/*************************************************************************/ /* transform.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef TRANSFORM_H #define TRANSFORM_H #include "matrix3.h" #include "plane.h" #include "aabb.h" /** @author Juan Linietsky */ class Transform { public: Matrix3 basis; Vector3 origin; void invert(); Transform inverse() const; void affine_invert(); Transform affine_inverse() const; Transform rotated(const Vector3& p_axis,real_t p_phi) const; void rotate(const Vector3& p_axis,real_t p_phi); void rotate_basis(const Vector3& p_axis,real_t p_phi); void set_look_at( const Vector3& p_eye, const Vector3& p_target, const Vector3& p_up ); Transform looking_at( const Vector3& p_target, const Vector3& p_up ) const; void scale(const Vector3& p_scale); Transform scaled(const Vector3& p_scale) const; void scale_basis(const Vector3& p_scale); void translate( real_t p_tx, real_t p_ty, real_t p_tz ); void translate( const Vector3& p_translation ); Transform translated( const Vector3& p_translation ) const; const Matrix3& get_basis() const { return basis; } void set_basis(const Matrix3& p_basis) { basis=p_basis; } const Vector3& get_origin() const { return origin; } void set_origin(const Vector3& p_origin) { origin=p_origin; } void orthonormalize(); Transform orthonormalized() const; bool operator==(const Transform& p_transform) const; bool operator!=(const Transform& p_transform) const; _FORCE_INLINE_ Vector3 xform(const Vector3& p_vector) const; _FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vector) const; _FORCE_INLINE_ Plane xform(const Plane& p_plane) const; _FORCE_INLINE_ Plane xform_inv(const Plane& p_plane) const; _FORCE_INLINE_ AABB xform(const AABB& p_aabb) const; _FORCE_INLINE_ AABB xform_inv(const AABB& p_aabb) const; void operator*=(const Transform& p_transform); Transform operator*(const Transform& p_transform) const; Transform interpolate_with(const Transform& p_transform, real_t p_c) const; _FORCE_INLINE_ Transform inverse_xform(const Transform& t) const { Vector3 v = t.origin - origin; return Transform(basis.transpose_xform(t.basis), basis.xform(v)); } void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz,real_t tx, real_t ty, real_t tz) { basis.elements[0][0]=xx; basis.elements[0][1]=xy; basis.elements[0][2]=xz; basis.elements[1][0]=yx; basis.elements[1][1]=yy; basis.elements[1][2]=yz; basis.elements[2][0]=zx; basis.elements[2][1]=zy; basis.elements[2][2]=zz; origin.x=tx; origin.y=ty; origin.z=tz; } operator String() const; Transform(const Matrix3& p_basis, const Vector3& p_origin=Vector3()); Transform() {} }; _FORCE_INLINE_ Vector3 Transform::xform(const Vector3& p_vector) const { return Vector3( basis[0].dot(p_vector)+origin.x, basis[1].dot(p_vector)+origin.y, basis[2].dot(p_vector)+origin.z ); } _FORCE_INLINE_ Vector3 Transform::xform_inv(const Vector3& p_vector) const { Vector3 v = p_vector - origin; return Vector3( (basis.elements[0][0]*v.x ) + ( basis.elements[1][0]*v.y ) + ( basis.elements[2][0]*v.z ), (basis.elements[0][1]*v.x ) + ( basis.elements[1][1]*v.y ) + ( basis.elements[2][1]*v.z ), (basis.elements[0][2]*v.x ) + ( basis.elements[1][2]*v.y ) + ( basis.elements[2][2]*v.z ) ); } _FORCE_INLINE_ Plane Transform::xform(const Plane& p_plane) const { Vector3 point=p_plane.normal*p_plane.d; Vector3 point_dir=point+p_plane.normal; point=xform(point); point_dir=xform(point_dir); Vector3 normal=point_dir-point; normal.normalize(); real_t d=normal.dot(point); return Plane(normal,d); } _FORCE_INLINE_ Plane Transform::xform_inv(const Plane& p_plane) const { Vector3 point=p_plane.normal*p_plane.d; Vector3 point_dir=point+p_plane.normal; xform_inv(point); xform_inv(point_dir); Vector3 normal=point_dir-point; normal.normalize(); real_t d=normal.dot(point); return Plane(normal,d); } _FORCE_INLINE_ AABB Transform::xform(const AABB& p_aabb) const { /* define vertices */ #if 1 Vector3 x=basis.get_axis(0)*p_aabb.size.x; Vector3 y=basis.get_axis(1)*p_aabb.size.y; Vector3 z=basis.get_axis(2)*p_aabb.size.z; Vector3 pos = xform( p_aabb.pos ); //could be even further optimized AABB new_aabb; new_aabb.pos=pos; new_aabb.expand_to( pos+x ); new_aabb.expand_to( pos+y ); new_aabb.expand_to( pos+z ); new_aabb.expand_to( pos+x+y ); new_aabb.expand_to( pos+x+z ); new_aabb.expand_to( pos+y+z ); new_aabb.expand_to( pos+x+y+z ); return new_aabb; #else Vector3 vertices[8]={ Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z), Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z), Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z) }; AABB ret; ret.pos=xform(vertices[0]); for (int i=1;i<8;i++) { ret.expand_to( xform(vertices[i]) ); } return ret; #endif } _FORCE_INLINE_ AABB Transform::xform_inv(const AABB& p_aabb) const { /* define vertices */ Vector3 vertices[8]={ Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x+p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z), Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x, p_aabb.pos.y+p_aabb.size.y, p_aabb.pos.z), Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z+p_aabb.size.z), Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z) }; AABB ret; ret.pos=xform_inv(vertices[0]); for (int i=1;i<8;i++) { ret.expand_to( xform_inv(vertices[i]) ); } return ret; } #ifdef OPTIMIZED_TRANSFORM_IMPL_OVERRIDE #else struct OptimizedTransform { Transform transform; _FORCE_INLINE_ void invert() {transform.invert(); } _FORCE_INLINE_ void affine_invert() {transform.affine_invert(); } _FORCE_INLINE_ Vector3 xform(const Vector3& p_vec) const { return transform.xform(p_vec); }; _FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vec) const { return transform.xform_inv(p_vec); }; _FORCE_INLINE_ OptimizedTransform operator*(const OptimizedTransform& p_ot ) const { return OptimizedTransform( transform * p_ot.transform ) ; } _FORCE_INLINE_ Transform get_transform() const { return transform; } _FORCE_INLINE_ void set_transform(const Transform& p_transform) { transform=p_transform; } OptimizedTransform(const Transform& p_transform) { transform=p_transform; } }; #endif #endif