/*************************************************************************/ /* quaternion.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quaternion.h" #include "core/math/basis.h" #include "core/string/print_string.h" real_t Quaternion::angle_to(const Quaternion &p_to) const { real_t d = dot(p_to); return Math::acos(CLAMP(d * d * 2 - 1, -1, 1)); } // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_xyz() const { Basis m(*this); return m.get_euler(Basis::EULER_ORDER_XYZ); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quaternion::get_euler_yxz() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized."); #endif Basis m(*this); return m.get_euler(Basis::EULER_ORDER_YXZ); } void Quaternion::operator*=(const Quaternion &p_q) { real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y; real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z; real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x; w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z; x = xx; y = yy; z = zz; } Quaternion Quaternion::operator*(const Quaternion &p_q) const { Quaternion r = *this; r *= p_q; return r; } bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const { return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w); } real_t Quaternion::length() const { return Math::sqrt(length_squared()); } void Quaternion::normalize() { *this /= length(); } Quaternion Quaternion::normalized() const { return *this / length(); } bool Quaternion::is_normalized() const { return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon } Quaternion Quaternion::inverse() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized."); #endif return Quaternion(-x, -y, -z, w); } Quaternion Quaternion::log() const { Quaternion src = *this; Vector3 src_v = src.get_axis() * src.get_angle(); return Quaternion(src_v.x, src_v.y, src_v.z, 0); } Quaternion Quaternion::exp() const { Quaternion src = *this; Vector3 src_v = Vector3(src.x, src.y, src.z); real_t theta = src_v.length(); if (theta < CMP_EPSILON) { return Quaternion(0, 0, 0, 1); } return Quaternion(src_v.normalized(), theta); } Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(p_to); // adjust signs (if necessary) if (cosom < 0.0f) { cosom = -cosom; to1 = -p_to; } else { to1 = p_to; } // calculate coefficients if ((1.0f - cosom) > (real_t)CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0 - p_weight) * omega) / sinom; scale1 = Math::sin(p_weight * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0f - p_weight; scale1 = p_weight; } // calculate final values return Quaternion( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); } Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif const Quaternion &from = *this; real_t dot = from.dot(p_to); if (Math::absf(dot) > 0.9999f) { return from; } real_t theta = Math::acos(dot), sinT = 1.0f / Math::sin(theta), newFactor = Math::sin(p_weight * theta) * sinT, invFactor = Math::sin((1.0f - p_weight) * theta) * sinT; return Quaternion(invFactor * from.x + newFactor * p_to.x, invFactor * from.y + newFactor * p_to.y, invFactor * from.z + newFactor * p_to.z, invFactor * from.w + newFactor * p_to.w); } Quaternion Quaternion::cubic_slerp(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized."); #endif Quaternion ret_q = *this; Quaternion pre_q = p_pre_a; Quaternion to_q = p_b; Quaternion post_q = p_post_b; // Align flip phases. ret_q = Basis(ret_q).get_rotation_quaternion(); pre_q = Basis(pre_q).get_rotation_quaternion(); to_q = Basis(to_q).get_rotation_quaternion(); post_q = Basis(post_q).get_rotation_quaternion(); // Flip quaternions to shortest path if necessary. bool flip1 = signbit(ret_q.dot(pre_q)); pre_q = flip1 ? -pre_q : pre_q; bool flip2 = signbit(ret_q.dot(to_q)); to_q = flip2 ? -to_q : to_q; bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q)); post_q = flip3 ? -post_q : post_q; if (flip1 || flip2 || flip3) { // Angle is too large, calc by Approximate. ret_q.x = Math::cubic_interpolate(ret_q.x, to_q.x, pre_q.x, post_q.x, p_weight); ret_q.y = Math::cubic_interpolate(ret_q.y, to_q.y, pre_q.y, post_q.y, p_weight); ret_q.z = Math::cubic_interpolate(ret_q.z, to_q.z, pre_q.z, post_q.z, p_weight); ret_q.w = Math::cubic_interpolate(ret_q.w, to_q.w, pre_q.w, post_q.w, p_weight); ret_q.normalize(); } else { // Calc by Expmap. Quaternion ln_ret = ret_q.log(); Quaternion ln_to = to_q.log(); Quaternion ln_pre = pre_q.log(); Quaternion ln_post = post_q.log(); Quaternion ln = Quaternion(0, 0, 0, 0); ln.x = Math::cubic_interpolate(ln_ret.x, ln_to.x, ln_pre.x, ln_post.x, p_weight); ln.y = Math::cubic_interpolate(ln_ret.y, ln_to.y, ln_pre.y, ln_post.y, p_weight); ln.z = Math::cubic_interpolate(ln_ret.z, ln_to.z, ln_pre.z, ln_post.z, p_weight); ret_q = ln.exp(); } return ret_q; } Quaternion::operator String() const { return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")"; } Vector3 Quaternion::get_axis() const { if (Math::abs(w) > 1 - CMP_EPSILON) { return Vector3(x, y, z); } real_t r = ((real_t)1) / Math::sqrt(1 - w * w); return Vector3(x * r, y * r, z * r); } real_t Quaternion::get_angle() const { return 2 * Math::acos(w); } Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) { #ifdef MATH_CHECKS ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized."); #endif real_t d = p_axis.length(); if (d == 0) { x = 0; y = 0; z = 0; w = 0; } else { real_t sin_angle = Math::sin(p_angle * 0.5f); real_t cos_angle = Math::cos(p_angle * 0.5f); real_t s = sin_angle / d; x = p_axis.x * s; y = p_axis.y * s; z = p_axis.z * s; w = cos_angle; } } // Euler constructor expects a vector containing the Euler angles in the format // (ax, ay, az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Quaternion::Quaternion(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5f; real_t half_a2 = p_euler.x * 0.5f; real_t half_a3 = p_euler.z * 0.5f; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); x = sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3; y = sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3; z = -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3; w = sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3; }