/*************************************************************************/ /* matrix3.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "vector3.h" #ifndef MATRIX3_H #define MATRIX3_H #include "quat.h" /** @author Juan Linietsky */ class Matrix3 { public: Vector3 elements[3]; _FORCE_INLINE_ const Vector3& operator[](int axis) const { return elements[axis]; } _FORCE_INLINE_ Vector3& operator[](int axis) { return elements[axis]; } void invert(); void transpose(); Matrix3 inverse() const; Matrix3 transposed() const; _FORCE_INLINE_ float determinant() const; void from_z(const Vector3& p_z); _FORCE_INLINE_ Vector3 get_axis(int p_axis) const { // get actual basis axis (elements is transposed for performance) return Vector3( elements[0][p_axis], elements[1][p_axis], elements[2][p_axis] ); } _FORCE_INLINE_ void set_axis(int p_axis, const Vector3& p_value) { // get actual basis axis (elements is transposed for performance) elements[0][p_axis]=p_value.x; elements[1][p_axis]=p_value.y; elements[2][p_axis]=p_value.z; } void rotate(const Vector3& p_axis, real_t p_phi); Matrix3 rotated(const Vector3& p_axis, real_t p_phi) const; void scale( const Vector3& p_scale ); Matrix3 scaled( const Vector3& p_scale ) const; Vector3 get_scale() const; Vector3 get_euler() const; void set_euler(const Vector3& p_euler); // transposed dot products _FORCE_INLINE_ real_t tdotx(const Vector3& v) const { return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2]; } _FORCE_INLINE_ real_t tdoty(const Vector3& v) const { return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2]; } _FORCE_INLINE_ real_t tdotz(const Vector3& v) const { return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2]; } bool operator==(const Matrix3& p_matrix) const; bool operator!=(const Matrix3& p_matrix) const; _FORCE_INLINE_ Vector3 xform(const Vector3& p_vector) const; _FORCE_INLINE_ Vector3 xform_inv(const Vector3& p_vector) const; _FORCE_INLINE_ void operator*=(const Matrix3& p_matrix); _FORCE_INLINE_ Matrix3 operator*(const Matrix3& p_matrix) const; _FORCE_INLINE_ void operator+=(const Matrix3& p_matrix); _FORCE_INLINE_ Matrix3 operator+(const Matrix3& p_matrix) const; _FORCE_INLINE_ void operator-=(const Matrix3& p_matrix); _FORCE_INLINE_ Matrix3 operator-(const Matrix3& p_matrix) const; _FORCE_INLINE_ void operator*=(real_t p_val); _FORCE_INLINE_ Matrix3 operator*(real_t p_val) const; int get_orthogonal_index() const; void set_orthogonal_index(int p_index); operator String() const; void get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const; /* create / set */ _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { elements[0][0]=xx; elements[0][1]=xy; elements[0][2]=xz; elements[1][0]=yx; elements[1][1]=yy; elements[1][2]=yz; elements[2][0]=zx; elements[2][1]=zy; elements[2][2]=zz; } _FORCE_INLINE_ Vector3 get_column(int i) const { return Vector3(elements[0][i],elements[1][i],elements[2][i]); } _FORCE_INLINE_ Vector3 get_row(int i) const { return Vector3(elements[i][0],elements[i][1],elements[i][2]); } _FORCE_INLINE_ Vector3 get_main_diagonal() const { return Vector3(elements[0][0],elements[1][1],elements[2][2]); } _FORCE_INLINE_ void set_row(int i, const Vector3& p_row) { elements[i][0]=p_row.x; elements[i][1]=p_row.y; elements[i][2]=p_row.z; } _FORCE_INLINE_ void set_zero() { elements[0].zero(); elements[1].zero(); elements[2].zero(); } _FORCE_INLINE_ Matrix3 transpose_xform(const Matrix3& m) const { return Matrix3( elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x, elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y, elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z, elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x, elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y, elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z, elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x, elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y, elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z); } Matrix3(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) { set(xx, xy, xz, yx, yy, yz, zx, zy, zz); } void orthonormalize(); Matrix3 orthonormalized() const; bool is_symmetric() const; Matrix3 diagonalize(); operator Quat() const; Matrix3(const Quat& p_quat); // euler Matrix3(const Vector3& p_euler); // euler Matrix3(const Vector3& p_axis, real_t p_phi); _FORCE_INLINE_ Matrix3(const Vector3& row0, const Vector3& row1, const Vector3& row2) { elements[0]=row0; elements[1]=row1; elements[2]=row2; } _FORCE_INLINE_ Matrix3() { elements[0][0]=1; elements[0][1]=0; elements[0][2]=0; elements[1][0]=0; elements[1][1]=1; elements[1][2]=0; elements[2][0]=0; elements[2][1]=0; elements[2][2]=1; } }; _FORCE_INLINE_ void Matrix3::operator*=(const Matrix3& p_matrix) { set( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2])); } _FORCE_INLINE_ Matrix3 Matrix3::operator*(const Matrix3& p_matrix) const { return Matrix3( p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]), p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]), p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]) ); } _FORCE_INLINE_ void Matrix3::operator+=(const Matrix3& p_matrix) { elements[0] += p_matrix.elements[0]; elements[1] += p_matrix.elements[1]; elements[2] += p_matrix.elements[2]; } _FORCE_INLINE_ Matrix3 Matrix3::operator+(const Matrix3& p_matrix) const { Matrix3 ret(*this); ret += p_matrix; return ret; } _FORCE_INLINE_ void Matrix3::operator-=(const Matrix3& p_matrix) { elements[0] -= p_matrix.elements[0]; elements[1] -= p_matrix.elements[1]; elements[2] -= p_matrix.elements[2]; } _FORCE_INLINE_ Matrix3 Matrix3::operator-(const Matrix3& p_matrix) const { Matrix3 ret(*this); ret -= p_matrix; return ret; } _FORCE_INLINE_ void Matrix3::operator*=(real_t p_val) { elements[0]*=p_val; elements[1]*=p_val; elements[2]*=p_val; } _FORCE_INLINE_ Matrix3 Matrix3::operator*(real_t p_val) const { Matrix3 ret(*this); ret *= p_val; return ret; } Vector3 Matrix3::xform(const Vector3& p_vector) const { return Vector3( elements[0].dot(p_vector), elements[1].dot(p_vector), elements[2].dot(p_vector) ); } Vector3 Matrix3::xform_inv(const Vector3& p_vector) const { return Vector3( (elements[0][0]*p_vector.x ) + ( elements[1][0]*p_vector.y ) + ( elements[2][0]*p_vector.z ), (elements[0][1]*p_vector.x ) + ( elements[1][1]*p_vector.y ) + ( elements[2][1]*p_vector.z ), (elements[0][2]*p_vector.x ) + ( elements[1][2]*p_vector.y ) + ( elements[2][2]*p_vector.z ) ); } float Matrix3::determinant() const { return elements[0][0]*(elements[1][1]*elements[2][2] - elements[2][1]*elements[1][2]) - elements[1][0]*(elements[0][1]*elements[2][2] - elements[2][1]*elements[0][2]) + elements[2][0]*(elements[0][1]*elements[1][2] - elements[1][1]*elements[0][2]); } #endif