = 0; j < 3; j++) { w[i * 3 + j] = r[i].vertex[j]; } } } type = NIL; *this = vertices; } /* helpers */ Variant::Variant(const Vector<Variant> &p_array) { type = NIL; Array arr; arr.resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { arr[i] = p_array[i]; } *this = arr; } Variant::Variant(const Vector<StringName> &p_array) { type = NIL; Vector<String> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) { v.set(i, p_array[i]); } *this = v; } void Variant::operator=(const Variant &p_variant) { if (unlikely(this == &p_variant)) { return; } if (unlikely(type != p_variant.type)) { reference(p_variant); return; } switch (p_variant.type) { case NIL: { // none } break; // atomic types case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case FLOAT: { _data._float = p_variant._data._float; } break; case STRING: { *reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem); } break; // math types case VECTOR2: { *reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem); } break; case VECTOR2I: { *reinterpret_cast<Vector2i *>(_data._mem) = *reinterpret_cast<const Vector2i *>(p_variant._data._mem); } break; case RECT2: { *reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem); } break; case RECT2I: { *reinterpret_cast<Rect2i *>(_data._mem) = *reinterpret_cast<const Rect2i *>(p_variant._data._mem); } break; case TRANSFORM2D: { *_data._transform2d = *(p_variant._data._transform2d); } break; case VECTOR3: { *reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem); } break; case VECTOR3I: { *reinterpret_cast<Vector3i *>(_data._mem) = *reinterpret_cast<const Vector3i *>(p_variant._data._mem); } break; case PLANE: { *reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem); } break; case AABB: { *_data._aabb = *(p_variant._data._aabb); } break; case QUATERNION: { *reinterpret_cast<Quaternion *>(_data._mem) = *reinterpret_cast<const Quaternion *>(p_variant._data._mem); } break; case BASIS: { *_data._basis = *(p_variant._data._basis); } break; case TRANSFORM3D: { *_data._transform3d = *(p_variant._data._transform3d); } break; // misc types case COLOR: { *reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem); } break; case RID: { *reinterpret_cast<::RID *>(_data._mem) = *reinterpret_cast<const ::RID *>(p_variant._data._mem); } break; case OBJECT: { if (_get_obj().id.is_ref_counted()) { //we are safe that there is a reference here RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj); if (ref_counted->unreference()) { memdelete(ref_counted); } } if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) { RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj); if (!ref_counted->reference()) { _get_obj().obj = nullptr; _get_obj().id = ObjectID(); break; } } _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj); _get_obj().id = p_variant._get_obj().id; } break; case CALLABLE: { *reinterpret_cast<Callable *>(_data._mem) = *reinterpret_cast<const Callable *>(p_variant._data._mem); } break; case SIGNAL: { *reinterpret_cast<Signal *>(_data._mem) = *reinterpret_cast<const Signal *>(p_variant._data._mem); } break; case STRING_NAME: { *reinterpret_cast<StringName *>(_data._mem) = *reinterpret_cast<const StringName *>(p_variant._data._mem); } break; case NODE_PATH: { *reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem); } break; case DICTIONARY: { *reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem); } break; case ARRAY: { *reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem); } break; // arrays case PACKED_BYTE_ARRAY: { _data.packed_array = PackedArrayRef<uint8_t>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_INT32_ARRAY: { _data.packed_array = PackedArrayRef<int32_t>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_INT64_ARRAY: { _data.packed_array = PackedArrayRef<int64_t>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_FLOAT32_ARRAY: { _data.packed_array = PackedArrayRef<float>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_FLOAT64_ARRAY: { _data.packed_array = PackedArrayRef<double>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_STRING_ARRAY: { _data.packed_array = PackedArrayRef<String>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_VECTOR2_ARRAY: { _data.packed_array = PackedArrayRef<Vector2>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_VECTOR3_ARRAY: { _data.packed_array = PackedArrayRef<Vector3>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; case PACKED_COLOR_ARRAY: { _data.packed_array = PackedArrayRef<Color>::reference_from(_data.packed_array, p_variant._data.packed_array); } break; default: { } } } Variant::Variant(const IPAddress &p_address) { type = STRING; memnew_placement(_data._mem, String(p_address)); } Variant::Variant(const Variant &p_variant) { reference(p_variant); } uint32_t Variant::hash() const { return recursive_hash(0); } uint32_t Variant::recursive_hash(int recursion_count) const { switch (type) { case NIL: { return 0; } break; case BOOL: { return _data._bool ? 1 : 0; } break; case INT: { return hash_one_uint64((uint64_t)_data._int); } break; case FLOAT: { return hash_djb2_one_float(_data._float); } break; case STRING: { return reinterpret_cast<const String *>(_data._mem)->hash(); } break; // math types case VECTOR2: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->x); return hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->y, hash); } break; case VECTOR2I: { uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->x); return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->y, hash); } break; case RECT2: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.x); hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.x, hash); return hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.y, hash); } break; case RECT2I: { uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.x); hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.y, hash); hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.x, hash); return hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.y, hash); } break; case TRANSFORM2D: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { hash = hash_djb2_one_float(_data._transform2d->elements[i][j], hash); } } return hash; } break; case VECTOR3: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->x); hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->y, hash); return hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->z, hash); } break; case VECTOR3I: { uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->x); hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->y, hash); return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->z, hash); } break; case PLANE: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.x); hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.z, hash); return hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->d, hash); } break; case AABB: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { hash = hash_djb2_one_float(_data._aabb->position[i], hash); hash = hash_djb2_one_float(_data._aabb->size[i], hash); } return hash; } break; case QUATERNION: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->x); hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->z, hash); return hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->w, hash); } break; case BASIS: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { hash = hash_djb2_one_float(_data._basis->elements[i][j], hash); } } return hash; } break; case TRANSFORM3D: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { hash = hash_djb2_one_float(_data._transform3d->basis.elements[i][j], hash); } hash = hash_djb2_one_float(_data._transform3d->origin[i], hash); } return hash; } break; // misc types case COLOR: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->r); hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->g, hash); hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->b, hash); return hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->a, hash); } break; case RID: { return hash_djb2_one_64(reinterpret_cast<const ::RID *>(_data._mem)->get_id()); } break; case OBJECT: { return hash_djb2_one_64(make_uint64_t(_get_obj().obj)); } break; case STRING_NAME: { return reinterpret_cast<const StringName *>(_data._mem)->hash(); } break; case NODE_PATH: { return reinterpret_cast<const NodePath *>(_data._mem)->hash(); } break; case DICTIONARY: { return reinterpret_cast<const Dictionary *>(_data._mem)->recursive_hash(recursion_count); } break; case CALLABLE: { return reinterpret_cast<const Callable *>(_data._mem)->hash(); } break; case SIGNAL: { const Signal &s = *reinterpret_cast<const Signal *>(_data._mem); uint32_t hash = s.get_name().hash(); return hash_djb2_one_64(s.get_object_id(), hash); } break; case ARRAY: { const Array &arr = *reinterpret_cast<const Array *>(_data._mem); return arr.recursive_hash(recursion_count); } break; case PACKED_BYTE_ARRAY: { const Vector<uint8_t> &arr = PackedArrayRef<uint8_t>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const uint8_t *r = arr.ptr(); return hash_djb2_buffer((uint8_t *)&r[0], len); } else { return hash_djb2_one_64(0); } } break; case PACKED_INT32_ARRAY: { const Vector<int32_t> &arr = PackedArrayRef<int32_t>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const int32_t *r = arr.ptr(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int32_t)); } else { return hash_djb2_one_64(0); } } break; case PACKED_INT64_ARRAY: { const Vector<int64_t> &arr = PackedArrayRef<int64_t>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const int64_t *r = arr.ptr(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int64_t)); } else { return hash_djb2_one_64(0); } } break; case PACKED_FLOAT32_ARRAY: { const Vector<float> &arr = PackedArrayRef<float>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const float *r = arr.ptr(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(float)); } else { return hash_djb2_one_float(0.0); } } break; case PACKED_FLOAT64_ARRAY: { const Vector<double> &arr = PackedArrayRef<double>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const double *r = arr.ptr(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(double)); } else { return hash_djb2_one_float(0.0); } } break; case PACKED_STRING_ARRAY: { uint32_t hash = 5831; const Vector<String> &arr = PackedArrayRef<String>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const String *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_32(r[i].hash(), hash); } } return hash; } break; case PACKED_VECTOR2_ARRAY: { uint32_t hash = 5831; const Vector<Vector2> &arr = PackedArrayRef<Vector2>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Vector2 *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].x, hash); hash = hash_djb2_one_float(r[i].y, hash); } } return hash; } break; case PACKED_VECTOR3_ARRAY: { uint32_t hash = 5831; const Vector<Vector3> &arr = PackedArrayRef<Vector3>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Vector3 *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].x, hash); hash = hash_djb2_one_float(r[i].y, hash); hash = hash_djb2_one_float(r[i].z, hash); } } return hash; } break; case PACKED_COLOR_ARRAY: { uint32_t hash = 5831; const Vector<Color> &arr = PackedArrayRef<Color>::get_array(_data.packed_array); int len = arr.size(); if (likely(len)) { const Color *r = arr.ptr(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].r, hash); hash = hash_djb2_one_float(r[i].g, hash); hash = hash_djb2_one_float(r[i].b, hash); hash = hash_djb2_one_float(r[i].a, hash); } } return hash; } break; default: { } } return 0; } #define hash_compare_scalar(p_lhs, p_rhs) \ ((p_lhs) == (p_rhs)) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs)) #define hash_compare_vector2(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) #define hash_compare_vector3(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \ (hash_compare_scalar((p_lhs).z, (p_rhs).z)) #define hash_compare_quaternion(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \ (hash_compare_scalar((p_lhs).z, (p_rhs).z)) && \ (hash_compare_scalar((p_lhs).w, (p_rhs).w)) #define hash_compare_color(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).r, (p_rhs).r)) && \ (hash_compare_scalar((p_lhs).g, (p_rhs).g)) && \ (hash_compare_scalar((p_lhs).b, (p_rhs).b)) && \ (hash_compare_scalar((p_lhs).a, (p_rhs).a)) #define hash_compare_packed_array(p_lhs, p_rhs, p_type, p_compare_func) \ const Vector<p_type> &l = PackedArrayRef<p_type>::get_array(p_lhs); \ const Vector<p_type> &r = PackedArrayRef<p_type>::get_array(p_rhs); \ \ if (l.size() != r.size()) \ return false; \ \ const p_type *lr = l.ptr(); \ const p_type *rr = r.ptr(); \ \ for (int i = 0; i < l.size(); ++i) { \ if (!p_compare_func((lr[i]), (rr[i]))) \ return false; \ } \ \ return true bool Variant::hash_compare(const Variant &p_variant, int recursion_count) const { if (type != p_variant.type) { return false; } switch (type) { case INT: { return _data._int == p_variant._data._int; } break; case FLOAT: { return hash_compare_scalar(_data._float, p_variant._data._float); } break; case STRING: { return *reinterpret_cast<const String *>(_data._mem) == *reinterpret_cast<const String *>(p_variant._data._mem); } break; case VECTOR2: { const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem); const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem); return hash_compare_vector2(*l, *r); } break; case VECTOR2I: { const Vector2i *l = reinterpret_cast<const Vector2i *>(_data._mem); const Vector2i *r = reinterpret_cast<const Vector2i *>(p_variant._data._mem); return *l == *r; } break; case RECT2: { const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem); const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem); return (hash_compare_vector2(l->position, r->position)) && (hash_compare_vector2(l->size, r->size)); } break; case RECT2I: { const Rect2i *l = reinterpret_cast<const Rect2i *>(_data._mem); const Rect2i *r = reinterpret_cast<const Rect2i *>(p_variant._data._mem); return *l == *r; } break; case TRANSFORM2D: { Transform2D *l = _data._transform2d; Transform2D *r = p_variant._data._transform2d; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector2(l->elements[i], r->elements[i]))) { return false; } } return true; } break; case VECTOR3: { const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem); const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem); return hash_compare_vector3(*l, *r); } break; case VECTOR3I: { const Vector3i *l = reinterpret_cast<const Vector3i *>(_data._mem); const Vector3i *r = reinterpret_cast<const Vector3i *>(p_variant._data._mem); return *l == *r; } break; case PLANE: { const Plane *l = reinterpret_cast<const Plane *>(_data._mem); const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem); return (hash_compare_vector3(l->normal, r->normal)) && (hash_compare_scalar(l->d, r->d)); } break; case AABB: { const ::AABB *l = _data._aabb; const ::AABB *r = p_variant._data._aabb; return (hash_compare_vector3(l->position, r->position) && (hash_compare_vector3(l->size, r->size))); } break; case QUATERNION: { const Quaternion *l = reinterpret_cast<const Quaternion *>(_data._mem); const Quaternion *r = reinterpret_cast<const Quaternion *>(p_variant._data._mem); return hash_compare_quaternion(*l, *r); } break; case BASIS: { const Basis *l = _data._basis; const Basis *r = p_variant._data._basis; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector3(l->elements[i], r->elements[i]))) { return false; } } return true; } break; case TRANSFORM3D: { const Transform3D *l = _data._transform3d; const Transform3D *r = p_variant._data._transform3d; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector3(l->basis.elements[i], r->basis.elements[i]))) { return false; } } return hash_compare_vector3(l->origin, r->origin); } break; case COLOR: { const Color *l = reinterpret_cast<const Color *>(_data._mem); const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem); return hash_compare_color(*l, *r); } break; case ARRAY: { const Array &l = *(reinterpret_cast<const Array *>(_data._mem)); const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem)); if (!l.recursive_equal(r, recursion_count + 1)) { return false; } return true; } break; case DICTIONARY: { const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem)); const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem)); if (!l.recursive_equal(r, recursion_count + 1)) { return false; } return true; } break; // This is for floating point comparisons only. case PACKED_FLOAT32_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, float, hash_compare_scalar); } break; case PACKED_FLOAT64_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, double, hash_compare_scalar); } break; case PACKED_VECTOR2_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector2, hash_compare_vector2); } break; case PACKED_VECTOR3_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector3, hash_compare_vector3); } break; case PACKED_COLOR_ARRAY: { hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Color, hash_compare_color); } break; default: bool v; Variant r; evaluate(OP_EQUAL, *this, p_variant, r, v); return r; } return false; } bool Variant::is_ref_counted() const { return type == OBJECT && _get_obj().id.is_ref_counted(); } Vector<Variant> varray() { return Vector<Variant>(); } Vector<Variant> varray(const Variant &p_arg1) { Vector<Variant> v; v.push_back(p_arg1); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); v.push_back(p_arg4); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); v.push_back(p_arg4); v.push_back(p_arg5); return v; } void Variant::static_assign(const Variant &p_variant) { } bool Variant::is_shared() const { switch (type) { case OBJECT: return true; case ARRAY: return true; case DICTIONARY: return true; default: { } } return false; } Variant Variant::call(const StringName &p_method, VARIANT_ARG_DECLARE) { VARIANT_ARGPTRS; int argc = 0; for (int i = 0; i < VARIANT_ARG_MAX; i++) { if (argptr[i]->get_type() == Variant::NIL) { break; } argc++; } Callable::CallError error; Variant ret; call(p_method, argptr, argc, ret, error); switch (error.error) { case Callable::CallError::CALL_ERROR_INVALID_ARGUMENT: { String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(Variant::Type(error.expected)) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case Callable::CallError::CALL_ERROR_INVALID_METHOD: { String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: { String err = "Too many arguments for method '" + p_method + "'"; ERR_PRINT(err.utf8().get_data()); } break; default: { } } return ret; } void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) { r_value = Variant(); } String Variant::get_construct_string() const { String vars; VariantWriter::write_to_string(*this, vars); return vars; } String Variant::get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { String err_text; if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) { int errorarg = ce.argument; if (p_argptrs) { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } else { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) { err_text = "Method not found."; } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) { err_text = "Instance is null"; } else if (ce.error == Callable::CallError::CALL_OK) { return "Call OK"; } return "'" + String(p_method) + "': " + err_text; } String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { String err_text; if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) { int errorarg = ce.argument; if (p_argptrs) { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } else { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) { err_text = "Method not found."; } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) { err_text = "Instance is null"; } else if (ce.error == Callable::CallError::CALL_OK) { return "Call OK"; } String class_name = p_base->get_class(); Ref<Resource> script = p_base->get_script(); if (script.is_valid() && script->get_path().is_resource_file()) { class_name += "(" + script->get_path().get_file() + ")"; } return "'" + class_name + "::" + String(p_method) + "': " + err_text; } String Variant::get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) { String err_text; if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) { int errorarg = ce.argument; if (p_argptrs) { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } else { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + "."; } } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) { err_text = "Method not found."; } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) { err_text = "Instance is null"; } else if (ce.error == Callable::CallError::CALL_OK) { return "Call OK"; } return String(p_callable) + " : " + err_text; } String vformat(const String &p_text, const Variant &p1, const Variant &p2, const Variant &p3, const Variant &p4, const Variant &p5) { Array args; if (p1.get_type() != Variant::NIL) { args.push_back(p1); if (p2.get_type() != Variant::NIL) { args.push_back(p2); if (p3.get_type() != Variant::NIL) { args.push_back(p3); if (p4.get_type() != Variant::NIL) { args.push_back(p4); if (p5.get_type() != Variant::NIL) { args.push_back(p5); } } } } } bool error = false; String fmt = p_text.sprintf(args, &error); ERR_FAIL_COND_V_MSG(error, String(), fmt); return fmt; } void Variant::register_types() { _register_variant_operators(); _register_variant_methods(); _register_variant_setters_getters(); _register_variant_constructors(); _register_variant_destructors(); _register_variant_utility_functions(); } void Variant::unregister_types() { _unregister_variant_operators(); _unregister_variant_methods(); _unregister_variant_setters_getters(); _unregister_variant_destructors(); _unregister_variant_utility_functions(); }