/*************************************************************************/ /* quat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quat.h" #include "core/math/basis.h" #include "core/print_string.h" // set_euler_xyz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). void Quat::set_euler_xyz(const Vector3 &p_euler) { real_t half_a1 = p_euler.x * 0.5; real_t half_a2 = p_euler.y * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_xyz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses XYZ convention (Z is the first rotation). Vector3 Quat::get_euler_xyz() const { Basis m(*this); return m.get_euler_xyz(); } // set_euler_yxz expects a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). void Quat::set_euler_yxz(const Vector3 &p_euler) { real_t half_a1 = p_euler.y * 0.5; real_t half_a2 = p_euler.x * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = Y(a1).X(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3, sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3, -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3, sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler_yxz returns a vector containing the Euler angles in the format // (ax,ay,az), where ax is the angle of rotation around x axis, // and similar for other axes. // This implementation uses YXZ convention (Z is the first rotation). Vector3 Quat::get_euler_yxz() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Vector3(0, 0, 0)); #endif Basis m(*this); return m.get_euler_yxz(); } void Quat::operator*=(const Quat &q) { set(w * q.x + x * q.w + y * q.z - z * q.y, w * q.y + y * q.w + z * q.x - x * q.z, w * q.z + z * q.w + x * q.y - y * q.x, w * q.w - x * q.x - y * q.y - z * q.z); } Quat Quat::operator*(const Quat &q) const { Quat r = *this; r *= q; return r; } bool Quat::is_equal_approx(const Quat &p_quat) const { return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w); } real_t Quat::length() const { return Math::sqrt(length_squared()); } void Quat::normalize() { *this /= length(); } Quat Quat::normalized() const { return *this / length(); } bool Quat::is_normalized() const { return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon } Quat Quat::inverse() const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quat()); #endif return Quat(-x, -y, -z, w); } Quat Quat::slerp(const Quat &q, const real_t &t) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quat()); ERR_FAIL_COND_V(!q.is_normalized(), Quat()); #endif Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(q); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; to1.x = -q.x; to1.y = -q.y; to1.z = -q.z; to1.w = -q.w; } else { to1.x = q.x; to1.y = q.y; to1.z = q.z; to1.w = q.w; } // calculate coefficients if ((1.0 - cosom) > CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0 - t) * omega) / sinom; scale1 = Math::sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values return Quat( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); } Quat Quat::slerpni(const Quat &q, const real_t &t) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quat()); ERR_FAIL_COND_V(!q.is_normalized(), Quat()); #endif const Quat &from = *this; real_t dot = from.dot(q); if (Math::absf(dot) > 0.9999) return from; real_t theta = Math::acos(dot), sinT = 1.0 / Math::sin(theta), newFactor = Math::sin(t * theta) * sinT, invFactor = Math::sin((1.0 - t) * theta) * sinT; return Quat(invFactor * from.x + newFactor * q.x, invFactor * from.y + newFactor * q.y, invFactor * from.z + newFactor * q.z, invFactor * from.w + newFactor * q.w); } Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { #ifdef MATH_CHECKS ERR_FAIL_COND_V(!is_normalized(), Quat()); ERR_FAIL_COND_V(!q.is_normalized(), Quat()); #endif //the only way to do slerp :| real_t t2 = (1.0 - t) * t * 2; Quat sp = this->slerp(q, t); Quat sq = prep.slerpni(postq, t); return sp.slerpni(sq, t2); } Quat::operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); } void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) { #ifdef MATH_CHECKS ERR_FAIL_COND(!axis.is_normalized()); #endif real_t d = axis.length(); if (d == 0) set(0, 0, 0, 0); else { real_t sin_angle = Math::sin(angle * 0.5); real_t cos_angle = Math::cos(angle * 0.5); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } }