/*************************************************************************/ /* vector3.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef VECTOR3_H #define VECTOR3_H #include "core/math/math_funcs.h" #include "core/ustring.h" class Basis; struct Vector3 { enum Axis { AXIS_X, AXIS_Y, AXIS_Z, }; union { struct { real_t x; real_t y; real_t z; }; real_t coord[3]; }; _FORCE_INLINE_ const real_t &operator[](int p_axis) const { return coord[p_axis]; } _FORCE_INLINE_ real_t &operator[](int p_axis) { return coord[p_axis]; } void set_axis(int p_axis, real_t p_value); real_t get_axis(int p_axis) const; int min_axis() const; int max_axis() const; _FORCE_INLINE_ real_t length() const; _FORCE_INLINE_ real_t length_squared() const; _FORCE_INLINE_ void normalize(); _FORCE_INLINE_ Vector3 normalized() const; _FORCE_INLINE_ bool is_normalized() const; _FORCE_INLINE_ Vector3 inverse() const; _FORCE_INLINE_ void zero(); void snap(Vector3 p_val); Vector3 snapped(Vector3 p_val) const; void rotate(const Vector3 &p_axis, real_t p_phi); Vector3 rotated(const Vector3 &p_axis, real_t p_phi) const; /* Static Methods between 2 vector3s */ _FORCE_INLINE_ Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const; _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const; Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const; Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const; Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; _FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const; _FORCE_INLINE_ real_t dot(const Vector3 &p_b) const; Basis outer(const Vector3 &p_b) const; Basis to_diagonal_matrix() const; _FORCE_INLINE_ Vector3 abs() const; _FORCE_INLINE_ Vector3 floor() const; _FORCE_INLINE_ Vector3 sign() const; _FORCE_INLINE_ Vector3 ceil() const; _FORCE_INLINE_ Vector3 round() const; _FORCE_INLINE_ real_t distance_to(const Vector3 &p_b) const; _FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_b) const; _FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const; _FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const; _FORCE_INLINE_ Vector3 project(const Vector3 &p_b) const; _FORCE_INLINE_ real_t angle_to(const Vector3 &p_b) const; _FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_b) const; _FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const; _FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const; _FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const; bool is_equal_approx(const Vector3 &p_v) const; /* Operators */ _FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v); _FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const; _FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v); _FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const; _FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v); _FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const; _FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v); _FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const; _FORCE_INLINE_ Vector3 &operator*=(real_t p_scalar); _FORCE_INLINE_ Vector3 operator*(real_t p_scalar) const; _FORCE_INLINE_ Vector3 &operator/=(real_t p_scalar); _FORCE_INLINE_ Vector3 operator/(real_t p_scalar) const; _FORCE_INLINE_ Vector3 operator-() const; _FORCE_INLINE_ bool operator==(const Vector3 &p_v) const; _FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const; _FORCE_INLINE_ bool operator<(const Vector3 &p_v) const; _FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const; _FORCE_INLINE_ bool operator>(const Vector3 &p_v) const; _FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const; operator String() const; _FORCE_INLINE_ Vector3(real_t p_x, real_t p_y, real_t p_z) { x = p_x; y = p_y; z = p_z; } _FORCE_INLINE_ Vector3() { x = y = z = 0; } }; Vector3 Vector3::cross(const Vector3 &p_b) const { Vector3 ret( (y * p_b.z) - (z * p_b.y), (z * p_b.x) - (x * p_b.z), (x * p_b.y) - (y * p_b.x)); return ret; } real_t Vector3::dot(const Vector3 &p_b) const { return x * p_b.x + y * p_b.y + z * p_b.z; } Vector3 Vector3::abs() const { return Vector3(Math::abs(x), Math::abs(y), Math::abs(z)); } Vector3 Vector3::sign() const { return Vector3(SGN(x), SGN(y), SGN(z)); } Vector3 Vector3::floor() const { return Vector3(Math::floor(x), Math::floor(y), Math::floor(z)); } Vector3 Vector3::ceil() const { return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z)); } Vector3 Vector3::round() const { return Vector3(Math::round(x), Math::round(y), Math::round(z)); } Vector3 Vector3::linear_interpolate(const Vector3 &p_b, real_t p_t) const { return Vector3( x + (p_t * (p_b.x - x)), y + (p_t * (p_b.y - y)), z + (p_t * (p_b.z - z))); } Vector3 Vector3::slerp(const Vector3 &p_b, real_t p_t) const { real_t theta = angle_to(p_b); return rotated(cross(p_b).normalized(), theta * p_t); } real_t Vector3::distance_to(const Vector3 &p_b) const { return (p_b - *this).length(); } real_t Vector3::distance_squared_to(const Vector3 &p_b) const { return (p_b - *this).length_squared(); } Vector3 Vector3::posmod(const real_t p_mod) const { return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod)); } Vector3 Vector3::posmodv(const Vector3 &p_modv) const { return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z)); } Vector3 Vector3::project(const Vector3 &p_b) const { return p_b * (dot(p_b) / p_b.length_squared()); } real_t Vector3::angle_to(const Vector3 &p_b) const { return Math::atan2(cross(p_b).length(), dot(p_b)); } Vector3 Vector3::direction_to(const Vector3 &p_b) const { Vector3 ret(p_b.x - x, p_b.y - y, p_b.z - z); ret.normalize(); return ret; } /* Operators */ Vector3 &Vector3::operator+=(const Vector3 &p_v) { x += p_v.x; y += p_v.y; z += p_v.z; return *this; } Vector3 Vector3::operator+(const Vector3 &p_v) const { return Vector3(x + p_v.x, y + p_v.y, z + p_v.z); } Vector3 &Vector3::operator-=(const Vector3 &p_v) { x -= p_v.x; y -= p_v.y; z -= p_v.z; return *this; } Vector3 Vector3::operator-(const Vector3 &p_v) const { return Vector3(x - p_v.x, y - p_v.y, z - p_v.z); } Vector3 &Vector3::operator*=(const Vector3 &p_v) { x *= p_v.x; y *= p_v.y; z *= p_v.z; return *this; } Vector3 Vector3::operator*(const Vector3 &p_v) const { return Vector3(x * p_v.x, y * p_v.y, z * p_v.z); } Vector3 &Vector3::operator/=(const Vector3 &p_v) { x /= p_v.x; y /= p_v.y; z /= p_v.z; return *this; } Vector3 Vector3::operator/(const Vector3 &p_v) const { return Vector3(x / p_v.x, y / p_v.y, z / p_v.z); } Vector3 &Vector3::operator*=(real_t p_scalar) { x *= p_scalar; y *= p_scalar; z *= p_scalar; return *this; } _FORCE_INLINE_ Vector3 operator*(real_t p_scalar, const Vector3 &p_vec) { return p_vec * p_scalar; } Vector3 Vector3::operator*(real_t p_scalar) const { return Vector3(x * p_scalar, y * p_scalar, z * p_scalar); } Vector3 &Vector3::operator/=(real_t p_scalar) { x /= p_scalar; y /= p_scalar; z /= p_scalar; return *this; } Vector3 Vector3::operator/(real_t p_scalar) const { return Vector3(x / p_scalar, y / p_scalar, z / p_scalar); } Vector3 Vector3::operator-() const { return Vector3(-x, -y, -z); } bool Vector3::operator==(const Vector3 &p_v) const { return x == p_v.x && y == p_v.y && z == p_v.z; } bool Vector3::operator!=(const Vector3 &p_v) const { return x != p_v.x || y != p_v.y || z != p_v.z; } bool Vector3::operator<(const Vector3 &p_v) const { if (Math::is_equal_approx(x, p_v.x)) { if (Math::is_equal_approx(y, p_v.y)) return z < p_v.z; else return y < p_v.y; } else { return x < p_v.x; } } bool Vector3::operator>(const Vector3 &p_v) const { if (Math::is_equal_approx(x, p_v.x)) { if (Math::is_equal_approx(y, p_v.y)) return z > p_v.z; else return y > p_v.y; } else { return x > p_v.x; } } bool Vector3::operator<=(const Vector3 &p_v) const { if (Math::is_equal_approx(x, p_v.x)) { if (Math::is_equal_approx(y, p_v.y)) return z <= p_v.z; else return y < p_v.y; } else { return x < p_v.x; } } bool Vector3::operator>=(const Vector3 &p_v) const { if (Math::is_equal_approx(x, p_v.x)) { if (Math::is_equal_approx(y, p_v.y)) return z >= p_v.z; else return y > p_v.y; } else { return x > p_v.x; } } _FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) { return p_a.cross(p_b); } _FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) { return p_a.dot(p_b); } real_t Vector3::length() const { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return Math::sqrt(x2 + y2 + z2); } real_t Vector3::length_squared() const { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return x2 + y2 + z2; } void Vector3::normalize() { real_t lengthsq = length_squared(); if (lengthsq == 0) { x = y = z = 0; } else { real_t length = Math::sqrt(lengthsq); x /= length; y /= length; z /= length; } } Vector3 Vector3::normalized() const { Vector3 v = *this; v.normalize(); return v; } bool Vector3::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); } Vector3 Vector3::inverse() const { return Vector3(1.0 / x, 1.0 / y, 1.0 / z); } void Vector3::zero() { x = y = z = 0; } // slide returns the component of the vector along the given plane, specified by its normal vector. Vector3 Vector3::slide(const Vector3 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); #endif return *this - p_normal * this->dot(p_normal); } Vector3 Vector3::bounce(const Vector3 &p_normal) const { return -reflect(p_normal); } Vector3 Vector3::reflect(const Vector3 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector3()); #endif return 2.0 * p_normal * this->dot(p_normal) - *this; } #endif // VECTOR3_H