/*************************************************************************/ /* rect2.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rect2.h" #include "core/math/rect2i.h" #include "core/math/transform_2d.h" #include "core/string/ustring.h" bool Rect2::is_equal_approx(const Rect2 &p_rect) const { return position.is_equal_approx(p_rect.position) && size.is_equal_approx(p_rect.size); } bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif real_t min = 0, max = 1; int axis = 0; real_t sign = 0; for (int i = 0; i < 2; i++) { real_t seg_from = p_from[i]; real_t seg_to = p_to[i]; real_t box_begin = position[i]; real_t box_end = box_begin + size[i]; real_t cmin, cmax; real_t csign; if (seg_from < seg_to) { if (seg_from > box_end || seg_to < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0; cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1; csign = -1.0; } else { if (seg_to > box_end || seg_from < box_begin) { return false; } real_t length = seg_to - seg_from; cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0; cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1; csign = 1.0; } if (cmin > min) { min = cmin; axis = i; sign = csign; } if (cmax < max) { max = cmax; } if (max < min) { return false; } } Vector2 rel = p_to - p_from; if (r_normal) { Vector2 normal; normal[axis] = sign; *r_normal = normal; } if (r_pos) { *r_pos = p_from + rel * min; } return true; } bool Rect2::intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif //SAT intersection between local and transformed rect2 Vector2 xf_points[4] = { p_xform.xform(p_rect.position), p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y)), p_xform.xform(Vector2(p_rect.position.x, p_rect.position.y + p_rect.size.y)), p_xform.xform(Vector2(p_rect.position.x + p_rect.size.x, p_rect.position.y + p_rect.size.y)), }; real_t low_limit; //base rect2 first (faster) if (xf_points[0].y > position.y) { goto next1; } if (xf_points[1].y > position.y) { goto next1; } if (xf_points[2].y > position.y) { goto next1; } if (xf_points[3].y > position.y) { goto next1; } return false; next1: low_limit = position.y + size.y; if (xf_points[0].y < low_limit) { goto next2; } if (xf_points[1].y < low_limit) { goto next2; } if (xf_points[2].y < low_limit) { goto next2; } if (xf_points[3].y < low_limit) { goto next2; } return false; next2: if (xf_points[0].x > position.x) { goto next3; } if (xf_points[1].x > position.x) { goto next3; } if (xf_points[2].x > position.x) { goto next3; } if (xf_points[3].x > position.x) { goto next3; } return false; next3: low_limit = position.x + size.x; if (xf_points[0].x < low_limit) { goto next4; } if (xf_points[1].x < low_limit) { goto next4; } if (xf_points[2].x < low_limit) { goto next4; } if (xf_points[3].x < low_limit) { goto next4; } return false; next4: Vector2 xf_points2[4] = { position, Vector2(position.x + size.x, position.y), Vector2(position.x, position.y + size.y), Vector2(position.x + size.x, position.y + size.y), }; real_t maxa = p_xform.columns[0].dot(xf_points2[0]); real_t mina = maxa; real_t dp = p_xform.columns[0].dot(xf_points2[1]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.columns[0].dot(xf_points2[2]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.columns[0].dot(xf_points2[3]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); real_t maxb = p_xform.columns[0].dot(xf_points[0]); real_t minb = maxb; dp = p_xform.columns[0].dot(xf_points[1]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.columns[0].dot(xf_points[2]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.columns[0].dot(xf_points[3]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); if (mina > maxb) { return false; } if (minb > maxa) { return false; } maxa = p_xform.columns[1].dot(xf_points2[0]); mina = maxa; dp = p_xform.columns[1].dot(xf_points2[1]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.columns[1].dot(xf_points2[2]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); dp = p_xform.columns[1].dot(xf_points2[3]); maxa = MAX(dp, maxa); mina = MIN(dp, mina); maxb = p_xform.columns[1].dot(xf_points[0]); minb = maxb; dp = p_xform.columns[1].dot(xf_points[1]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.columns[1].dot(xf_points[2]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); dp = p_xform.columns[1].dot(xf_points[3]); maxb = MAX(dp, maxb); minb = MIN(dp, minb); if (mina > maxb) { return false; } if (minb > maxa) { return false; } return true; } Rect2::operator String() const { return "[P: " + position.operator String() + ", S: " + size + "]"; } Rect2::operator Rect2i() const { return Rect2i(position, size); }