/*************************************************************************/ /* oa_hash_map.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef OA_HASH_MAP_H #define OA_HASH_MAP_H #include "hashfuncs.h" #include "math_funcs.h" #include "os/copymem.h" #include "os/memory.h" /** * A HashMap implementation that uses open addressing with robinhood hashing. * Robinhood hashing swaps out entries that have a smaller probing distance * than the to-be-inserted entry, that evens out the average probing distance * and enables faster lookups. * * The entries are stored inplace, so huge keys or values might fill cache lines * a lot faster. */ template <class TKey, class TValue, class Hasher = HashMapHasherDefault, class Comparator = HashMapComparatorDefault<TKey> > class OAHashMap { private: TValue *values; TKey *keys; uint32_t *hashes; uint32_t capacity; uint32_t num_elements; static const uint32_t EMPTY_HASH = 0; static const uint32_t DELETED_HASH_BIT = 1 << 31; _FORCE_INLINE_ uint32_t _hash(const TKey &p_key) { uint32_t hash = Hasher::hash(p_key); if (hash == EMPTY_HASH) { hash = EMPTY_HASH + 1; } else if (hash & DELETED_HASH_BIT) { hash &= ~DELETED_HASH_BIT; } return hash; } _FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash) { p_hash = p_hash & ~DELETED_HASH_BIT; // we don't care if it was deleted or not uint32_t original_pos = p_hash % capacity; return p_pos - original_pos; } _FORCE_INLINE_ void _construct(uint32_t p_pos, uint32_t p_hash, const TKey &p_key, const TValue &p_value) { memnew_placement(&keys[p_pos], TKey(p_key)); memnew_placement(&values[p_pos], TValue(p_value)); hashes[p_pos] = p_hash; num_elements++; } bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) { uint32_t hash = _hash(p_key); uint32_t pos = hash % capacity; uint32_t distance = 0; while (42) { if (hashes[pos] == EMPTY_HASH) { return false; } if (distance > _get_probe_length(pos, hashes[pos])) { return false; } if (hashes[pos] == hash && Comparator::compare(keys[pos], p_key)) { r_pos = pos; return true; } pos = (pos + 1) % capacity; distance++; } } void _insert_with_hash(uint32_t p_hash, const TKey &p_key, const TValue &p_value) { uint32_t hash = p_hash; uint32_t distance = 0; uint32_t pos = hash % capacity; TKey key = p_key; TValue value = p_value; while (42) { if (hashes[pos] == EMPTY_HASH) { _construct(pos, hash, p_key, p_value); return; } // not an empty slot, let's check the probing length of the existing one uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos]); if (existing_probe_len < distance) { if (hashes[pos] & DELETED_HASH_BIT) { // we found a place where we can fit in! _construct(pos, hash, p_key, p_value); return; } SWAP(hash, hashes[pos]); SWAP(key, keys[pos]); SWAP(value, values[pos]); distance = existing_probe_len; } pos = (pos + 1) % capacity; distance++; } } void _resize_and_rehash() { TKey *old_keys = keys; TValue *old_values = values; uint32_t *old_hashes = hashes; uint32_t old_capacity = capacity; capacity = old_capacity * 2; num_elements = 0; keys = memnew_arr(TKey, capacity); values = memnew_arr(TValue, capacity); hashes = memnew_arr(uint32_t, capacity); for (int i = 0; i < capacity; i++) { hashes[i] = 0; } for (uint32_t i = 0; i < old_capacity; i++) { if (old_hashes[i] == EMPTY_HASH) { continue; } if (old_hashes[i] & DELETED_HASH_BIT) { continue; } _insert_with_hash(old_hashes[i], old_keys[i], old_values[i]); } memdelete_arr(old_keys); memdelete_arr(old_values); memdelete_arr(old_hashes); } public: _FORCE_INLINE_ uint32_t get_capacity() const { return capacity; } _FORCE_INLINE_ uint32_t get_num_elements() const { return num_elements; } void insert(const TKey &p_key, const TValue &p_value) { if ((float)num_elements / (float)capacity > 0.9) { _resize_and_rehash(); } uint32_t hash = _hash(p_key); _insert_with_hash(hash, p_key, p_value); } void set(const TKey &p_key, const TValue &p_data) { uint32_t pos = 0; bool exists = _lookup_pos(p_key, pos); if (exists) { values[pos].~TValue(); memnew_placement(&values[pos], TValue(p_data)); } else { insert(p_key, p_data); } } /** * returns true if the value was found, false otherwise. * * if r_data is not NULL then the value will be written to the object * it points to. */ bool lookup(const TKey &p_key, TValue &r_data) { uint32_t pos = 0; bool exists = _lookup_pos(p_key, pos); if (exists) { r_data.~TValue(); memnew_placement(&r_data, TValue(values[pos])); return true; } return false; } _FORCE_INLINE_ bool has(const TKey &p_key) { uint32_t _pos = 0; return _lookup_pos(p_key, _pos); } void remove(const TKey &p_key) { uint32_t pos = 0; bool exists = _lookup_pos(p_key, pos); if (!exists) { return; } hashes[pos] |= DELETED_HASH_BIT; values[pos].~TValue(); keys[pos].~TKey(); num_elements--; } struct Iterator { bool valid; const TKey *key; const TValue *value; private: uint32_t pos; friend class OAHashMap; }; Iterator iter() const { Iterator it; it.valid = true; it.pos = 0; return next_iter(it); } Iterator next_iter(const Iterator &p_iter) const { if (!p_iter.valid) { return p_iter; } Iterator it; it.valid = false; it.pos = p_iter.pos; it.key = NULL; it.value = NULL; for (uint32_t i = it.pos; i < capacity; i++) { it.pos = i + 1; if (hashes[i] == EMPTY_HASH) { continue; } if (hashes[i] & DELETED_HASH_BIT) { continue; } it.valid = true; it.key = &keys[i]; it.value = &values[i]; return it; } return it; } OAHashMap(uint32_t p_initial_capacity = 64) { capacity = p_initial_capacity; num_elements = 0; keys = memnew_arr(TKey, p_initial_capacity); values = memnew_arr(TValue, p_initial_capacity); hashes = memnew_arr(uint32_t, p_initial_capacity); for (int i = 0; i < p_initial_capacity; i++) { hashes[i] = 0; } } ~OAHashMap() { memdelete_arr(keys); memdelete_arr(values); memdelete(hashes); } }; #endif