/*************************************************************************/ /* variant.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "variant.h" #include "core/core_string_names.h" #include "core/io/marshalls.h" #include "core/math/math_funcs.h" #include "core/print_string.h" #include "core/resource.h" #include "core/variant_parser.h" #include "scene/gui/control.h" #include "scene/main/node.h" String Variant::get_type_name(Variant::Type p_type) { switch (p_type) { case NIL: { return "Nil"; } break; // atomic types case BOOL: { return "bool"; } break; case INT: { return "int"; } break; case REAL: { return "float"; } break; case STRING: { return "String"; } break; // math types case VECTOR2: { return "Vector2"; } break; case RECT2: { return "Rect2"; } break; case TRANSFORM2D: { return "Transform2D"; } break; case VECTOR3: { return "Vector3"; } break; case PLANE: { return "Plane"; } break; /* case QUAT: { } break;*/ case AABB: { return "AABB"; } break; case QUAT: { return "Quat"; } break; case BASIS: { return "Basis"; } break; case TRANSFORM: { return "Transform"; } break; // misc types case COLOR: { return "Color"; } break; case _RID: { return "RID"; } break; case OBJECT: { return "Object"; } break; case NODE_PATH: { return "NodePath"; } break; case DICTIONARY: { return "Dictionary"; } break; case ARRAY: { return "Array"; } break; // arrays case POOL_BYTE_ARRAY: { return "PoolByteArray"; } break; case POOL_INT_ARRAY: { return "PoolIntArray"; } break; case POOL_REAL_ARRAY: { return "PoolRealArray"; } break; case POOL_STRING_ARRAY: { return "PoolStringArray"; } break; case POOL_VECTOR2_ARRAY: { return "PoolVector2Array"; } break; case POOL_VECTOR3_ARRAY: { return "PoolVector3Array"; } break; case POOL_COLOR_ARRAY: { return "PoolColorArray"; } break; default: { } } return ""; } bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) return true; if (p_type_to == NIL && p_type_from != NIL) //nil can convert to anything return true; if (p_type_from == NIL) { return (p_type_to == OBJECT); }; const Type *valid_types = NULL; const Type *invalid_types = NULL; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, REAL, STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, REAL, STRING, NIL, }; valid_types = valid; } break; case REAL: { static const Type valid[] = { BOOL, INT, STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type invalid[] = { OBJECT, NIL }; invalid_types = invalid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM, NIL }; valid_types = valid; } break; case QUAT: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUAT, VECTOR3, NIL }; valid_types = valid; } break; case TRANSFORM: { static const Type valid[] = { TRANSFORM2D, QUAT, BASIS, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case _RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { POOL_BYTE_ARRAY, POOL_INT_ARRAY, POOL_STRING_ARRAY, POOL_REAL_ARRAY, POOL_COLOR_ARRAY, POOL_VECTOR2_ARRAY, POOL_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case POOL_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_INT_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_REAL_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) return true; i++; } } else if (invalid_types) { int i = 0; while (invalid_types[i] != NIL) { if (p_type_from == invalid_types[i]) return false; i++; } return true; } return false; } bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) { if (p_type_from == p_type_to) return true; if (p_type_to == NIL && p_type_from != NIL) //nil can convert to anything return true; if (p_type_from == NIL) { return (p_type_to == OBJECT); }; const Type *valid_types = NULL; switch (p_type_to) { case BOOL: { static const Type valid[] = { INT, REAL, //STRING, NIL, }; valid_types = valid; } break; case INT: { static const Type valid[] = { BOOL, REAL, //STRING, NIL, }; valid_types = valid; } break; case REAL: { static const Type valid[] = { BOOL, INT, //STRING, NIL, }; valid_types = valid; } break; case STRING: { static const Type valid[] = { NODE_PATH, NIL }; valid_types = valid; } break; case TRANSFORM2D: { static const Type valid[] = { TRANSFORM, NIL }; valid_types = valid; } break; case QUAT: { static const Type valid[] = { BASIS, NIL }; valid_types = valid; } break; case BASIS: { static const Type valid[] = { QUAT, VECTOR3, NIL }; valid_types = valid; } break; case TRANSFORM: { static const Type valid[] = { TRANSFORM2D, QUAT, BASIS, NIL }; valid_types = valid; } break; case COLOR: { static const Type valid[] = { STRING, INT, NIL, }; valid_types = valid; } break; case _RID: { static const Type valid[] = { OBJECT, NIL }; valid_types = valid; } break; case OBJECT: { static const Type valid[] = { NIL }; valid_types = valid; } break; case NODE_PATH: { static const Type valid[] = { STRING, NIL }; valid_types = valid; } break; case ARRAY: { static const Type valid[] = { POOL_BYTE_ARRAY, POOL_INT_ARRAY, POOL_STRING_ARRAY, POOL_REAL_ARRAY, POOL_COLOR_ARRAY, POOL_VECTOR2_ARRAY, POOL_VECTOR3_ARRAY, NIL }; valid_types = valid; } break; // arrays case POOL_BYTE_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_INT_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_REAL_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_STRING_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_VECTOR2_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_VECTOR3_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; case POOL_COLOR_ARRAY: { static const Type valid[] = { ARRAY, NIL }; valid_types = valid; } break; default: { } } if (valid_types) { int i = 0; while (valid_types[i] != NIL) { if (p_type_from == valid_types[i]) return true; i++; } } return false; } bool Variant::operator==(const Variant &p_variant) const { if (type != p_variant.type) //evaluation of operator== needs to be more strict return false; bool v; Variant r; evaluate(OP_EQUAL, *this, p_variant, r, v); return r; } bool Variant::operator!=(const Variant &p_variant) const { if (type != p_variant.type) //evaluation of operator== needs to be more strict return true; bool v; Variant r; evaluate(OP_NOT_EQUAL, *this, p_variant, r, v); return r; } bool Variant::operator<(const Variant &p_variant) const { if (type != p_variant.type) //if types differ, then order by type first return type < p_variant.type; bool v; Variant r; evaluate(OP_LESS, *this, p_variant, r, v); return r; } bool Variant::is_zero() const { switch (type) { case NIL: { return true; } break; // atomic types case BOOL: { return !(_data._bool); } break; case INT: { return _data._int == 0; } break; case REAL: { return _data._real == 0; } break; case STRING: { return *reinterpret_cast<const String *>(_data._mem) == String(); } break; // math types case VECTOR2: { return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(); } break; case RECT2: { return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(); } break; case TRANSFORM2D: { return *_data._transform2d == Transform2D(); } break; case VECTOR3: { return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(); } break; case PLANE: { return *reinterpret_cast<const Plane *>(_data._mem) == Plane(); } break; /* case QUAT: { } break;*/ case AABB: { return *_data._aabb == ::AABB(); } break; case QUAT: { return *reinterpret_cast<const Quat *>(_data._mem) == Quat(); } break; case BASIS: { return *_data._basis == Basis(); } break; case TRANSFORM: { return *_data._transform == Transform(); } break; // misc types case COLOR: { return *reinterpret_cast<const Color *>(_data._mem) == Color(); } break; case _RID: { return *reinterpret_cast<const RID *>(_data._mem) == RID(); } break; case OBJECT: { return _get_obj().obj == NULL; } break; case NODE_PATH: { return reinterpret_cast<const NodePath *>(_data._mem)->is_empty(); } break; case DICTIONARY: { return reinterpret_cast<const Dictionary *>(_data._mem)->empty(); } break; case ARRAY: { return reinterpret_cast<const Array *>(_data._mem)->empty(); } break; // arrays case POOL_BYTE_ARRAY: { return reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem)->size() == 0; } break; case POOL_INT_ARRAY: { return reinterpret_cast<const PoolVector<int> *>(_data._mem)->size() == 0; } break; case POOL_REAL_ARRAY: { return reinterpret_cast<const PoolVector<real_t> *>(_data._mem)->size() == 0; } break; case POOL_STRING_ARRAY: { return reinterpret_cast<const PoolVector<String> *>(_data._mem)->size() == 0; } break; case POOL_VECTOR2_ARRAY: { return reinterpret_cast<const PoolVector<Vector2> *>(_data._mem)->size() == 0; } break; case POOL_VECTOR3_ARRAY: { return reinterpret_cast<const PoolVector<Vector3> *>(_data._mem)->size() == 0; } break; case POOL_COLOR_ARRAY: { return reinterpret_cast<const PoolVector<Color> *>(_data._mem)->size() == 0; } break; default: { } } return false; } bool Variant::is_one() const { switch (type) { case NIL: { return true; } break; // atomic types case BOOL: { return _data._bool; } break; case INT: { return _data._int == 1; } break; case REAL: { return _data._real == 1; } break; case VECTOR2: { return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1); } break; case RECT2: { return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1); } break; case VECTOR3: { return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1); } break; case PLANE: { return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1); } break; case COLOR: { return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1); } break; default: { return !is_zero(); } } return false; } void Variant::reference(const Variant &p_variant) { clear(); type = p_variant.type; switch (p_variant.type) { case NIL: { // none } break; // atomic types case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case REAL: { _data._real = p_variant._data._real; } break; case STRING: { memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem))); } break; // math types case VECTOR2: { memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem))); } break; case RECT2: { memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem))); } break; case TRANSFORM2D: { _data._transform2d = memnew(Transform2D(*p_variant._data._transform2d)); } break; case VECTOR3: { memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem))); } break; case PLANE: { memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem))); } break; case AABB: { _data._aabb = memnew(::AABB(*p_variant._data._aabb)); } break; case QUAT: { memnew_placement(_data._mem, Quat(*reinterpret_cast<const Quat *>(p_variant._data._mem))); } break; case BASIS: { _data._basis = memnew(Basis(*p_variant._data._basis)); } break; case TRANSFORM: { _data._transform = memnew(Transform(*p_variant._data._transform)); } break; // misc types case COLOR: { memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem))); } break; case _RID: { memnew_placement(_data._mem, RID(*reinterpret_cast<const RID *>(p_variant._data._mem))); } break; case OBJECT: { memnew_placement(_data._mem, ObjData(p_variant._get_obj())); } break; case NODE_PATH: { memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem))); } break; case DICTIONARY: { memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem))); } break; case ARRAY: { memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem))); } break; // arrays case POOL_BYTE_ARRAY: { memnew_placement(_data._mem, PoolVector<uint8_t>(*reinterpret_cast<const PoolVector<uint8_t> *>(p_variant._data._mem))); } break; case POOL_INT_ARRAY: { memnew_placement(_data._mem, PoolVector<int>(*reinterpret_cast<const PoolVector<int> *>(p_variant._data._mem))); } break; case POOL_REAL_ARRAY: { memnew_placement(_data._mem, PoolVector<real_t>(*reinterpret_cast<const PoolVector<real_t> *>(p_variant._data._mem))); } break; case POOL_STRING_ARRAY: { memnew_placement(_data._mem, PoolVector<String>(*reinterpret_cast<const PoolVector<String> *>(p_variant._data._mem))); } break; case POOL_VECTOR2_ARRAY: { memnew_placement(_data._mem, PoolVector<Vector2>(*reinterpret_cast<const PoolVector<Vector2> *>(p_variant._data._mem))); } break; case POOL_VECTOR3_ARRAY: { memnew_placement(_data._mem, PoolVector<Vector3>(*reinterpret_cast<const PoolVector<Vector3> *>(p_variant._data._mem))); } break; case POOL_COLOR_ARRAY: { memnew_placement(_data._mem, PoolVector<Color>(*reinterpret_cast<const PoolVector<Color> *>(p_variant._data._mem))); } break; default: { } } } void Variant::zero() { switch (type) { case NIL: break; case BOOL: this->_data._bool = false; break; case INT: this->_data._int = 0; break; case REAL: this->_data._real = 0; break; case VECTOR2: *reinterpret_cast<Vector2 *>(this->_data._mem) = Vector2(); break; case RECT2: *reinterpret_cast<Rect2 *>(this->_data._mem) = Rect2(); break; case VECTOR3: *reinterpret_cast<Vector3 *>(this->_data._mem) = Vector3(); break; case PLANE: *reinterpret_cast<Plane *>(this->_data._mem) = Plane(); break; case QUAT: *reinterpret_cast<Quat *>(this->_data._mem) = Quat(); break; case COLOR: *reinterpret_cast<Color *>(this->_data._mem) = Color(); break; default: this->clear(); break; } } void Variant::clear() { switch (type) { case STRING: { reinterpret_cast<String *>(_data._mem)->~String(); } break; /* // no point, they don't allocate memory VECTOR3, PLANE, QUAT, COLOR, VECTOR2, RECT2 */ case TRANSFORM2D: { memdelete(_data._transform2d); } break; case AABB: { memdelete(_data._aabb); } break; case BASIS: { memdelete(_data._basis); } break; case TRANSFORM: { memdelete(_data._transform); } break; // misc types case NODE_PATH: { reinterpret_cast<NodePath *>(_data._mem)->~NodePath(); } break; case OBJECT: { _get_obj().obj = NULL; _get_obj().ref.unref(); } break; case _RID: { // not much need probably reinterpret_cast<RID *>(_data._mem)->~RID(); } break; case DICTIONARY: { reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary(); } break; case ARRAY: { reinterpret_cast<Array *>(_data._mem)->~Array(); } break; // arrays case POOL_BYTE_ARRAY: { reinterpret_cast<PoolVector<uint8_t> *>(_data._mem)->~PoolVector<uint8_t>(); } break; case POOL_INT_ARRAY: { reinterpret_cast<PoolVector<int> *>(_data._mem)->~PoolVector<int>(); } break; case POOL_REAL_ARRAY: { reinterpret_cast<PoolVector<real_t> *>(_data._mem)->~PoolVector<real_t>(); } break; case POOL_STRING_ARRAY: { reinterpret_cast<PoolVector<String> *>(_data._mem)->~PoolVector<String>(); } break; case POOL_VECTOR2_ARRAY: { reinterpret_cast<PoolVector<Vector2> *>(_data._mem)->~PoolVector<Vector2>(); } break; case POOL_VECTOR3_ARRAY: { reinterpret_cast<PoolVector<Vector3> *>(_data._mem)->~PoolVector<Vector3>(); } break; case POOL_COLOR_ARRAY: { reinterpret_cast<PoolVector<Color> *>(_data._mem)->~PoolVector<Color>(); } break; default: { } /* not needed */ } type = NIL; } Variant::operator signed int() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned int() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator int64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int64(); default: { return 0; } } } /* Variant::operator long unsigned int() const { switch( type ) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } return 0; }; */ Variant::operator uint64_t() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } #ifdef NEED_LONG_INT Variant::operator signed long() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } return 0; }; Variant::operator unsigned long() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } return 0; }; #endif Variant::operator signed short() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned short() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator signed char() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator unsigned char() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1 : 0; case INT: return _data._int; case REAL: return _data._real; case STRING: return operator String().to_int(); default: { return 0; } } } Variant::operator CharType() const { return operator unsigned int(); } Variant::operator float() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (float)_data._int; case REAL: return _data._real; case STRING: return operator String().to_double(); default: { return 0; } } } Variant::operator double() const { switch (type) { case NIL: return 0; case BOOL: return _data._bool ? 1.0 : 0.0; case INT: return (double)_data._int; case REAL: return _data._real; case STRING: return operator String().to_double(); default: { return 0; } } } Variant::operator StringName() const { if (type == NODE_PATH) { return reinterpret_cast<const NodePath *>(_data._mem)->get_sname(); } return StringName(operator String()); } struct _VariantStrPair { String key; String value; bool operator<(const _VariantStrPair &p) const { return key < p.key; } }; Variant::operator String() const { List<const void *> stack; return stringify(stack); } String Variant::stringify(List<const void *> &stack) const { switch (type) { case NIL: return "Null"; case BOOL: return _data._bool ? "True" : "False"; case INT: return itos(_data._int); case REAL: return rtos(_data._real); case STRING: return *reinterpret_cast<const String *>(_data._mem); case VECTOR2: return "(" + operator Vector2() + ")"; case RECT2: return "(" + operator Rect2() + ")"; case TRANSFORM2D: { Transform2D mat32 = operator Transform2D(); return "(" + Variant(mat32.elements[0]).operator String() + ", " + Variant(mat32.elements[1]).operator String() + ", " + Variant(mat32.elements[2]).operator String() + ")"; } break; case VECTOR3: return "(" + operator Vector3() + ")"; case PLANE: return operator Plane(); //case QUAT: case AABB: return operator ::AABB(); case QUAT: return "(" + operator Quat() + ")"; case BASIS: { Basis mat3 = operator Basis(); String mtx("("); for (int i = 0; i < 3; i++) { if (i != 0) mtx += ", "; mtx += "("; for (int j = 0; j < 3; j++) { if (j != 0) mtx += ", "; mtx += Variant(mat3.elements[i][j]).operator String(); } mtx += ")"; } return mtx + ")"; } break; case TRANSFORM: return operator Transform(); case NODE_PATH: return operator NodePath(); case COLOR: return String::num(operator Color().r) + "," + String::num(operator Color().g) + "," + String::num(operator Color().b) + "," + String::num(operator Color().a); case DICTIONARY: { const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem); if (stack.find(d.id())) { return "{...}"; } stack.push_back(d.id()); //const String *K=NULL; String str("{"); List<Variant> keys; d.get_key_list(&keys); Vector<_VariantStrPair> pairs; for (List<Variant>::Element *E = keys.front(); E; E = E->next()) { _VariantStrPair sp; sp.key = E->get().stringify(stack); sp.value = d[E->get()].stringify(stack); pairs.push_back(sp); } pairs.sort(); for (int i = 0; i < pairs.size(); i++) { if (i > 0) str += ", "; str += pairs[i].key + ":" + pairs[i].value; } str += "}"; return str; } break; case POOL_VECTOR2_ARRAY: { PoolVector<Vector2> vec = operator PoolVector<Vector2>(); String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) str += ", "; str = str + Variant(vec[i]); } str += "]"; return str; } break; case POOL_VECTOR3_ARRAY: { PoolVector<Vector3> vec = operator PoolVector<Vector3>(); String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) str += ", "; str = str + Variant(vec[i]); } str += "]"; return str; } break; case POOL_STRING_ARRAY: { PoolVector<String> vec = operator PoolVector<String>(); String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) str += ", "; str = str + vec[i]; } str += "]"; return str; } break; case POOL_INT_ARRAY: { PoolVector<int> vec = operator PoolVector<int>(); String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) str += ", "; str = str + itos(vec[i]); } str += "]"; return str; } break; case POOL_REAL_ARRAY: { PoolVector<real_t> vec = operator PoolVector<real_t>(); String str("["); for (int i = 0; i < vec.size(); i++) { if (i > 0) str += ", "; str = str + rtos(vec[i]); } str += "]"; return str; } break; case ARRAY: { Array arr = operator Array(); if (stack.find(arr.id())) { return "[...]"; } stack.push_back(arr.id()); String str("["); for (int i = 0; i < arr.size(); i++) { if (i) str += ", "; str += arr[i].stringify(stack); } str += "]"; return str; } break; case OBJECT: { if (_get_obj().obj) { #ifdef DEBUG_ENABLED if (ScriptDebugger::get_singleton() && _get_obj().ref.is_null()) { //only if debugging! if (!ObjectDB::instance_validate(_get_obj().obj)) { return "[Deleted Object]"; }; }; #endif return _get_obj().obj->to_string(); } else return "[Object:null]"; } break; default: { return "[" + get_type_name(type) + "]"; } } return ""; } Variant::operator Vector2() const { if (type == VECTOR2) return *reinterpret_cast<const Vector2 *>(_data._mem); else if (type == VECTOR3) return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y); else return Vector2(); } Variant::operator Rect2() const { if (type == RECT2) return *reinterpret_cast<const Rect2 *>(_data._mem); else return Rect2(); } Variant::operator Vector3() const { if (type == VECTOR3) return *reinterpret_cast<const Vector3 *>(_data._mem); else if (type == VECTOR2) return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0); else return Vector3(); } Variant::operator Plane() const { if (type == PLANE) return *reinterpret_cast<const Plane *>(_data._mem); else return Plane(); } Variant::operator ::AABB() const { if (type == AABB) return *_data._aabb; else return ::AABB(); } Variant::operator Basis() const { if (type == BASIS) return *_data._basis; else if (type == QUAT) return *reinterpret_cast<const Quat *>(_data._mem); else if (type == VECTOR3) { return Basis(*reinterpret_cast<const Vector3 *>(_data._mem)); } else if (type == TRANSFORM) // unexposed in Variant::can_convert? return _data._transform->basis; else return Basis(); } Variant::operator Quat() const { if (type == QUAT) return *reinterpret_cast<const Quat *>(_data._mem); else if (type == BASIS) return *_data._basis; else if (type == TRANSFORM) return _data._transform->basis; else return Quat(); } Variant::operator Transform() const { if (type == TRANSFORM) return *_data._transform; else if (type == BASIS) return Transform(*_data._basis, Vector3()); else if (type == QUAT) return Transform(Basis(*reinterpret_cast<const Quat *>(_data._mem)), Vector3()); else if (type == TRANSFORM2D) { const Transform2D &t = *_data._transform2d; Transform m; m.basis.elements[0][0] = t.elements[0][0]; m.basis.elements[1][0] = t.elements[0][1]; m.basis.elements[0][1] = t.elements[1][0]; m.basis.elements[1][1] = t.elements[1][1]; m.origin[0] = t.elements[2][0]; m.origin[1] = t.elements[2][1]; return m; } else return Transform(); } Variant::operator Transform2D() const { if (type == TRANSFORM2D) { return *_data._transform2d; } else if (type == TRANSFORM) { const Transform &t = *_data._transform; Transform2D m; m.elements[0][0] = t.basis.elements[0][0]; m.elements[0][1] = t.basis.elements[1][0]; m.elements[1][0] = t.basis.elements[0][1]; m.elements[1][1] = t.basis.elements[1][1]; m.elements[2][0] = t.origin[0]; m.elements[2][1] = t.origin[1]; return m; } else return Transform2D(); } Variant::operator Color() const { if (type == COLOR) return *reinterpret_cast<const Color *>(_data._mem); else if (type == STRING) return Color::html(operator String()); else if (type == INT) return Color::hex(operator int()); else return Color(); } Variant::operator NodePath() const { if (type == NODE_PATH) return *reinterpret_cast<const NodePath *>(_data._mem); else if (type == STRING) return NodePath(operator String()); else return NodePath(); } Variant::operator RefPtr() const { if (type == OBJECT) return _get_obj().ref; else return RefPtr(); } Variant::operator RID() const { if (type == _RID) return *reinterpret_cast<const RID *>(_data._mem); else if (type == OBJECT && !_get_obj().ref.is_null()) { return _get_obj().ref.get_rid(); } else if (type == OBJECT && _get_obj().obj) { #ifdef DEBUG_ENABLED if (ScriptDebugger::get_singleton()) { if (!ObjectDB::instance_validate(_get_obj().obj)) { ERR_EXPLAIN("Invalid pointer (object was deleted)"); ERR_FAIL_V(RID()); }; }; #endif Variant::CallError ce; Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->get_rid, NULL, 0, ce); if (ce.error == Variant::CallError::CALL_OK && ret.get_type() == Variant::_RID) { return ret; } return RID(); } else { return RID(); } } Variant::operator Object *() const { if (type == OBJECT) return _get_obj().obj; else return NULL; } Variant::operator Node *() const { if (type == OBJECT) return Object::cast_to<Node>(_get_obj().obj); else return NULL; } Variant::operator Control *() const { if (type == OBJECT) return Object::cast_to<Control>(_get_obj().obj); else return NULL; } Variant::operator Dictionary() const { if (type == DICTIONARY) return *reinterpret_cast<const Dictionary *>(_data._mem); else return Dictionary(); } template <class DA, class SA> inline DA _convert_array(const SA &p_array) { DA da; da.resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { da.set(i, Variant(p_array.get(i))); } return da; } template <class DA> inline DA _convert_array_from_variant(const Variant &p_variant) { switch (p_variant.get_type()) { case Variant::ARRAY: { return _convert_array<DA, Array>(p_variant.operator Array()); } case Variant::POOL_BYTE_ARRAY: { return _convert_array<DA, PoolVector<uint8_t> >(p_variant.operator PoolVector<uint8_t>()); } case Variant::POOL_INT_ARRAY: { return _convert_array<DA, PoolVector<int> >(p_variant.operator PoolVector<int>()); } case Variant::POOL_REAL_ARRAY: { return _convert_array<DA, PoolVector<real_t> >(p_variant.operator PoolVector<real_t>()); } case Variant::POOL_STRING_ARRAY: { return _convert_array<DA, PoolVector<String> >(p_variant.operator PoolVector<String>()); } case Variant::POOL_VECTOR2_ARRAY: { return _convert_array<DA, PoolVector<Vector2> >(p_variant.operator PoolVector<Vector2>()); } case Variant::POOL_VECTOR3_ARRAY: { return _convert_array<DA, PoolVector<Vector3> >(p_variant.operator PoolVector<Vector3>()); } case Variant::POOL_COLOR_ARRAY: { return _convert_array<DA, PoolVector<Color> >(p_variant.operator PoolVector<Color>()); } default: { return DA(); } } } Variant::operator Array() const { if (type == ARRAY) return *reinterpret_cast<const Array *>(_data._mem); else return _convert_array_from_variant<Array>(*this); } Variant::operator PoolVector<uint8_t>() const { if (type == POOL_BYTE_ARRAY) return *reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem); else return _convert_array_from_variant<PoolVector<uint8_t> >(*this); } Variant::operator PoolVector<int>() const { if (type == POOL_INT_ARRAY) return *reinterpret_cast<const PoolVector<int> *>(_data._mem); else return _convert_array_from_variant<PoolVector<int> >(*this); } Variant::operator PoolVector<real_t>() const { if (type == POOL_REAL_ARRAY) return *reinterpret_cast<const PoolVector<real_t> *>(_data._mem); else return _convert_array_from_variant<PoolVector<real_t> >(*this); } Variant::operator PoolVector<String>() const { if (type == POOL_STRING_ARRAY) return *reinterpret_cast<const PoolVector<String> *>(_data._mem); else return _convert_array_from_variant<PoolVector<String> >(*this); } Variant::operator PoolVector<Vector3>() const { if (type == POOL_VECTOR3_ARRAY) return *reinterpret_cast<const PoolVector<Vector3> *>(_data._mem); else return _convert_array_from_variant<PoolVector<Vector3> >(*this); } Variant::operator PoolVector<Vector2>() const { if (type == POOL_VECTOR2_ARRAY) return *reinterpret_cast<const PoolVector<Vector2> *>(_data._mem); else return _convert_array_from_variant<PoolVector<Vector2> >(*this); } Variant::operator PoolVector<Color>() const { if (type == POOL_COLOR_ARRAY) return *reinterpret_cast<const PoolVector<Color> *>(_data._mem); else return _convert_array_from_variant<PoolVector<Color> >(*this); } /* helpers */ Variant::operator Vector<RID>() const { Array va = operator Array(); Vector<RID> rids; rids.resize(va.size()); for (int i = 0; i < rids.size(); i++) rids.write[i] = va[i]; return rids; } Variant::operator Vector<Vector2>() const { PoolVector<Vector2> from = operator PoolVector<Vector2>(); Vector<Vector2> to; int len = from.size(); if (len == 0) return Vector<Vector2>(); to.resize(len); PoolVector<Vector2>::Read r = from.read(); Vector2 *w = to.ptrw(); for (int i = 0; i < len; i++) { w[i] = r[i]; } return to; } Variant::operator PoolVector<Plane>() const { Array va = operator Array(); PoolVector<Plane> planes; int va_size = va.size(); if (va_size == 0) return planes; planes.resize(va_size); PoolVector<Plane>::Write w = planes.write(); for (int i = 0; i < va_size; i++) w[i] = va[i]; return planes; } Variant::operator PoolVector<Face3>() const { PoolVector<Vector3> va = operator PoolVector<Vector3>(); PoolVector<Face3> faces; int va_size = va.size(); if (va_size == 0) return faces; faces.resize(va_size / 3); PoolVector<Face3>::Write w = faces.write(); PoolVector<Vector3>::Read r = va.read(); for (int i = 0; i < va_size; i++) w[i / 3].vertex[i % 3] = r[i]; return faces; } Variant::operator Vector<Plane>() const { Array va = operator Array(); Vector<Plane> planes; int va_size = va.size(); if (va_size == 0) return planes; planes.resize(va_size); for (int i = 0; i < va_size; i++) planes.write[i] = va[i]; return planes; } Variant::operator Vector<Variant>() const { Array from = operator Array(); Vector<Variant> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<uint8_t>() const { PoolVector<uint8_t> from = operator PoolVector<uint8_t>(); Vector<uint8_t> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<int>() const { PoolVector<int> from = operator PoolVector<int>(); Vector<int> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<real_t>() const { PoolVector<real_t> from = operator PoolVector<real_t>(); Vector<real_t> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<String>() const { PoolVector<String> from = operator PoolVector<String>(); Vector<String> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<StringName>() const { PoolVector<String> from = operator PoolVector<String>(); Vector<StringName> to; int len = from.size(); to.resize(len); for (int i = 0; i < len; i++) { to.write[i] = from[i]; } return to; } Variant::operator Vector<Vector3>() const { PoolVector<Vector3> from = operator PoolVector<Vector3>(); Vector<Vector3> to; int len = from.size(); if (len == 0) return Vector<Vector3>(); to.resize(len); PoolVector<Vector3>::Read r = from.read(); Vector3 *w = to.ptrw(); for (int i = 0; i < len; i++) { w[i] = r[i]; } return to; } Variant::operator Vector<Color>() const { PoolVector<Color> from = operator PoolVector<Color>(); Vector<Color> to; int len = from.size(); if (len == 0) return Vector<Color>(); to.resize(len); PoolVector<Color>::Read r = from.read(); Color *w = to.ptrw(); for (int i = 0; i < len; i++) { w[i] = r[i]; } return to; } Variant::operator Margin() const { return (Margin) operator int(); } Variant::operator Orientation() const { return (Orientation) operator int(); } Variant::operator IP_Address() const { if (type == POOL_REAL_ARRAY || type == POOL_INT_ARRAY || type == POOL_BYTE_ARRAY) { PoolVector<int> addr = operator PoolVector<int>(); if (addr.size() == 4) { return IP_Address(addr.get(0), addr.get(1), addr.get(2), addr.get(3)); } } return IP_Address(operator String()); } Variant::Variant(bool p_bool) { type = BOOL; _data._bool = p_bool; } /* Variant::Variant(long unsigned int p_long) { type=INT; _data._int=p_long; }; */ Variant::Variant(signed int p_int) { type = INT; _data._int = p_int; } Variant::Variant(unsigned int p_int) { type = INT; _data._int = p_int; } #ifdef NEED_LONG_INT Variant::Variant(signed long p_int) { type = INT; _data._int = p_int; } Variant::Variant(unsigned long p_int) { type = INT; _data._int = p_int; } #endif Variant::Variant(int64_t p_int) { type = INT; _data._int = p_int; } Variant::Variant(uint64_t p_int) { type = INT; _data._int = p_int; } Variant::Variant(signed short p_short) { type = INT; _data._int = p_short; } Variant::Variant(unsigned short p_short) { type = INT; _data._int = p_short; } Variant::Variant(signed char p_char) { type = INT; _data._int = p_char; } Variant::Variant(unsigned char p_char) { type = INT; _data._int = p_char; } Variant::Variant(float p_float) { type = REAL; _data._real = p_float; } Variant::Variant(double p_double) { type = REAL; _data._real = p_double; } Variant::Variant(const StringName &p_string) { type = STRING; memnew_placement(_data._mem, String(p_string.operator String())); } Variant::Variant(const String &p_string) { type = STRING; memnew_placement(_data._mem, String(p_string)); } Variant::Variant(const char *const p_cstring) { type = STRING; memnew_placement(_data._mem, String((const char *)p_cstring)); } Variant::Variant(const CharType *p_wstring) { type = STRING; memnew_placement(_data._mem, String(p_wstring)); } Variant::Variant(const Vector3 &p_vector3) { type = VECTOR3; memnew_placement(_data._mem, Vector3(p_vector3)); } Variant::Variant(const Vector2 &p_vector2) { type = VECTOR2; memnew_placement(_data._mem, Vector2(p_vector2)); } Variant::Variant(const Rect2 &p_rect2) { type = RECT2; memnew_placement(_data._mem, Rect2(p_rect2)); } Variant::Variant(const Plane &p_plane) { type = PLANE; memnew_placement(_data._mem, Plane(p_plane)); } Variant::Variant(const ::AABB &p_aabb) { type = AABB; _data._aabb = memnew(::AABB(p_aabb)); } Variant::Variant(const Basis &p_matrix) { type = BASIS; _data._basis = memnew(Basis(p_matrix)); } Variant::Variant(const Quat &p_quat) { type = QUAT; memnew_placement(_data._mem, Quat(p_quat)); } Variant::Variant(const Transform &p_transform) { type = TRANSFORM; _data._transform = memnew(Transform(p_transform)); } Variant::Variant(const Transform2D &p_transform) { type = TRANSFORM2D; _data._transform2d = memnew(Transform2D(p_transform)); } Variant::Variant(const Color &p_color) { type = COLOR; memnew_placement(_data._mem, Color(p_color)); } Variant::Variant(const NodePath &p_node_path) { type = NODE_PATH; memnew_placement(_data._mem, NodePath(p_node_path)); } Variant::Variant(const RefPtr &p_resource) { type = OBJECT; memnew_placement(_data._mem, ObjData); REF *ref = reinterpret_cast<REF *>(p_resource.get_data()); _get_obj().obj = ref->ptr(); _get_obj().ref = p_resource; } Variant::Variant(const RID &p_rid) { type = _RID; memnew_placement(_data._mem, RID(p_rid)); } Variant::Variant(const Object *p_object) { type = OBJECT; memnew_placement(_data._mem, ObjData); _get_obj().obj = const_cast<Object *>(p_object); } Variant::Variant(const Dictionary &p_dictionary) { type = DICTIONARY; memnew_placement(_data._mem, Dictionary(p_dictionary)); } Variant::Variant(const Array &p_array) { type = ARRAY; memnew_placement(_data._mem, Array(p_array)); } Variant::Variant(const PoolVector<Plane> &p_array) { type = ARRAY; Array *plane_array = memnew_placement(_data._mem, Array); plane_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { plane_array->operator[](i) = Variant(p_array[i]); } } Variant::Variant(const Vector<Plane> &p_array) { type = ARRAY; Array *plane_array = memnew_placement(_data._mem, Array); plane_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { plane_array->operator[](i) = Variant(p_array[i]); } } Variant::Variant(const Vector<RID> &p_array) { type = ARRAY; Array *rid_array = memnew_placement(_data._mem, Array); rid_array->resize(p_array.size()); for (int i = 0; i < p_array.size(); i++) { rid_array->set(i, Variant(p_array[i])); } } Variant::Variant(const Vector<Vector2> &p_array) { type = NIL; PoolVector<Vector2> v; int len = p_array.size(); if (len > 0) { v.resize(len); PoolVector<Vector2>::Write w = v.write(); const Vector2 *r = p_array.ptr(); for (int i = 0; i < len; i++) w[i] = r[i]; } *this = v; } Variant::Variant(const PoolVector<uint8_t> &p_raw_array) { type = POOL_BYTE_ARRAY; memnew_placement(_data._mem, PoolVector<uint8_t>(p_raw_array)); } Variant::Variant(const PoolVector<int> &p_int_array) { type = POOL_INT_ARRAY; memnew_placement(_data._mem, PoolVector<int>(p_int_array)); } Variant::Variant(const PoolVector<real_t> &p_real_array) { type = POOL_REAL_ARRAY; memnew_placement(_data._mem, PoolVector<real_t>(p_real_array)); } Variant::Variant(const PoolVector<String> &p_string_array) { type = POOL_STRING_ARRAY; memnew_placement(_data._mem, PoolVector<String>(p_string_array)); } Variant::Variant(const PoolVector<Vector3> &p_vector3_array) { type = POOL_VECTOR3_ARRAY; memnew_placement(_data._mem, PoolVector<Vector3>(p_vector3_array)); } Variant::Variant(const PoolVector<Vector2> &p_vector2_array) { type = POOL_VECTOR2_ARRAY; memnew_placement(_data._mem, PoolVector<Vector2>(p_vector2_array)); } Variant::Variant(const PoolVector<Color> &p_color_array) { type = POOL_COLOR_ARRAY; memnew_placement(_data._mem, PoolVector<Color>(p_color_array)); } Variant::Variant(const PoolVector<Face3> &p_face_array) { PoolVector<Vector3> vertices; int face_count = p_face_array.size(); vertices.resize(face_count * 3); if (face_count) { PoolVector<Face3>::Read r = p_face_array.read(); PoolVector<Vector3>::Write w = vertices.write(); for (int i = 0; i < face_count; i++) { for (int j = 0; j < 3; j++) w[i * 3 + j] = r[i].vertex[j]; } } type = NIL; *this = vertices; } /* helpers */ Variant::Variant(const Vector<Variant> &p_array) { type = NIL; Array v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<uint8_t> &p_array) { type = NIL; PoolVector<uint8_t> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<int> &p_array) { type = NIL; PoolVector<int> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<real_t> &p_array) { type = NIL; PoolVector<real_t> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<String> &p_array) { type = NIL; PoolVector<String> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<StringName> &p_array) { type = NIL; PoolVector<String> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } Variant::Variant(const Vector<Vector3> &p_array) { type = NIL; PoolVector<Vector3> v; int len = p_array.size(); if (len > 0) { v.resize(len); PoolVector<Vector3>::Write w = v.write(); const Vector3 *r = p_array.ptr(); for (int i = 0; i < len; i++) w[i] = r[i]; } *this = v; } Variant::Variant(const Vector<Color> &p_array) { type = NIL; PoolVector<Color> v; int len = p_array.size(); v.resize(len); for (int i = 0; i < len; i++) v.set(i, p_array[i]); *this = v; } void Variant::operator=(const Variant &p_variant) { if (unlikely(this == &p_variant)) return; if (unlikely(type != p_variant.type)) { reference(p_variant); return; } switch (p_variant.type) { case NIL: { // none } break; // atomic types case BOOL: { _data._bool = p_variant._data._bool; } break; case INT: { _data._int = p_variant._data._int; } break; case REAL: { _data._real = p_variant._data._real; } break; case STRING: { *reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem); } break; // math types case VECTOR2: { *reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem); } break; case RECT2: { *reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem); } break; case TRANSFORM2D: { *_data._transform2d = *(p_variant._data._transform2d); } break; case VECTOR3: { *reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem); } break; case PLANE: { *reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem); } break; case AABB: { *_data._aabb = *(p_variant._data._aabb); } break; case QUAT: { *reinterpret_cast<Quat *>(_data._mem) = *reinterpret_cast<const Quat *>(p_variant._data._mem); } break; case BASIS: { *_data._basis = *(p_variant._data._basis); } break; case TRANSFORM: { *_data._transform = *(p_variant._data._transform); } break; // misc types case COLOR: { *reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem); } break; case _RID: { *reinterpret_cast<RID *>(_data._mem) = *reinterpret_cast<const RID *>(p_variant._data._mem); } break; case OBJECT: { *reinterpret_cast<ObjData *>(_data._mem) = p_variant._get_obj(); } break; case NODE_PATH: { *reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem); } break; case DICTIONARY: { *reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem); } break; case ARRAY: { *reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem); } break; // arrays case POOL_BYTE_ARRAY: { *reinterpret_cast<PoolVector<uint8_t> *>(_data._mem) = *reinterpret_cast<const PoolVector<uint8_t> *>(p_variant._data._mem); } break; case POOL_INT_ARRAY: { *reinterpret_cast<PoolVector<int> *>(_data._mem) = *reinterpret_cast<const PoolVector<int> *>(p_variant._data._mem); } break; case POOL_REAL_ARRAY: { *reinterpret_cast<PoolVector<real_t> *>(_data._mem) = *reinterpret_cast<const PoolVector<real_t> *>(p_variant._data._mem); } break; case POOL_STRING_ARRAY: { *reinterpret_cast<PoolVector<String> *>(_data._mem) = *reinterpret_cast<const PoolVector<String> *>(p_variant._data._mem); } break; case POOL_VECTOR2_ARRAY: { *reinterpret_cast<PoolVector<Vector2> *>(_data._mem) = *reinterpret_cast<const PoolVector<Vector2> *>(p_variant._data._mem); } break; case POOL_VECTOR3_ARRAY: { *reinterpret_cast<PoolVector<Vector3> *>(_data._mem) = *reinterpret_cast<const PoolVector<Vector3> *>(p_variant._data._mem); } break; case POOL_COLOR_ARRAY: { *reinterpret_cast<PoolVector<Color> *>(_data._mem) = *reinterpret_cast<const PoolVector<Color> *>(p_variant._data._mem); } break; default: { } } } Variant::Variant(const IP_Address &p_address) { type = STRING; memnew_placement(_data._mem, String(p_address)); } Variant::Variant(const Variant &p_variant) { type = NIL; reference(p_variant); } /* Variant::~Variant() { clear(); }*/ uint32_t Variant::hash() const { switch (type) { case NIL: { return 0; } break; case BOOL: { return _data._bool ? 1 : 0; } break; case INT: { return _data._int; } break; case REAL: { return hash_djb2_one_float(_data._real); } break; case STRING: { return reinterpret_cast<const String *>(_data._mem)->hash(); } break; // math types case VECTOR2: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->x); return hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->y, hash); } break; case RECT2: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.x); hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.x, hash); return hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.y, hash); } break; case TRANSFORM2D: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { hash = hash_djb2_one_float(_data._transform2d->elements[i][j], hash); } } return hash; } break; case VECTOR3: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->x); hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->y, hash); return hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->z, hash); } break; case PLANE: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.x); hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.z, hash); return hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->d, hash); } break; /* case QUAT: { } break;*/ case AABB: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { hash = hash_djb2_one_float(_data._aabb->position[i], hash); hash = hash_djb2_one_float(_data._aabb->size[i], hash); } return hash; } break; case QUAT: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->x); hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->y, hash); hash = hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->z, hash); return hash_djb2_one_float(reinterpret_cast<const Quat *>(_data._mem)->w, hash); } break; case BASIS: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { hash = hash_djb2_one_float(_data._basis->elements[i][j], hash); } } return hash; } break; case TRANSFORM: { uint32_t hash = 5831; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { hash = hash_djb2_one_float(_data._transform->basis.elements[i][j], hash); } hash = hash_djb2_one_float(_data._transform->origin[i], hash); } return hash; } break; // misc types case COLOR: { uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->r); hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->g, hash); hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->b, hash); return hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->a, hash); } break; case _RID: { return hash_djb2_one_64(reinterpret_cast<const RID *>(_data._mem)->get_id()); } break; case OBJECT: { return hash_djb2_one_64(make_uint64_t(_get_obj().obj)); } break; case NODE_PATH: { return reinterpret_cast<const NodePath *>(_data._mem)->hash(); } break; case DICTIONARY: { return reinterpret_cast<const Dictionary *>(_data._mem)->hash(); } break; case ARRAY: { const Array &arr = *reinterpret_cast<const Array *>(_data._mem); return arr.hash(); } break; case POOL_BYTE_ARRAY: { const PoolVector<uint8_t> &arr = *reinterpret_cast<const PoolVector<uint8_t> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<uint8_t>::Read r = arr.read(); return hash_djb2_buffer((uint8_t *)&r[0], len); } else { return hash_djb2_one_64(0); } } break; case POOL_INT_ARRAY: { const PoolVector<int> &arr = *reinterpret_cast<const PoolVector<int> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<int>::Read r = arr.read(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int)); } else { return hash_djb2_one_64(0); } } break; case POOL_REAL_ARRAY: { const PoolVector<real_t> &arr = *reinterpret_cast<const PoolVector<real_t> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<real_t>::Read r = arr.read(); return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(real_t)); } else { return hash_djb2_one_float(0.0); } } break; case POOL_STRING_ARRAY: { uint32_t hash = 5831; const PoolVector<String> &arr = *reinterpret_cast<const PoolVector<String> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<String>::Read r = arr.read(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_32(r[i].hash(), hash); } } return hash; } break; case POOL_VECTOR2_ARRAY: { uint32_t hash = 5831; const PoolVector<Vector2> &arr = *reinterpret_cast<const PoolVector<Vector2> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<Vector2>::Read r = arr.read(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].x, hash); hash = hash_djb2_one_float(r[i].y, hash); } } return hash; } break; case POOL_VECTOR3_ARRAY: { uint32_t hash = 5831; const PoolVector<Vector3> &arr = *reinterpret_cast<const PoolVector<Vector3> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<Vector3>::Read r = arr.read(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].x, hash); hash = hash_djb2_one_float(r[i].y, hash); hash = hash_djb2_one_float(r[i].z, hash); } } return hash; } break; case POOL_COLOR_ARRAY: { uint32_t hash = 5831; const PoolVector<Color> &arr = *reinterpret_cast<const PoolVector<Color> *>(_data._mem); int len = arr.size(); if (likely(len)) { PoolVector<Color>::Read r = arr.read(); for (int i = 0; i < len; i++) { hash = hash_djb2_one_float(r[i].r, hash); hash = hash_djb2_one_float(r[i].g, hash); hash = hash_djb2_one_float(r[i].b, hash); hash = hash_djb2_one_float(r[i].a, hash); } } return hash; } break; default: { } } return 0; } #define hash_compare_scalar(p_lhs, p_rhs) \ ((p_lhs) == (p_rhs)) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs)) #define hash_compare_vector2(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) #define hash_compare_vector3(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \ (hash_compare_scalar((p_lhs).z, (p_rhs).z)) #define hash_compare_quat(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \ (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \ (hash_compare_scalar((p_lhs).z, (p_rhs).z)) && \ (hash_compare_scalar((p_lhs).w, (p_rhs).w)) #define hash_compare_color(p_lhs, p_rhs) \ (hash_compare_scalar((p_lhs).r, (p_rhs).r)) && \ (hash_compare_scalar((p_lhs).g, (p_rhs).g)) && \ (hash_compare_scalar((p_lhs).b, (p_rhs).b)) && \ (hash_compare_scalar((p_lhs).a, (p_rhs).a)) #define hash_compare_pool_array(p_lhs, p_rhs, p_type, p_compare_func) \ const PoolVector<p_type> &l = *reinterpret_cast<const PoolVector<p_type> *>(p_lhs); \ const PoolVector<p_type> &r = *reinterpret_cast<const PoolVector<p_type> *>(p_rhs); \ \ if (l.size() != r.size()) \ return false; \ \ PoolVector<p_type>::Read lr = l.read(); \ PoolVector<p_type>::Read rr = r.read(); \ \ for (int i = 0; i < l.size(); ++i) { \ if (!p_compare_func((lr[i]), (rr[i]))) \ return false; \ } \ \ return true bool Variant::hash_compare(const Variant &p_variant) const { if (type != p_variant.type) return false; switch (type) { case REAL: { return hash_compare_scalar(_data._real, p_variant._data._real); } break; case VECTOR2: { const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem); const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem); return hash_compare_vector2(*l, *r); } break; case RECT2: { const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem); const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem); return (hash_compare_vector2(l->position, r->position)) && (hash_compare_vector2(l->size, r->size)); } break; case TRANSFORM2D: { Transform2D *l = _data._transform2d; Transform2D *r = p_variant._data._transform2d; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector2(l->elements[i], r->elements[i]))) return false; } return true; } break; case VECTOR3: { const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem); const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem); return hash_compare_vector3(*l, *r); } break; case PLANE: { const Plane *l = reinterpret_cast<const Plane *>(_data._mem); const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem); return (hash_compare_vector3(l->normal, r->normal)) && (hash_compare_scalar(l->d, r->d)); } break; case AABB: { const ::AABB *l = _data._aabb; const ::AABB *r = p_variant._data._aabb; return (hash_compare_vector3(l->position, r->position) && (hash_compare_vector3(l->size, r->size))); } break; case QUAT: { const Quat *l = reinterpret_cast<const Quat *>(_data._mem); const Quat *r = reinterpret_cast<const Quat *>(p_variant._data._mem); return hash_compare_quat(*l, *r); } break; case BASIS: { const Basis *l = _data._basis; const Basis *r = p_variant._data._basis; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector3(l->elements[i], r->elements[i]))) return false; } return true; } break; case TRANSFORM: { const Transform *l = _data._transform; const Transform *r = p_variant._data._transform; for (int i = 0; i < 3; i++) { if (!(hash_compare_vector3(l->basis.elements[i], r->basis.elements[i]))) return false; } return hash_compare_vector3(l->origin, r->origin); } break; case COLOR: { const Color *l = reinterpret_cast<const Color *>(_data._mem); const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem); return hash_compare_color(*l, *r); } break; case ARRAY: { const Array &l = *(reinterpret_cast<const Array *>(_data._mem)); const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem)); if (l.size() != r.size()) return false; for (int i = 0; i < l.size(); ++i) { if (!l[i].hash_compare(r[i])) return false; } return true; } break; case POOL_REAL_ARRAY: { hash_compare_pool_array(_data._mem, p_variant._data._mem, real_t, hash_compare_scalar); } break; case POOL_VECTOR2_ARRAY: { hash_compare_pool_array(_data._mem, p_variant._data._mem, Vector2, hash_compare_vector2); } break; case POOL_VECTOR3_ARRAY: { hash_compare_pool_array(_data._mem, p_variant._data._mem, Vector3, hash_compare_vector3); } break; case POOL_COLOR_ARRAY: { hash_compare_pool_array(_data._mem, p_variant._data._mem, Color, hash_compare_color); } break; default: bool v; Variant r; evaluate(OP_EQUAL, *this, p_variant, r, v); return r; } return false; } bool Variant::is_ref() const { return type == OBJECT && !_get_obj().ref.is_null(); } Vector<Variant> varray() { return Vector<Variant>(); } Vector<Variant> varray(const Variant &p_arg1) { Vector<Variant> v; v.push_back(p_arg1); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); v.push_back(p_arg4); return v; } Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) { Vector<Variant> v; v.push_back(p_arg1); v.push_back(p_arg2); v.push_back(p_arg3); v.push_back(p_arg4); v.push_back(p_arg5); return v; } void Variant::static_assign(const Variant &p_variant) { } bool Variant::is_shared() const { switch (type) { case OBJECT: return true; case ARRAY: return true; case DICTIONARY: return true; default: { } } return false; } Variant Variant::call(const StringName &p_method, VARIANT_ARG_DECLARE) { VARIANT_ARGPTRS; int argc = 0; for (int i = 0; i < VARIANT_ARG_MAX; i++) { if (argptr[i]->get_type() == Variant::NIL) break; argc++; } CallError error; Variant ret = call(p_method, argptr, argc, error); switch (error.error) { case CallError::CALL_ERROR_INVALID_ARGUMENT: { String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(error.expected) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case CallError::CALL_ERROR_INVALID_METHOD: { String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'."; ERR_PRINT(err.utf8().get_data()); } break; case CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: { String err = "Too many arguments for method '" + p_method + "'"; ERR_PRINT(err.utf8().get_data()); } break; default: { } } return ret; } void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) { r_value = Variant(); } String Variant::get_construct_string() const { String vars; VariantWriter::write_to_string(*this, vars); return vars; } String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Variant::CallError &ce) { String err_text; if (ce.error == Variant::CallError::CALL_ERROR_INVALID_ARGUMENT) { int errorarg = ce.argument; if (p_argptrs) { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(ce.expected) + "."; } else { err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(ce.expected) + "."; } } else if (ce.error == Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) { err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + "."; } else if (ce.error == Variant::CallError::CALL_ERROR_INVALID_METHOD) { err_text = "Method not found."; } else if (ce.error == Variant::CallError::CALL_ERROR_INSTANCE_IS_NULL) { err_text = "Instance is null"; } else if (ce.error == Variant::CallError::CALL_OK) { return "Call OK"; } String class_name = p_base->get_class(); Ref<Script> script = p_base->get_script(); if (script.is_valid() && script->get_path().is_resource_file()) { class_name += "(" + script->get_path().get_file() + ")"; } return "'" + class_name + "::" + String(p_method) + "': " + err_text; } String vformat(const String &p_text, const Variant &p1, const Variant &p2, const Variant &p3, const Variant &p4, const Variant &p5) { Array args; if (p1.get_type() != Variant::NIL) { args.push_back(p1); if (p2.get_type() != Variant::NIL) { args.push_back(p2); if (p3.get_type() != Variant::NIL) { args.push_back(p3); if (p4.get_type() != Variant::NIL) { args.push_back(p4); if (p5.get_type() != Variant::NIL) { args.push_back(p5); } } } } } bool error = false; String fmt = p_text.sprintf(args, &error); ERR_FAIL_COND_V(error, String()); return fmt; }