/*************************************************************************/ /* quick_hull.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quick_hull.h" #include "core/templates/rb_map.h" uint32_t QuickHull::debug_stop_after = 0xFFFFFFFF; Error QuickHull::build(const Vector &p_points, Geometry3D::MeshData &r_mesh) { /* CREATE AABB VOLUME */ AABB aabb; for (int i = 0; i < p_points.size(); i++) { if (i == 0) { aabb.position = p_points[i]; } else { aabb.expand_to(p_points[i]); } } if (aabb.size == Vector3()) { return ERR_CANT_CREATE; } Vector valid_points; valid_points.resize(p_points.size()); HashSet valid_cache; for (int i = 0; i < p_points.size(); i++) { Vector3 sp = p_points[i].snapped(Vector3(0.0001, 0.0001, 0.0001)); if (valid_cache.has(sp)) { valid_points.write[i] = false; } else { valid_points.write[i] = true; valid_cache.insert(sp); } } /* CREATE INITIAL SIMPLEX */ int longest_axis = aabb.get_longest_axis_index(); //first two vertices are the most distant int simplex[4] = { 0 }; { real_t max = 0, min = 0; for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } real_t d = p_points[i][longest_axis]; if (i == 0 || d < min) { simplex[0] = i; min = d; } if (i == 0 || d > max) { simplex[1] = i; max = d; } } } //third vertex is one most further away from the line { real_t maxd = 0; Vector3 rel12 = p_points[simplex[0]] - p_points[simplex[1]]; for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } Vector3 n = rel12.cross(p_points[simplex[0]] - p_points[i]).cross(rel12).normalized(); real_t d = Math::abs(n.dot(p_points[simplex[0]]) - n.dot(p_points[i])); if (i == 0 || d > maxd) { maxd = d; simplex[2] = i; } } } //fourth vertex is the one most further away from the plane { real_t maxd = 0; Plane p(p_points[simplex[0]], p_points[simplex[1]], p_points[simplex[2]]); for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } real_t d = Math::abs(p.distance_to(p_points[i])); if (i == 0 || d > maxd) { maxd = d; simplex[3] = i; } } } //compute center of simplex, this is a point always warranted to be inside Vector3 center; for (int i = 0; i < 4; i++) { center += p_points[simplex[i]]; } center /= 4.0; //add faces List faces; for (int i = 0; i < 4; i++) { static const int face_order[4][3] = { { 0, 1, 2 }, { 0, 1, 3 }, { 0, 2, 3 }, { 1, 2, 3 } }; Face f; for (int j = 0; j < 3; j++) { f.vertices[j] = simplex[face_order[i][j]]; } Plane p(p_points[f.vertices[0]], p_points[f.vertices[1]], p_points[f.vertices[2]]); if (p.is_point_over(center)) { //flip face to clockwise if facing inwards SWAP(f.vertices[0], f.vertices[1]); p = -p; } f.plane = p; faces.push_back(f); } real_t over_tolerance = 3 * UNIT_EPSILON * (aabb.size.x + aabb.size.y + aabb.size.z); /* COMPUTE AVAILABLE VERTICES */ for (int i = 0; i < p_points.size(); i++) { if (i == simplex[0]) { continue; } if (i == simplex[1]) { continue; } if (i == simplex[2]) { continue; } if (i == simplex[3]) { continue; } if (!valid_points[i]) { continue; } for (Face &E : faces) { if (E.plane.distance_to(p_points[i]) > over_tolerance) { E.points_over.push_back(i); break; } } } faces.sort(); // sort them, so the ones with points are in the back /* BUILD HULL */ //poop face (while still remain) //find further away point //find lit faces //determine horizon edges //build new faces with horizon edges, them assign points side from all lit faces //remove lit faces uint32_t debug_stop = debug_stop_after; while (debug_stop > 0 && faces.back()->get().points_over.size()) { debug_stop--; Face &f = faces.back()->get(); //find vertex most outside int next = -1; real_t next_d = 0; for (int i = 0; i < f.points_over.size(); i++) { real_t d = f.plane.distance_to(p_points[f.points_over[i]]); if (d > next_d) { next_d = d; next = i; } } ERR_FAIL_COND_V(next == -1, ERR_BUG); Vector3 v = p_points[f.points_over[next]]; //find lit faces and lit edges List::Element *> lit_faces; //lit face is a death sentence HashMap lit_edges; //create this on the flight, should not be that bad for performance and simplifies code a lot for (List::Element *E = faces.front(); E; E = E->next()) { if (E->get().plane.distance_to(v) > 0) { lit_faces.push_back(E); for (int i = 0; i < 3; i++) { uint32_t a = E->get().vertices[i]; uint32_t b = E->get().vertices[(i + 1) % 3]; Edge e(a, b); HashMap::Iterator F = lit_edges.find(e); if (!F) { F = lit_edges.insert(e, FaceConnect()); } if (e.vertices[0] == a) { //left F->value.left = E; } else { F->value.right = E; } } } } //create new faces from horizon edges List::Element *> new_faces; //new faces for (KeyValue &E : lit_edges) { FaceConnect &fc = E.value; if (fc.left && fc.right) { continue; //edge is uninteresting, not on horizon } //create new face! Face face; face.vertices[0] = f.points_over[next]; face.vertices[1] = E.key.vertices[0]; face.vertices[2] = E.key.vertices[1]; Plane p(p_points[face.vertices[0]], p_points[face.vertices[1]], p_points[face.vertices[2]]); if (p.is_point_over(center)) { //flip face to clockwise if facing inwards SWAP(face.vertices[0], face.vertices[1]); p = -p; } face.plane = p; new_faces.push_back(faces.push_back(face)); } //distribute points into new faces for (List::Element *&F : lit_faces) { Face &lf = F->get(); for (int i = 0; i < lf.points_over.size(); i++) { if (lf.points_over[i] == f.points_over[next]) { //do not add current one continue; } Vector3 p = p_points[lf.points_over[i]]; for (List::Element *&E : new_faces) { Face &f2 = E->get(); if (f2.plane.distance_to(p) > over_tolerance) { f2.points_over.push_back(lf.points_over[i]); break; } } } } //erase lit faces while (lit_faces.size()) { faces.erase(lit_faces.front()->get()); lit_faces.pop_front(); } //put faces that contain no points on the front for (List::Element *&E : new_faces) { Face &f2 = E->get(); if (f2.points_over.size() == 0) { faces.move_to_front(E); } } //whew, done with iteration, go next } /* CREATE MESHDATA */ //make a map of edges again HashMap ret_edges; List ret_faces; for (const Face &E : faces) { Geometry3D::MeshData::Face f; f.plane = E.plane; for (int i = 0; i < 3; i++) { f.indices.push_back(E.vertices[i]); } List::Element *F = ret_faces.push_back(f); for (int i = 0; i < 3; i++) { uint32_t a = E.vertices[i]; uint32_t b = E.vertices[(i + 1) % 3]; Edge e(a, b); HashMap::Iterator G = ret_edges.find(e); if (!G) { G = ret_edges.insert(e, RetFaceConnect()); } if (e.vertices[0] == a) { //left G->value.left = F; } else { G->value.right = F; } } } //fill faces for (List::Element *E = ret_faces.front(); E; E = E->next()) { Geometry3D::MeshData::Face &f = E->get(); for (uint32_t i = 0; i < f.indices.size(); i++) { int a = E->get().indices[i]; int b = E->get().indices[(i + 1) % f.indices.size()]; Edge e(a, b); HashMap::Iterator F = ret_edges.find(e); ERR_CONTINUE(!F); List::Element *O = F->value.left == E ? F->value.right : F->value.left; ERR_CONTINUE(O == E); ERR_CONTINUE(O == nullptr); if (O->get().plane.is_equal_approx(f.plane)) { //merge and delete edge and contiguous face, while repointing edges (uuugh!) int ois = O->get().indices.size(); for (int j = 0; j < ois; j++) { //search a if (O->get().indices[j] == a) { //append the rest for (int k = 0; k < ois; k++) { int idx = O->get().indices[(k + j) % ois]; int idxn = O->get().indices[(k + j + 1) % ois]; if (idx == b && idxn == a) { //already have b! break; } if (idx != a) { f.indices.insert(i + 1, idx); i++; } Edge e2(idx, idxn); HashMap::Iterator F2 = ret_edges.find(e2); ERR_CONTINUE(!F2); //change faceconnect, point to this face instead if (F2->value.left == O) { F2->value.left = E; } else if (F2->value.right == O) { F2->value.right = E; } } break; } } // remove all edge connections to this face for (KeyValue &G : ret_edges) { if (G.value.left == O) { G.value.left = nullptr; } if (G.value.right == O) { G.value.right = nullptr; } } ret_edges.remove(F); //remove the edge ret_faces.erase(O); //remove the face } } } //fill mesh r_mesh.faces.clear(); r_mesh.faces.resize(ret_faces.size()); HashMap::Element *, int> face_indices; int idx = 0; for (List::Element *E = ret_faces.front(); E; E = E->next()) { face_indices[E] = idx; r_mesh.faces[idx++] = E->get(); } r_mesh.edges.resize(ret_edges.size()); idx = 0; for (const KeyValue &E : ret_edges) { Geometry3D::MeshData::Edge e; e.vertex_a = E.key.vertices[0]; e.vertex_b = E.key.vertices[1]; ERR_CONTINUE(!face_indices.has(E.value.left)); ERR_CONTINUE(!face_indices.has(E.value.right)); e.face_a = face_indices[E.value.left]; e.face_b = face_indices[E.value.right]; r_mesh.edges[idx++] = e; } r_mesh.vertices = p_points; return OK; }