/*************************************************************************/ /* vector2.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "vector2.h" real_t Vector2::angle() const { return Math::atan2(y, x); } real_t Vector2::length() const { return Math::sqrt(x * x + y * y); } real_t Vector2::length_squared() const { return x * x + y * y; } void Vector2::normalize() { real_t l = x * x + y * y; if (l != 0) { l = Math::sqrt(l); x /= l; y /= l; } } Vector2 Vector2::normalized() const { Vector2 v = *this; v.normalize(); return v; } bool Vector2::is_normalized() const { // use length_squared() instead of length() to avoid sqrt(), makes it more stringent. return Math::is_equal_approx(length_squared(), 1.0); } real_t Vector2::distance_to(const Vector2 &p_vector2) const { return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y)); } real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const { return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y); } real_t Vector2::angle_to(const Vector2 &p_vector2) const { return Math::atan2(cross(p_vector2), dot(p_vector2)); } real_t Vector2::angle_to_point(const Vector2 &p_vector2) const { return Math::atan2(y - p_vector2.y, x - p_vector2.x); } real_t Vector2::dot(const Vector2 &p_other) const { return x * p_other.x + y * p_other.y; } real_t Vector2::cross(const Vector2 &p_other) const { return x * p_other.y - y * p_other.x; } Vector2 Vector2::floor() const { return Vector2(Math::floor(x), Math::floor(y)); } Vector2 Vector2::ceil() const { return Vector2(Math::ceil(x), Math::ceil(y)); } Vector2 Vector2::round() const { return Vector2(Math::round(x), Math::round(y)); } Vector2 Vector2::rotated(real_t p_by) const { Vector2 v; v.set_rotation(angle() + p_by); v *= length(); return v; } Vector2 Vector2::project(const Vector2 &p_b) const { return p_b * (dot(p_b) / p_b.length_squared()); } Vector2 Vector2::snapped(const Vector2 &p_by) const { return Vector2( Math::stepify(x, p_by.x), Math::stepify(y, p_by.y)); } Vector2 Vector2::clamped(real_t p_len) const { real_t l = length(); Vector2 v = *this; if (l > 0 && p_len < l) { v /= l; v *= p_len; } return v; } Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const { Vector2 p0 = p_pre_a; Vector2 p1 = *this; Vector2 p2 = p_b; Vector2 p3 = p_post_b; real_t t = p_t; real_t t2 = t * t; real_t t3 = t2 * t; Vector2 out; out = 0.5 * ((p1 * 2.0) + (-p0 + p2) * t + (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3); return out; } // slide returns the component of the vector along the given plane, specified by its normal vector. Vector2 Vector2::slide(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2()); #endif return *this - p_normal * this->dot(p_normal); } Vector2 Vector2::bounce(const Vector2 &p_normal) const { return -reflect(p_normal); } Vector2 Vector2::reflect(const Vector2 &p_normal) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!p_normal.is_normalized(), Vector2()); #endif return 2.0 * p_normal * this->dot(p_normal) - *this; } /* Vector2i */ Vector2i Vector2i::operator+(const Vector2i &p_v) const { return Vector2i(x + p_v.x, y + p_v.y); } void Vector2i::operator+=(const Vector2i &p_v) { x += p_v.x; y += p_v.y; } Vector2i Vector2i::operator-(const Vector2i &p_v) const { return Vector2i(x - p_v.x, y - p_v.y); } void Vector2i::operator-=(const Vector2i &p_v) { x -= p_v.x; y -= p_v.y; } Vector2i Vector2i::operator*(const Vector2i &p_v1) const { return Vector2i(x * p_v1.x, y * p_v1.y); }; Vector2i Vector2i::operator*(const int &rvalue) const { return Vector2i(x * rvalue, y * rvalue); }; void Vector2i::operator*=(const int &rvalue) { x *= rvalue; y *= rvalue; }; Vector2i Vector2i::operator/(const Vector2i &p_v1) const { return Vector2i(x / p_v1.x, y / p_v1.y); }; Vector2i Vector2i::operator/(const int &rvalue) const { return Vector2i(x / rvalue, y / rvalue); }; void Vector2i::operator/=(const int &rvalue) { x /= rvalue; y /= rvalue; }; Vector2i Vector2i::operator-() const { return Vector2i(-x, -y); } bool Vector2i::operator==(const Vector2i &p_vec2) const { return x == p_vec2.x && y == p_vec2.y; } bool Vector2i::operator!=(const Vector2i &p_vec2) const { return x != p_vec2.x || y != p_vec2.y; }