/*************************************************************************/ /* matrix3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "matrix3.h" #include "math_funcs.h" #include "os/copymem.h" #define cofac(row1,col1, row2, col2)\ (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1]) void Basis::from_z(const Vector3& p_z) { if (Math::abs(p_z.z) > Math_SQRT12 ) { // choose p in y-z plane real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2]; real_t k = 1.0/Math::sqrt(a); elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k); elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]); } else { // choose p in x-y plane real_t a = p_z.x*p_z.x + p_z.y*p_z.y; real_t k = 1.0/Math::sqrt(a); elements[0]=Vector3(-p_z.y*k,p_z.x*k,0); elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k); } elements[2]=p_z; } void Basis::invert() { real_t co[3]={ cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1) }; real_t det = elements[0][0] * co[0]+ elements[0][1] * co[1]+ elements[0][2] * co[2]; ERR_FAIL_COND( det == 0 ); real_t s = 1.0/det; set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s ); } void Basis::orthonormalize() { ERR_FAIL_COND(determinant() == 0); // Gram-Schmidt Process Vector3 x=get_axis(0); Vector3 y=get_axis(1); Vector3 z=get_axis(2); x.normalize(); y = (y-x*(x.dot(y))); y.normalize(); z = (z-x*(x.dot(z))-y*(y.dot(z))); z.normalize(); set_axis(0,x); set_axis(1,y); set_axis(2,z); } Basis Basis::orthonormalized() const { Basis c = *this; c.orthonormalize(); return c; } bool Basis::is_orthogonal() const { Basis id; Basis m = (*this)*transposed(); return isequal_approx(id,m); } bool Basis::is_rotation() const { return Math::isequal_approx(determinant(), 1) && is_orthogonal(); } bool Basis::is_symmetric() const { if (Math::abs(elements[0][1] - elements[1][0]) > CMP_EPSILON) return false; if (Math::abs(elements[0][2] - elements[2][0]) > CMP_EPSILON) return false; if (Math::abs(elements[1][2] - elements[2][1]) > CMP_EPSILON) return false; return true; } Basis Basis::diagonalize() { //NOTE: only implemented for symmetric matrices //with the Jacobi iterative method method ERR_FAIL_COND_V(!is_symmetric(), Basis()); const int ite_max = 1024; real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2]; int ite = 0; Basis acc_rot; while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max ) { real_t el01_2 = elements[0][1] * elements[0][1]; real_t el02_2 = elements[0][2] * elements[0][2]; real_t el12_2 = elements[1][2] * elements[1][2]; // Find the pivot element int i, j; if (el01_2 > el02_2) { if (el12_2 > el01_2) { i = 1; j = 2; } else { i = 0; j = 1; } } else { if (el12_2 > el02_2) { i = 1; j = 2; } else { i = 0; j = 2; } } // Compute the rotation angle real_t angle; if (Math::abs(elements[j][j] - elements[i][i]) < CMP_EPSILON) { angle = Math_PI / 4; } else { angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i])); } // Compute the rotation matrix Basis rot; rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle); rot.elements[i][j] = - (rot.elements[j][i] = Math::sin(angle)); // Update the off matrix norm off_matrix_norm_2 -= elements[i][j] * elements[i][j]; // Apply the rotation *this = rot * *this * rot.transposed(); acc_rot = rot * acc_rot; } return acc_rot; } Basis Basis::inverse() const { Basis inv=*this; inv.invert(); return inv; } void Basis::transpose() { SWAP(elements[0][1],elements[1][0]); SWAP(elements[0][2],elements[2][0]); SWAP(elements[1][2],elements[2][1]); } Basis Basis::transposed() const { Basis tr=*this; tr.transpose(); return tr; } // Multiplies the matrix from left by the scaling matrix: M -> S.M // See the comment for Basis::rotated for further explanation. void Basis::scale(const Vector3& p_scale) { elements[0][0]*=p_scale.x; elements[0][1]*=p_scale.x; elements[0][2]*=p_scale.x; elements[1][0]*=p_scale.y; elements[1][1]*=p_scale.y; elements[1][2]*=p_scale.y; elements[2][0]*=p_scale.z; elements[2][1]*=p_scale.z; elements[2][2]*=p_scale.z; } Basis Basis::scaled( const Vector3& p_scale ) const { Basis m = *this; m.scale(p_scale); return m; } Vector3 Basis::get_scale() const { // We are assuming M = R.S, and performing a polar decomposition to extract R and S. // FIXME: We eventually need a proper polar decomposition. // As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1 // (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix. // As such, it works in conjuction with get_rotation(). real_t det_sign = determinant() > 0 ? 1 : -1; return det_sign*Vector3( Vector3(elements[0][0],elements[1][0],elements[2][0]).length(), Vector3(elements[0][1],elements[1][1],elements[2][1]).length(), Vector3(elements[0][2],elements[1][2],elements[2][2]).length() ); } // Multiplies the matrix from left by the rotation matrix: M -> R.M // Note that this does *not* rotate the matrix itself. // // The main use of Basis is as Transform.basis, which is used a the transformation matrix // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)), // not the matrix itself (which is R * (*this) * R.transposed()). Basis Basis::rotated(const Vector3& p_axis, real_t p_phi) const { return Basis(p_axis, p_phi) * (*this); } void Basis::rotate(const Vector3& p_axis, real_t p_phi) { *this = rotated(p_axis, p_phi); } Basis Basis::rotated(const Vector3& p_euler) const { return Basis(p_euler) * (*this); } void Basis::rotate(const Vector3& p_euler) { *this = rotated(p_euler); } Vector3 Basis::get_rotation() const { // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S, // and returns the Euler angles corresponding to the rotation part, complementing get_scale(). // See the comment in get_scale() for further information. Basis m = orthonormalized(); real_t det = m.determinant(); if (det < 0) { // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles. m.scale(Vector3(-1,-1,-1)); } return m.get_euler(); } // get_euler returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last // (following the convention they are commonly defined in the literature). // // The current implementation uses XYZ convention (Z is the first rotation), // so euler.z is the angle of the (first) rotation around Z axis and so on, // // And thus, assuming the matrix is a rotation matrix, this function returns // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates // around the z-axis by a and so on. Vector3 Basis::get_euler() const { // Euler angles in XYZ convention. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix // // rot = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy Vector3 euler; ERR_FAIL_COND_V(is_rotation() == false, euler); euler.y = Math::asin(elements[0][2]); if ( euler.y < Math_PI*0.5) { if ( euler.y > -Math_PI*0.5) { euler.x = Math::atan2(-elements[1][2],elements[2][2]); euler.z = Math::atan2(-elements[0][1],elements[0][0]); } else { real_t r = Math::atan2(elements[1][0],elements[1][1]); euler.z = 0.0; euler.x = euler.z - r; } } else { real_t r = Math::atan2(elements[0][1],elements[1][1]); euler.z = 0; euler.x = r - euler.z; } return euler; } // set_euler expects a vector containing the Euler angles in the format // (c,b,a), where a is the angle of the first rotation, and c is the last. // The current implementation uses XYZ convention (Z is the first rotation). void Basis::set_euler(const Vector3& p_euler) { real_t c, s; c = Math::cos(p_euler.x); s = Math::sin(p_euler.x); Basis xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c); c = Math::cos(p_euler.y); s = Math::sin(p_euler.y); Basis ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c); c = Math::cos(p_euler.z); s = Math::sin(p_euler.z); Basis zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0); //optimizer will optimize away all this anyway *this = xmat*(ymat*zmat); } bool Basis::isequal_approx(const Basis& a, const Basis& b) const { for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if (Math::isequal_approx(a.elements[i][j],b.elements[i][j]) == false) return false; } } return true; } bool Basis::operator==(const Basis& p_matrix) const { for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if (elements[i][j] != p_matrix.elements[i][j]) return false; } } return true; } bool Basis::operator!=(const Basis& p_matrix) const { return (!(*this==p_matrix)); } Basis::operator String() const { String mtx; for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { if (i!=0 || j!=0) mtx+=", "; mtx+=rtos( elements[i][j] ); } } return mtx; } Basis::operator Quat() const { ERR_FAIL_COND_V(is_rotation() == false, Quat()); real_t trace = elements[0][0] + elements[1][1] + elements[2][2]; real_t temp[4]; if (trace > 0.0) { real_t s = Math::sqrt(trace + 1.0); temp[3]=(s * 0.5); s = 0.5 / s; temp[0]=((elements[2][1] - elements[1][2]) * s); temp[1]=((elements[0][2] - elements[2][0]) * s); temp[2]=((elements[1][0] - elements[0][1]) * s); } else { int i = elements[0][0] < elements[1][1] ? (elements[1][1] < elements[2][2] ? 2 : 1) : (elements[0][0] < elements[2][2] ? 2 : 0); int j = (i + 1) % 3; int k = (i + 2) % 3; real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0); temp[i] = s * 0.5; s = 0.5 / s; temp[3] = (elements[k][j] - elements[j][k]) * s; temp[j] = (elements[j][i] + elements[i][j]) * s; temp[k] = (elements[k][i] + elements[i][k]) * s; } return Quat(temp[0],temp[1],temp[2],temp[3]); } static const Basis _ortho_bases[24]={ Basis(1, 0, 0, 0, 1, 0, 0, 0, 1), Basis(0, -1, 0, 1, 0, 0, 0, 0, 1), Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1), Basis(0, 1, 0, -1, 0, 0, 0, 0, 1), Basis(1, 0, 0, 0, 0, -1, 0, 1, 0), Basis(0, 0, 1, 1, 0, 0, 0, 1, 0), Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0), Basis(0, 0, -1, -1, 0, 0, 0, 1, 0), Basis(1, 0, 0, 0, -1, 0, 0, 0, -1), Basis(0, 1, 0, 1, 0, 0, 0, 0, -1), Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1), Basis(0, -1, 0, -1, 0, 0, 0, 0, -1), Basis(1, 0, 0, 0, 0, 1, 0, -1, 0), Basis(0, 0, -1, 1, 0, 0, 0, -1, 0), Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0), Basis(0, 0, 1, -1, 0, 0, 0, -1, 0), Basis(0, 0, 1, 0, 1, 0, -1, 0, 0), Basis(0, -1, 0, 0, 0, 1, -1, 0, 0), Basis(0, 0, -1, 0, -1, 0, -1, 0, 0), Basis(0, 1, 0, 0, 0, -1, -1, 0, 0), Basis(0, 0, 1, 0, -1, 0, 1, 0, 0), Basis(0, 1, 0, 0, 0, 1, 1, 0, 0), Basis(0, 0, -1, 0, 1, 0, 1, 0, 0), Basis(0, -1, 0, 0, 0, -1, 1, 0, 0) }; int Basis::get_orthogonal_index() const { //could be sped up if i come up with a way Basis orth=*this; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { real_t v = orth[i][j]; if (v>0.5) v=1.0; else if (v<-0.5) v=-1.0; else v=0; orth[i][j]=v; } } for(int i=0;i<24;i++) { if (_ortho_bases[i]==orth) return i; } return 0; } void Basis::set_orthogonal_index(int p_index){ //there only exist 24 orthogonal bases in r3 ERR_FAIL_INDEX(p_index,24); *this=_ortho_bases[p_index]; } void Basis::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const { ERR_FAIL_COND(is_rotation() == false); double angle,x,y,z; // variables for result double epsilon = 0.01; // margin to allow for rounding errors double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon) && (Math::abs(elements[2][0]-elements[0][2])< epsilon) && (Math::abs(elements[2][1]-elements[1][2])< epsilon)) { // singularity found // first check for identity matrix which must have +1 for all terms // in leading diagonaland zero in other terms if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2) && (Math::abs(elements[2][0]+elements[0][2]) < epsilon2) && (Math::abs(elements[2][1]+elements[1][2]) < epsilon2) && (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) { // this singularity is identity matrix so angle = 0 r_axis=Vector3(0,1,0); r_angle=0; return; } // otherwise this singularity is angle = 180 angle = Math_PI; double xx = (elements[0][0]+1)/2; double yy = (elements[1][1]+1)/2; double zz = (elements[2][2]+1)/2; double xy = (elements[1][0]+elements[0][1])/4; double xz = (elements[2][0]+elements[0][2])/4; double yz = (elements[2][1]+elements[1][2])/4; if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term if (xx< epsilon) { x = 0; y = 0.7071; z = 0.7071; } else { x = Math::sqrt(xx); y = xy/x; z = xz/x; } } else if (yy > zz) { // elements[1][1] is the largest diagonal term if (yy< epsilon) { x = 0.7071; y = 0; z = 0.7071; } else { y = Math::sqrt(yy); x = xy/y; z = yz/y; } } else { // elements[2][2] is the largest diagonal term so base result on this if (zz< epsilon) { x = 0.7071; y = 0.7071; z = 0; } else { z = Math::sqrt(zz); x = xz/z; y = yz/z; } } r_axis=Vector3(x,y,z); r_angle=angle; return; } // as we have reached here there are no singularities so we can handle normally double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1]) +(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2]) +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2); if (angle < 0) s = -s; x = (elements[2][1] - elements[1][2])/s; y = (elements[0][2] - elements[2][0])/s; z = (elements[1][0] - elements[0][1])/s; r_axis=Vector3(x,y,z); r_angle=angle; } Basis::Basis(const Vector3& p_euler) { set_euler( p_euler ); } Basis::Basis(const Quat& p_quat) { real_t d = p_quat.length_squared(); real_t s = 2.0 / d; real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s; real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs; real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs; real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs; set( 1.0 - (yy + zz), xy - wz, xz + wy, xy + wz, 1.0 - (xx + zz), yz - wx, xz - wy, yz + wx, 1.0 - (xx + yy)) ; } Basis::Basis(const Vector3& p_axis, real_t p_phi) { // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z); real_t cosine= Math::cos(p_phi); real_t sine= Math::sin(p_phi); elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x ); elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine; elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine; elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine; elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y ); elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine; elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine; elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine; elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z ); }