/*************************************************************************/ /* array.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "array.h" #include "container_type_validate.h" #include "core/object/class_db.h" #include "core/object/script_language.h" #include "core/templates/hashfuncs.h" #include "core/templates/search_array.h" #include "core/templates/vector.h" #include "core/variant/callable.h" #include "core/variant/variant.h" class ArrayPrivate { public: SafeRefCount refcount; Vector array; Variant *read_only = nullptr; // If enabled, a pointer is used to a temporary value that is used to return read-only values. ContainerTypeValidate typed; }; void Array::_ref(const Array &p_from) const { ArrayPrivate *_fp = p_from._p; ERR_FAIL_COND(!_fp); // should NOT happen. if (unlikely(_fp->read_only != nullptr)) { // If p_from is a read-only array, just copy the contents to avoid further modification. _unref(); _p = memnew(ArrayPrivate); _p->refcount.init(); _p->array = _fp->array; _p->typed = _fp->typed; return; } if (_fp == _p) { return; // whatever it is, nothing to do here move along } bool success = _fp->refcount.ref(); ERR_FAIL_COND(!success); // should really not happen either _unref(); _p = p_from._p; } void Array::_unref() const { if (!_p) { return; } if (_p->refcount.unref()) { if (_p->read_only) { memdelete(_p->read_only); } memdelete(_p); } _p = nullptr; } Variant &Array::operator[](int p_idx) { if (unlikely(_p->read_only)) { *_p->read_only = _p->array[p_idx]; return *_p->read_only; } return _p->array.write[p_idx]; } const Variant &Array::operator[](int p_idx) const { if (unlikely(_p->read_only)) { *_p->read_only = _p->array[p_idx]; return *_p->read_only; } return _p->array[p_idx]; } int Array::size() const { return _p->array.size(); } bool Array::is_empty() const { return _p->array.is_empty(); } void Array::clear() { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); _p->array.clear(); } bool Array::operator==(const Array &p_array) const { return recursive_equal(p_array, 0); } bool Array::operator!=(const Array &p_array) const { return !recursive_equal(p_array, 0); } bool Array::recursive_equal(const Array &p_array, int recursion_count) const { // Cheap checks if (_p == p_array._p) { return true; } const Vector &a1 = _p->array; const Vector &a2 = p_array._p->array; const int size = a1.size(); if (size != a2.size()) { return false; } // Heavy O(n) check if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return true; } recursion_count++; for (int i = 0; i < size; i++) { if (!a1[i].hash_compare(a2[i], recursion_count)) { return false; } } return true; } bool Array::operator<(const Array &p_array) const { int a_len = size(); int b_len = p_array.size(); int min_cmp = MIN(a_len, b_len); for (int i = 0; i < min_cmp; i++) { if (operator[](i) < p_array[i]) { return true; } else if (p_array[i] < operator[](i)) { return false; } } return a_len < b_len; } bool Array::operator<=(const Array &p_array) const { return !operator>(p_array); } bool Array::operator>(const Array &p_array) const { return p_array < *this; } bool Array::operator>=(const Array &p_array) const { return !operator<(p_array); } uint32_t Array::hash() const { return recursive_hash(0); } uint32_t Array::recursive_hash(int recursion_count) const { if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return 0; } uint32_t h = hash_djb2_one_32(Variant::ARRAY); recursion_count++; for (int i = 0; i < _p->array.size(); i++) { h = hash_djb2_one_32(_p->array[i].recursive_hash(recursion_count), h); } return h; } bool Array::_assign(const Array &p_array) { if (_p->typed.type != Variant::OBJECT && _p->typed.type == p_array._p->typed.type) { //same type or untyped, just reference, should be fine _ref(p_array); } else if (_p->typed.type == Variant::NIL) { //from typed to untyped, must copy, but this is cheap anyway _p->array = p_array._p->array; } else if (p_array._p->typed.type == Variant::NIL) { //from untyped to typed, must try to check if they are all valid if (_p->typed.type == Variant::OBJECT) { //for objects, it needs full validation, either can be converted or fail for (int i = 0; i < p_array._p->array.size(); i++) { if (!_p->typed.validate(p_array._p->array[i], "assign")) { return false; } } _p->array = p_array._p->array; //then just copy, which is cheap anyway } else { //for non objects, we need to check if there is a valid conversion, which needs to happen one by one, so this is the worst case. Vector new_array; new_array.resize(p_array._p->array.size()); for (int i = 0; i < p_array._p->array.size(); i++) { Variant src_val = p_array._p->array[i]; if (src_val.get_type() == _p->typed.type) { new_array.write[i] = src_val; } else if (Variant::can_convert_strict(src_val.get_type(), _p->typed.type)) { Variant *ptr = &src_val; Callable::CallError ce; Variant::construct(_p->typed.type, new_array.write[i], (const Variant **)&ptr, 1, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'."); } } else { ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'."); } } _p->array = new_array; } } else if (_p->typed.can_reference(p_array._p->typed)) { //same type or compatible _ref(p_array); } else { ERR_FAIL_V_MSG(false, "Assignment of arrays of incompatible types."); } return true; } void Array::operator=(const Array &p_array) { if (this == &p_array) { return; } _ref(p_array); } void Array::push_back(const Variant &p_value) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_value, "push_back")); _p->array.push_back(p_value); } void Array::append_array(const Array &p_array) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_array, "append_array")); _p->array.append_array(p_array._p->array); } Error Array::resize(int p_new_size) { ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state."); return _p->array.resize(p_new_size); } Error Array::insert(int p_pos, const Variant &p_value) { ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state."); ERR_FAIL_COND_V(!_p->typed.validate(p_value, "insert"), ERR_INVALID_PARAMETER); return _p->array.insert(p_pos, p_value); } void Array::fill(const Variant &p_value) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_value, "fill")); _p->array.fill(p_value); } void Array::erase(const Variant &p_value) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_value, "erase")); _p->array.erase(p_value); } Variant Array::front() const { ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array."); return operator[](0); } Variant Array::back() const { ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array."); return operator[](_p->array.size() - 1); } int Array::find(const Variant &p_value, int p_from) const { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find"), -1); return _p->array.find(p_value, p_from); } int Array::rfind(const Variant &p_value, int p_from) const { if (_p->array.size() == 0) { return -1; } ERR_FAIL_COND_V(!_p->typed.validate(p_value, "rfind"), -1); if (p_from < 0) { // Relative offset from the end p_from = _p->array.size() + p_from; } if (p_from < 0 || p_from >= _p->array.size()) { // Limit to array boundaries p_from = _p->array.size() - 1; } for (int i = p_from; i >= 0; i--) { if (_p->array[i] == p_value) { return i; } } return -1; } int Array::find_last(const Variant &p_value) const { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find_last"), -1); return rfind(p_value); } int Array::count(const Variant &p_value) const { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "count"), 0); if (_p->array.size() == 0) { return 0; } int amount = 0; for (int i = 0; i < _p->array.size(); i++) { if (_p->array[i] == p_value) { amount++; } } return amount; } bool Array::has(const Variant &p_value) const { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "use 'has'"), false); return _p->array.find(p_value, 0) != -1; } void Array::remove_at(int p_pos) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); _p->array.remove_at(p_pos); } void Array::set(int p_idx, const Variant &p_value) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_value, "set")); operator[](p_idx) = p_value; } const Variant &Array::get(int p_idx) const { return operator[](p_idx); } Array Array::duplicate(bool p_deep) const { return recursive_duplicate(p_deep, 0); } Array Array::recursive_duplicate(bool p_deep, int recursion_count) const { Array new_arr; if (recursion_count > MAX_RECURSION) { ERR_PRINT("Max recursion reached"); return new_arr; } int element_count = size(); new_arr.resize(element_count); new_arr._p->typed = _p->typed; if (p_deep) { recursion_count++; for (int i = 0; i < element_count; i++) { new_arr[i] = get(i).recursive_duplicate(true, recursion_count); } } else { for (int i = 0; i < element_count; i++) { new_arr[i] = get(i); } } return new_arr; } Array Array::slice(int p_begin, int p_end, int p_step, bool p_deep) const { Array result; ERR_FAIL_COND_V_MSG(p_step == 0, result, "Slice step cannot be zero."); const int s = size(); int begin = CLAMP(p_begin, -s, s); if (begin < 0) { begin += s; } int end = CLAMP(p_end, -s, s); if (end < 0) { end += s; } ERR_FAIL_COND_V_MSG(p_step > 0 && begin > end, result, "Slice is positive, but bounds is decreasing."); ERR_FAIL_COND_V_MSG(p_step < 0 && begin < end, result, "Slice is negative, but bounds is increasing."); int result_size = (end - begin) / p_step; result.resize(result_size); for (int src_idx = begin, dest_idx = 0; dest_idx < result_size; ++dest_idx) { result[dest_idx] = p_deep ? get(src_idx).duplicate(true) : get(src_idx); src_idx += p_step; } return result; } Array Array::filter(const Callable &p_callable) const { Array new_arr; new_arr.resize(size()); int accepted_count = 0; const Variant *argptrs[1]; for (int i = 0; i < size(); i++) { argptrs[0] = &get(i); Variant result; Callable::CallError ce; p_callable.call(argptrs, 1, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(Array(), "Error calling method from 'filter': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce)); } if (result.operator bool()) { new_arr[accepted_count] = get(i); accepted_count++; } } new_arr.resize(accepted_count); return new_arr; } Array Array::map(const Callable &p_callable) const { Array new_arr; new_arr.resize(size()); const Variant *argptrs[1]; for (int i = 0; i < size(); i++) { argptrs[0] = &get(i); Variant result; Callable::CallError ce; p_callable.call(argptrs, 1, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(Array(), "Error calling method from 'map': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce)); } new_arr[i] = result; } return new_arr; } Variant Array::reduce(const Callable &p_callable, const Variant &p_accum) const { int start = 0; Variant ret = p_accum; if (ret == Variant() && size() > 0) { ret = front(); start = 1; } const Variant *argptrs[2]; for (int i = start; i < size(); i++) { argptrs[0] = &ret; argptrs[1] = &get(i); Variant result; Callable::CallError ce; p_callable.call(argptrs, 2, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(Variant(), "Error calling method from 'reduce': " + Variant::get_callable_error_text(p_callable, argptrs, 2, ce)); } ret = result; } return ret; } bool Array::any(const Callable &p_callable) const { const Variant *argptrs[1]; for (int i = 0; i < size(); i++) { argptrs[0] = &get(i); Variant result; Callable::CallError ce; p_callable.call(argptrs, 1, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(false, "Error calling method from 'any': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce)); } if (result.operator bool()) { // Return as early as possible when one of the conditions is `true`. // This improves performance compared to relying on `filter(...).size() >= 1`. return true; } } return false; } bool Array::all(const Callable &p_callable) const { const Variant *argptrs[1]; for (int i = 0; i < size(); i++) { argptrs[0] = &get(i); Variant result; Callable::CallError ce; p_callable.call(argptrs, 1, result, ce); if (ce.error != Callable::CallError::CALL_OK) { ERR_FAIL_V_MSG(false, "Error calling method from 'all': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce)); } if (!(result.operator bool())) { // Return as early as possible when one of the inverted conditions is `false`. // This improves performance compared to relying on `filter(...).size() >= array_size().`. return false; } } return true; } struct _ArrayVariantSort { _FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const { bool valid = false; Variant res; Variant::evaluate(Variant::OP_LESS, p_l, p_r, res, valid); if (!valid) { res = false; } return res; } }; void Array::sort() { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); _p->array.sort_custom<_ArrayVariantSort>(); } void Array::sort_custom(const Callable &p_callable) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); _p->array.sort_custom(p_callable); } void Array::shuffle() { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); const int n = _p->array.size(); if (n < 2) { return; } Variant *data = _p->array.ptrw(); for (int i = n - 1; i >= 1; i--) { const int j = Math::rand() % (i + 1); const Variant tmp = data[j]; data[j] = data[i]; data[i] = tmp; } } int Array::bsearch(const Variant &p_value, bool p_before) { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "binary search"), -1); SearchArray avs; return avs.bisect(_p->array.ptrw(), _p->array.size(), p_value, p_before); } int Array::bsearch_custom(const Variant &p_value, const Callable &p_callable, bool p_before) { ERR_FAIL_COND_V(!_p->typed.validate(p_value, "custom binary search"), -1); return _p->array.bsearch_custom(p_value, p_before, p_callable); } void Array::reverse() { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); _p->array.reverse(); } void Array::push_front(const Variant &p_value) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND(!_p->typed.validate(p_value, "push_front")); _p->array.insert(0, p_value); } Variant Array::pop_back() { ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state."); if (!_p->array.is_empty()) { const int n = _p->array.size() - 1; const Variant ret = _p->array.get(n); _p->array.resize(n); return ret; } return Variant(); } Variant Array::pop_front() { ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state."); if (!_p->array.is_empty()) { const Variant ret = _p->array.get(0); _p->array.remove_at(0); return ret; } return Variant(); } Variant Array::pop_at(int p_pos) { ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state."); if (_p->array.is_empty()) { // Return `null` without printing an error to mimic `pop_back()` and `pop_front()` behavior. return Variant(); } if (p_pos < 0) { // Relative offset from the end p_pos = _p->array.size() + p_pos; } ERR_FAIL_INDEX_V_MSG( p_pos, _p->array.size(), Variant(), vformat( "The calculated index %s is out of bounds (the array has %s elements). Leaving the array untouched and returning `null`.", p_pos, _p->array.size())); const Variant ret = _p->array.get(p_pos); _p->array.remove_at(p_pos); return ret; } Variant Array::min() const { Variant minval; for (int i = 0; i < size(); i++) { if (i == 0) { minval = get(i); } else { bool valid; Variant ret; Variant test = get(i); Variant::evaluate(Variant::OP_LESS, test, minval, ret, valid); if (!valid) { return Variant(); //not a valid comparison } if (bool(ret)) { //is less minval = test; } } } return minval; } Variant Array::max() const { Variant maxval; for (int i = 0; i < size(); i++) { if (i == 0) { maxval = get(i); } else { bool valid; Variant ret; Variant test = get(i); Variant::evaluate(Variant::OP_GREATER, test, maxval, ret, valid); if (!valid) { return Variant(); //not a valid comparison } if (bool(ret)) { //is less maxval = test; } } } return maxval; } const void *Array::id() const { return _p; } Array::Array(const Array &p_from, uint32_t p_type, const StringName &p_class_name, const Variant &p_script) { _p = memnew(ArrayPrivate); _p->refcount.init(); set_typed(p_type, p_class_name, p_script); _assign(p_from); } bool Array::typed_assign(const Array &p_other) { return _assign(p_other); } void Array::set_typed(uint32_t p_type, const StringName &p_class_name, const Variant &p_script) { ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state."); ERR_FAIL_COND_MSG(_p->array.size() > 0, "Type can only be set when array is empty."); ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when array has no more than one user."); ERR_FAIL_COND_MSG(_p->typed.type != Variant::NIL, "Type can only be set once."); ERR_FAIL_COND_MSG(p_class_name != StringName() && p_type != Variant::OBJECT, "Class names can only be set for type OBJECT"); Ref